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Infectious bursal disease (IBD) is an acute, highly infectious, and

immunosuppressive disease caused by the infectious bursal disease virus

(IBDV), which interferes with the immune system, causes hypoimmunity and

seriously threatens the healthy development of the poultry industry. Adaptive

immune response, an important defense line of host resistance to pathogen

infection, is the host-specific immune response mainly mediated by T and B

lymphocytes. As an important immunosuppressive pathogen in poultry, IBDV

infection is closely related to the injury of the adaptive immune system. In this

review, we focus on recent advances in adaptive immune response influenced by

IBDV infection, especially the damage on immune organs, as well as the effect on

humoral immune response and cellular immune response, hoping to provide a

theoretical basis for further exploration of the molecular mechanism of

immunosuppression induced by IBDV infection and the establishment of novel

prevention and control measures for IBD.
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1 Introduction

Infectious bursal disease (IBD) is an acute, highly contagious, and immunosuppressive

disease caused by the infectious bursal disease virus (IBDV) (1). IBDV has been popular for

over 70 years, bringing huge economic losses to the global poultry industry. Belonging to

the genus Avibirnavirus within the Birnaviridae family, IBDV is categorized as two distinct

serotypes: serotypes I and II. Notably, only serotype I possesses pathogenicity towards
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chickens (2). According to the antigenicity and pathogenicity,

serotype I IBDV can further be divided into classical IBDV

(cIBDV) (3), variant IBDV (varIBDV) (4), and very virulent

IBDV (vvIBDV) (5, 6). IBDV mainly infects immature IgM+ B

lymphocytes in the bursa and induces the atrophy of the targeted

organ bursa and the damage of B lymphocytes (7), which reduces

the ability of immune response (8), leading to serious mixed

infections and secondary infections, results in increased morbidity

and mortality in chickens (9), and reduces the immunity effects

induced by other avian vaccines (10–12).

The integrity of both innate and adaptive immune is essential

for defending against the pathogenic invasion (13). IBDV infection

can destroy the immune system of chickens which further results in

the inability to resist the pathogen. The innate immune response

acts as the host’s first line of defense against broad-spectrum

pathogen infection and exerts its antiviral effects through natural

immune cells and immune molecules (14), and how IBDV infection

suppresses the innate immune response has been extensively

resolved. For example, dsRNAs can be recognized by the pattern

recognition receptor MDA5 and trigger downstream signal

transduction pathways to induce type I interferon (IFN-I)

production (15). In contrast, the viral protein VP3 of IBDV can

competitively bind dsRNA with MDA5, affecting the host’s innate

immune response and promoting IBDV replication during the

infection process (16). As an important line to resist pathogen

infections, the adaptive immune response includes humoral

immunity and cellular immunity and is mainly mediated by T

and B lymphocytes in host-specific immune responses against

specific pathogens. IBDV infection mainly attacks the immune

organs and immune cells, resulting in the atrophy of the bursa,

necrosis of B lymphocytes, and impaired activation of T

lymphocytes (17, 18), severely affecting the body’s adaptive

immune response.

This review mainly focuses on the impact of IBDV infection on

host adaptive immune response, from the perspective of the effects of

IBDV infection on the central immune organs and peripheral immune

organs, as well as the effects on humoral and cellular immune

responses. Therefore, these summaries may provide theoretical

references for exploring the causes of immunosuppression and the

prevention and control measures of IBD.
2 Effects of IBDV infection on the
immune organs

IBDV infection can not only seriously damage the central

immune organs (bursa, thymus and bone marrow), but also affect

peripheral immune organs such as the spleen, gut-associated

lymphatic tissue (GALT), Gland of Harder (GH), severely

damaging the function of T and B lymphocytes and further

affecting the adaptive immune response (19–22). These finding is

closely related to immunosuppression in chickens caused by IBDV

infection. Therefore, a comprehensive analysis of the effects of

IBDV infection on the immune system will be more important

for the scientific prevention and control of IBD infection.
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2.1 Effects of IBDV infection on the central
immune organs

2.1.1 Effect of IBDV infection on the bursa
The damage to the bursa is most obvious after an IBDV

infection. Yellow exudate on the serous membrane of the bursa is

found in the early stage of vvIBDV infection. As the course of viral

infection progresses, the bursa appears necrotic foci, spot-like or

hemorrhagic bleeding on the mucosal surface, presenting a classic

“purple grape” appearance (8, 19–21, 23). Histopathological results

show that the follicles are atrophied after vvIBDV infection, with a

large reduction of lymphocytes due to necrosis, local medullary

vacuolation, significant neutrophil infiltration and interstitial

hyperplasia, accompanied by erythrocyte infiltration, resulting in

bursa of atrophy and bleeding (19).

In contrast to vvIBDV, varIBDV infection was originally

described in the United States and typically causes severe bursa

lesions (24). Recently, a novel type of varIBDV (nVarIBDV),

belonging to the A2dB1 genotype, was wildly prevalent in China,

which is different from the early North American varIBDV (A2aB1,

A2bB1 and A2cB1 genotype) (21, 22). Besides, we found the

number of medullary lymphocytes in the follicle of bursa was

significantly reduced with heterophil infiltration and interstitial

hyperplasia in SPF chickens after nVarIBDV infection (23)

(Figure 1), which is similar to the histopathological damage

caused by vvIBDV infection after 4 days post infection.

At 4 days post-infection of vvIBDV and nVarIBDV, the bursa

showed follicular atrophy, necrosis of lymphocytes, infiltration of

xenophil cells and interstitial hyperplasia, and the pathological

results of thymus showed that lymphocyte necrosis decreased and

macrophages proliferated. No significant abnormality was found in

the Mock group.

2.1.2 Effect of IBDV infection on the thymus and
bone marrow

Similar to the damages in the bursa, the thymus is swollen with

hemorrhagic spots in the early stage of vvIBDV infection, and

severe atrophy is seen with the course of viral infection progresses.

When infected with vvIBDV, the chickens show acute, necrotizing

thymic pathological changes in the thymus, manifested by a small

number of cavities in the cortex, congestion and infiltration of

eosinophilic granulocytes, the decrease of cortical thymocytes, and

massive necrosis of lymphocytes (Figure 1). The thymus also

displays lymphocyte degeneration and necrosis, with mild

reduction of thymic cortical lymphocytes and mild proliferation

of macrophages in nVarIBDV group (23) (Figure 1). The thymus

serves as the primary site of T lymphocyte maturation, and thus

IBDV infection may interfere with the T lymphocyte-mediated

adaptive immune response (25, 26). Up to now, no direct evidence

shows pathological changes after IBDV infection in bone marrow.

Yang et al. demonstrate that IBDV infection impairs the maturation

and function of chicken bone marrow-derived dendritic cells

(chBM-DCs), suggesting that IBDV infection may take chBM-

DCs as the additional target cells, and is related tightly with bone

marrow (27). IBDV infection induces damage to the central
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immune organ and further triggers an invalid specific

immune response.
2.2 Effects of IBDV infection on peripheral
immune organs

2.2.1 Effect of IBDV infection on the spleen
IBDV also has a detrimental effect on peripheral immune

organs. When infected with vvIBDV and varIBDV, chickens

show enlarged, congested spleens with a dark brown color (23,

28). When the chicken infected with vvIBDV, the spleen shows

necrosis and disintegration of lymphocytes and a significant

reduction in the number of lymphocytes, resembling the

pathological histological changes of the bursa. The spleen

contains a large number of mature B lymphocytes, responsible

for inducing the initial immune response in response to foreign

antigens. Therefore, IBDV infection is speculated to damage the

spleen, resulting in impaired function of mature B lymphocytes

(8, 29), which is likely closely related to antibody production and

affects the host’s adaptive immune response to pathogens. Some

studies have demonstrated that IBDV infection can significantly

reduce serum antibody titers induced by avian commercial

vaccines. For example, Our studies find that nVarIBDV

infection can suppress the titer of avian influenza virus (AIV)

antibodies against both H5 and H7 vaccinated with a

recombinant AIV bivalent inactivated vaccine (H5+H7) (21,

30) and decrease the HI titer of Newcastle disease vaccine

(LaSota strain) antibodies by about 23% in commercial broilers

and laying hens (11). However, whether spleen damage is the

main cause of immune failure needs further investigations in

IBDV infection process.
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2.2.2 Effect of IBDV infection on the gut-
associated lymphoid tissues

Gut-associated lymphoid tissue (GALT) consists of lymphoid

nodules, free lymphoid tissue, plasma cells, and mucosal

intraepithelial lymphocytes. Cecal tonsils (CT) are the largest

intestinal-associated lymphoid tissue in the avian GALT (31).

vvIBDV infection results in slight swelling, congestion, and

internal hemorrhage of the cecal tonsils. While histopathological

results showed that the glandular ducts of the cecal tonsils in

chickens are structurally intact and the lymphoid nodules are

structurally clear in the pre-infection stage of vvIBDV infection.

There is massive necrosis and lysis of lymphocytes within the

lymphoid nodules and the diffuse zone of the cecal tonsils, and

with reticulocyte hyperplasia, heterophilic granulocyte infiltration,

as well as a decrease in the number of B lymphocytes with the

course of viral infection progresses (32). Although we have found a

high replication titer of varIBDV in the cecal tonsils, there are no

reports of pathological changes in the cecal tonsils caused by

varIBDV (23). IgA is the most common immunoglobulin in

mucosal tissues and is an important immune defense against

invasion of intestinal pathogens, and vvIBDV infection causes a

decrease in the number of IgA+ cells in the cecum tonsils (33). Thus,

IBDV infection can cause damage to gut-associated lymphoid

tissues and lead to dysregulation of the gut microbiota, which

may also contribute to a higher susceptibility of infected birds to

pathogens invading the gut (32).

2.2.3 Effect of IBDV infection on the Gland
of Harder

Gland of Harder (GH), a peripheral organ of immunity, is more

developed in avian species. After chickens infected with vvIBDV,

GH shows slightly swollen with surface congestion, and
FIGURE 1

Pathological change with vvIBDV HLJ0504 and nVarIBDV SHG19 infection of bursa of Fabricius and thymus. After vvIBDV HLJ0504 and nVarIBDV
SHG19 infection of bursa of fabricius for 4 days, follicular atrophy, necrosis of lymphocytes, infiltration of xenophil cells and interstitial hyperplasia
were observed. The pathological results of thymus showed that lymphocyte necrosis decreased and macrophages proliferated after HLJ0504 and
SHG19 infection. No significant abnormality was found in the blank control group.
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histopathological results of GH reveal intracytoplasmic vesicle

formation in the epithelial cells of the adenoducts, some epithelial

cells detachment, and some lymphocytes with nuclei condensation,

fragmentation, necrosis, accompanied by plasma cell necrosis and

heterophilic granulocyte infiltration (34). Therefore, the function of

GH is weaken caused by IBDV in infected chickens. In conclusion,

IBDV infection can not only severely damage the central immune

organs, but also affect the peripheral immune organs or functions,

which ultimately leads to the dysfunction of the immune system

and seriously affects the adaptive immune response.
3 Effect of IBDV infection on the
humoral immune response

The humoral immune response is an immunity protection

mechanism in that plasma cells produce antibodies to resist

pathogens. B lymphocyte surface receptors (BCR) bind to antigenic

peptides and further activate B lymphocytes to proliferate and

differentiate into memory B lymphocytes and effector B

lymphocytes (plasma cells), which then secrete antibodies (35, 36).

IBDV mainly infects the immature IgM+ B lymphocytes in the bursa

and causes severe death of B lymphocytes, which might subsequently

hinder the development and effector function, consequently restrain

the humoral immune response (7, 37).
3.1 Effect of IBDV infection on the
programmed cell death of B lymphocyte

Both vvIBDV and varIBDV infection can affect the integrity of

B lymphocytes in the bursa, further resulting in programmed cell
Frontiers in Immunology 04
death (PCD), reduced number, and impaired function, which in

turn leads to severe atrophy of the bursa (7). As the ways of PCD,

the studies on apoptosis and autophagy in the process of IBDV

infection have been reported, while studies on pyroptosis does not

(38–42) (Figure 2). IBDV infection induces apoptosis through

various pathways. The viral protein VP2 is the first protein

identified as an apoptosis-inducing protein in IBDV infection,

and it induced apoptosis by directly interacting with the anti-

apoptotic molecule Oral Cancer overexpression protein 1

(ORAOV1) for degradation (39). Subsequently, VP5 may be

another protein inducing apoptosis during IBDV infection.

Namely, VP5 can interact with Voltage-dependent Anion

Channel 2 to promote the release of cytochrome c and the

activation of caspase-3 and caspase-9 (40) and can activate

apoptosis by preventing the interaction of the anti-apoptotic

protein Receptor for Activated C Kinase1 and ORAOV1 (41). In

addition, IBDV infection induces up-regulation of non-coding

RNAs (microRNAs, miRNAs) gga-miR-16-5p, which can target

and inhibit the expression of the anti-apoptotic protein Bcl-2, and

enhances the apoptosis induced by IBDV (42).

Cellular autophagy, one of the modes of PCD, is prevalent in

the viral infection process. The phenomenon of cellular autophagy

has been widely demonstrated during IBDV infection, and the

viral protein VP2 plays an important role in IBDV-induced

autophagy. Wang et al. find that IBDV can induce autophagic

lysosome formation, and autophagic lysosome-associated

membrane glycoprotein 1 colocalizes with viral proteins to

promote cell lysis and IBDV maturation and release (43). Hu

et al. also find that IBDV induces cellular autophagy, and

subsequently viral protein VP2 binds to heat shock protein 90

dependent on the AKT-mTOR pathway to induce cellular

autophagy (44).
FIGURE 2

The schematic diagram of programmed cell death (PCD) induced by IBDV.
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Pyroptosis is also a way of PCD. During the process of pathogen

infection, pyroptosis mainly mediates the activation of various

Caspase families including Caspase-1, Caspase3 etc, which causes

the shear and polymerization of gasdermin family members to

result in cell perforation, cell death, and inflammatory response

(45–47). When chickens infected with vvIBDV and varIBDV, the

bursa induces inflammatory cell infiltration and massive release of

inflammatory cytokines, resulting in an “inflammatory storm” in

chickens (46). Therefore, the formation of the strong inflammatory

response induced by IBDV may be closely related to cellular

pyroptosis, but further studies are still needed (4). In conclusion,

IBDV infection induces the PCD of B lymphocytes in various ways

and may further impair B lymphocyte function.
3.2 Effect of IBDV infection on the
development of B lymphocytes

The bursa is critical to normal B lymphocyte development in

birds. During embryonic development, B cell precursors migrate

from the bone marrow to the bursa, where they are induced to

increase antigen-dependently (48). After maturation, B

lymphocytes migrate from the bursa to the peripheral lymphatic

organs. Previous studies have shown that vvIBDV and varIBDV

infect bursa and seriously destroy IgM + B lymphocytes, thus

affecting their development (2, 8, 23). There are five main cell

clusters (B lymphocyte, T lymphocyte, DCs, epithelial cells, and

fibroblast cells) in the bursa that has been proved in the previous

research by Yang (36). Among these clusters, the B lymphocyte,

especially the IgM+ B lymphocyte, is severely damaged upon IBDV

infection (36). In addition, some reports find that chicken sIgMl
light chains specifically interact with IBDV in vitro, and the binding

of IBDV to DT40 cells can be inhibited by sIgM-specific

monoclonal antibodies (49), suggesting that sIgM as a binding

site participates in IBDV infection. Therefore, the above results may

reveal why IBDV mainly invades IgM+ B lymphocytes. IBDV

destroys IgM+ B lymphocytes in the bursa to reduce their number

and impair their function, thus affecting B lymphocyte development

and maturation.
3.3 Effect of IBDV infection on the antigen
recognition of B lymphocytes

B lymphocytes are the primary effector cells of the humoral

immune response. The ability to capture, process, and deliver

antigens to T lymphocytes is essential for the humoral immune

response (50). In the process of the host adaptive immune response

induced by viral infection, B lymphocytes recognize antigens

through BCR, which subsequently requires the recruitment of

cytoplasmic protein tyrosine kinase (PTK) to trigger the BCR

signal pathway, thereby inducing B lymphocyte activation and

completing antigen recognition (51, 52). The JAK-STAT and PTK

Lyn-STAT pathways are two independent cascades of the BCR
Frontiers in Immunology 05
signal pathway (51, 52). Transcriptome profiling of DT40 cells

infected with vvIBDV shows that the expression of Janus Kinase 1

and Protein Tyrosine Kinase 2 decreases at 12, 18, and 24 hours

post-infection (hpi), which further attenuates the triggering of the

BCR signal pathway and thus affects the BCR antigen recognition

signal pathway (53). The above results indicate that IBDV infection

may affect the BCR signal pathway. However, the current studies

only show the transcription level changes of the related gene of the

BCR signal pathway, and more studies are needed to determine the

expression levels of antigen recognition-associated proteins and

how BCR performs antigen recognition and conducts signals.
3.4 Effect of IBDV infection on the antigen
presentation of B lymphocytes

B lymphocytes act as antigen-presenting cells to recognize

antigen (Ag) specifically via the BCR. Subsequently, the BCR-Ag

complex is internalized and transported to the region rich with

specialized MHC Class II molecules for presenting to specific

CD4+T lymphocytes (54). These CD4+ T-B interactions provide

the necessary activation signals for B lymphocyte affinity

maturation and differentiation into memory B lymphocytes or

plasma cells (53, 55). It has been shown that vvIBDV infection

affects the assembly of the nascent peptide chain and translocation

of MHC class II molecules. In addition, vvIBDV infection can also

down-regulate the expression levels of MHC class II molecules, such

as CD8a, CD74, and BCL6, as well as the expression level of

Calmegin, which is responsible for assembling MHC class II

molecules (52). Thus, vvIBDV infection can affect the antigen

presentation process by influencing the expression and assembly

of MHC class II molecules in B lymphocytes. However, the

visualization of antigen recognition and presentation processing,

the assembly process of MHC class II molecules, and the specific

interaction between B lymphocytes and CD4+ T cells, still need to

be further studied.
4 Effect of IBDV infection on the
cellular immune response

The cellular immune response is mainly mediated by T

lymphocytes, whose functions have recently been compromised in

IBDV-infected chickens (56). Although the reason for impairing T

lymphocyte function is not well known, the direct lytic effect of

IBDV on thymus cells or preponderance of immature,

immunologically unreactive lymphocytes has been suspected to be

responsible (26). The current studies on the effect of cellular

immune response mainly focus on the effect on T lymphocyte

tissue distribution and migration induced by IBDV infection.

Cellular immune responses play an important role on pathogen

clearance, but describing the specific mechanism of cellular immune

response activation after IBDV infection is difficult, which requires

further studies.
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4.1 Effect of IBDV infection on the
development of T lymphocytes

The thymus is the main site of T lymphocytes maturation

through negative-positive selection (57). In the early stage of

vvIBDV and varIBDV infection, the thymus underwent marks

atrophy and widespread apoptosis of thymocytes, and the loss of

thymic cortical cells suggested the destruction of T lymphocytes (58,

59). DCs are important for the activation of immature and the

proliferation of T lymphocytes, and viral infection induces high

expression levels of CD40 and CD86 molecules on the DCs surface

and high proliferation capacity of T lymphocytes (26). Furthermore,

inactivated IBDV is more effective in stimulating primary T cell

responses compared to IBDV infection, possibly due to the higher

expression of the co-stimulatory molecules CD40 and CD86 on

inactivated-IBDV stimulated-DCs (26). Therefore, IBDV infection

may inhibit the proliferative capacity and subsequent development

of T lymphocytes.
4.2 Effect of IBDV infection on the
migration of T lymphocytes into the bursa

Studies have demonstrated that vvIBDV infection is

accompanied by the migration of T lymphocytes into the bursa

(59). After IBDV infection, T lymphocytes are first detected in the

bursa at 4 days post-infection (dpi), and their number increases up

to 65% at 7 dpi (60). Some reports show that intrabursal T

lymphocytes promote bursal tissue damage and delay tissue

recovery by releasing cytokines and cytotoxic effects (60).

Therefore, the excessive migration of T lymphocytes may lead to

strong inflammatory responses and cause pathologic changes

during the IBDV infection process, and the migration of T

lymphocytes into the bursa can be considered a marker of the

course of IBDV infection (61). Other studies have shown that CD4+

T lymphocytes may migrate from the cecal tonsils to the bursa,

resulting in a decrease in the number of CD4+ T lymphocytes in the

cecal tonsils and an increase in the number in the bursa after

vvIBDV infection (59). Additionally, the number of CD4+ CD25+ T

lymphocytes decreases in the thymus, while increasing in the bursa,

suggesting that CD4+ CD25+ T lymphocytes infiltrate the bursa

along with CD4+ T lymphocytes after IBDV infection (62).

Consequently, IBDV infection triggers the migration of T

lymphocytes from their origin tissues into the bursa, causing a

strong inflammatory response and histopathological damage in

the bursa.
4.3 Effect of IBDV infection on the
activation of T lymphocytes

IBDV infection induces significant changes in T lymphocyte

subsets. CD4+ T lymphocytes (Th cells) are divided into Th1, Th2,

Th17, Treg (T regulatory) and Tfh (follicular T helper) cells,

according to the cytokines they secrete, and play functions on
Frontiers in Immunology 06
activation of lymphocytes (63, 64). For example, Th1 cells primarily

secrete cytokines such as IL-2, IFN-g, and TFN-b, which mediate

cellular immune response (65). Th2 cells secrete IL-4, IL-5, IL-6, IL-

10, and IL-13, which mainly regulate the humoral immune response

(66, 67). The characteristic CD4+T cell subsets after IBDV infection

have not been adequately identified. Previous studies have shown

that CD4+ T lymphocytes migrate into the bursa and have found

that IBDV infection can increase the proportion of CD4+ T

lymphocytes in the bursa and spleen, as well as the expression

levels of IFN-g, IL-10, and the T lymphocyte immune checkpoint

receptor LAG-3 in the bursa (59). VvIBDV infection induces the

activation of T lymphocytes in the bursa, while over-activated T

lymphocytes enhance the expression level of IFN-g, which

subsequently impairs the function of lymphocytes and leads to T

lymphocytes immunosuppression (68, 69). The higher ratio of pro-

inflammatory to anti-inflammatory factors can promote

pathological changes in tissues and seriously interfere with the

immune response mediated by inflammatory cytokines during

IBDV infection in chickens (70–72) (Table 1). Thus, cytokines

secreted by CD4+ T lymphocytes may exacerbate the damage to the

bursa. Besides, CD4+ T lymphocytes may also express the cytolyzing

molecule perforin to directly kill lymphocytes (59, 60, 73, 74).

Therefore, the high expression level of cytokines induced by IBDV

infection may influence the activation and function of T

lymphocytes. Although there are no reports of nVarIBDV

affecting T cell activation, we speculate that varIBDV may induce

T lymphocytes dysfunction, according to our studies on

nVarIBDV-induced immunosuppression (30).
5 Conclusions and perspectives

IBDV, especially vvIBDV and varIBDV, can cause severe

immunosuppression in chickens, interfere with the immune

system and result in economic losses. Besides, vvIBDV and

nVarIBDV are the two most prevalent strains of IBDV in China

and it is urgent to explore more effective measures for IBD. As the

main immunosuppressive pathogen, IBDV attacks the immune

organs and immune cells. Efficient prevention and control

measures mainly rely on elucidating the adaptive immune

response regulatory mechanism of IBDV infection. Therefore,

from the immunological perspective, based on current studies of

two prevalent IBDV strains, we summarize the effects of IBDV

infection on immune organs (central and peripheral organs) and

immune responses (humoral and cellular immune responses)

in detail.

However, due to the lack of experimental tools, techniques, and

basic immunological knowledge in birds, how IBDV affects the

adaptive immune response and the specific molecular mechanisms

still need to be clarified. Adaptive immunity is stringently regulated

by T and B lymphocytes, which facilitate pathogen-specific

immunologic effector pathways, the generation of immunologic

memory, and the regulation of host immune homeostasis. For

instance, the detailed molecular mechanisms by which IBDV

infection hinders B lymphocyte development, affects the

presentation of B lymphocyte antigens, induces T lymphocytes to
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infiltrate into the bursa, and activates T lymphocytes are still

unclear. Elucidating of molecular mechanisms and solving these

problems will help determine the overall impact of IBDV on the

immune response, clarify the molecular mechanisms of

immunosuppression induced by IBDV, and develop more

efficient preventive and control measures.
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