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Recent advances in the immunometabolism field have demonstrated the

importance of metabolites in fine-tuning the inflammatory responses in

myeloid cells. Cofactors, which are metabolites comprised of inorganic ions

and organic molecules, may tightly or loosely bind to distinct sites of enzymes to

catalyze a specific reaction. Since many enzymes that mediate inflammatory and

anti-inflammatory processes require the same cofactors to function, this raises

the possibility that under conditions where the abundance of these cofactors is

limited, inflammatory and anti-inflammatory enzymes must compete with each

other for the consumption of cofactors. Thus, this competition may reflect a

naturally evolvedmechanism to efficiently co-regulate inflammatory versus anti-

inflammatory pathways, fine-tuning the extent of an inflammatory response. The

role of NADPH, the reduced form of nicotinamide adenine dinucleotide

phosphate (NADP+), in mediating inflammatory and anti-inflammatory

responses in activated myeloid cells has been well-established in the past

decades. However, how the dynamic of NADPH consumption mediates the

co-regulation between individual inflammatory and anti-inflammatory pathways

is only beginning to be appreciated. In this review, we will summarize the

established roles of NADPH in supporting inflammatory and anti-inflammatory

pathways, as well as highlight how the competition for NADPH consumption by

these opposing pathways fine-tunes the inflammatory response in activated

myeloid cells.
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1 Introduction

Major milestones in the immunometabolism field have been

recently reached to illustrate how intracellular metabolic circuits

are rewired to orchestrate a fine-tuned inflammatory response in

activated immune cells. For instance, in M1 pro-inflammatory

macrophages (Mjs), there is a metabolic break at isocitrate

dehydrogenase in the TCA cycle due to suppression of its

mRNA expression, leading to the accumulation of citrate and

itaconate, which drive lipid synthesis and stabilization of anti-

inflammatory transcription factors, such as nuclear factor-

erythroid factor 2-related factor 2 (NRF2) and activating

transcription factor 3 (1–5). The accumulation of itaconate

causes a metabolic break by inhibiting the enzymic activity of

succinate dehydrogenase. The consequent increased abundance of

succinate leads to the stabilization HIF-1a, which promotes IL-1b
transcription (1–3, 6, 7). On the other hand, M2 anti-

inflammatory Mjs primarily use fatty acid oxidation and

oxidative phosphorylation to support their metabolism,

although the upregulation of glycolysis by mTOR complex 2

(mTORC2), IL-4Ra/Stat6 and interferon regulatory factor 4

(IRF4) was also reported to be critical (8). Apart from this,

carbohydrate kinase-like protein (CARKL) was also activated in

M2 Mjs, which led to the enhancement of the non-oxidative

branch of the pentose phosphate pathway (PPP) (9). This

subsequently increased the synthesis of uridine diphosphate N-

acetylglucosamine (UDP-GlcNAC), which is required for the N-

glycosylation of many cell surface proteins expressed on M2 Mjs
(2). Taken together, these studies revealed that metabolites can

regulate both inflammatory and anti-inflammatory processes, in

addition to intracellular metabolism and energetics. Although the

moonlighting functions of these metabolites, including their roles

in signaling, post-translational modification, and epigenetics are

being increasingly appreciated (10), how they regulate the extent

of inflammation by coregulating inflammatory and anti-

inflammatory pathways remain unclear.

Unlike nicotinamide adenine dinucleotide (NAD+),

nicotinamide adenine dinucleotide phosphate (NADP+) has an

additional phosphate on the 2’ position of the ribose ring that

attaches to an adenine moiety and has a lower intracellular

concentration than NAD+ (11) (Figure 1A). The reduced form of

NADP+, known as NADPH, is a well-established, indispensable

cofactor required for anabolic reactions, oxidative and antioxidative

processes. Although NADPH has multifunctional roles in

regulating inflammation, particularly in myeloid cells that have

been clearly defined in the past, it remains unclear how NADPH-

dependent inflammatory and anti-inflammatory pathways are co-

regulated in order to fine-tune the magnitude of an inflammatory

response. In this review, we will revisit the traditional roles of

NADPH in inflammatory and anti-inflammatory pathways and

highlight studies that reveal the competition for its consumption

between these opposing pathways as a way to regulate inflammation

in myeloid cells.
Frontiers in Immunology 02
2 NADPH usage for
inflammatory processes

In general, NADPH supports a wide range of inflammatory

processes in myeloid cells, including de novo lipid biosynthesis and

generation of ROS (Figure 1B). For instance, Everts et al.

demonstrated that in dendritic cells (DCs), LPS-induced

glycolysis is repurposed to replenish citrate, an intermediate

metabolite in the TCA cycle that is depleted for the de novo

synthesis of fatty acids (12). This subsequently increased the

synthesis of additional membranes to expand the endoplasmic

reticulum (ER) and golgi networks, which is required for the

secretion of proinflammatory lipid mediators, such as

prostaglandin E2 (12). Similar to DCs, LPS-induced activation of

Mjs also led to an upregulation of fatty acid synthesis (13, 14),

which has now been shown to regulate the inflammatory responses

of Mjs. For example, Carroll et al. demonstrated that the

production of acetoacetyl-CoA by fatty acid synthase (FASN), a

key NADPH-dependent enzyme involved in fatty acid synthesis,

can regulate TLR signaling as acetoacetyl-CoA is linked to

cholesterol synthesis and subsequently involved in modulating the

formation of lipid rafts (15). Similar findings were also reported by

Wei et al., who found that mice deficient of FASN are protected

from diet-induced insulin resistance and inflammation as it altered

the composition of plasma membrane and subsequently disrupted

Rho GTPase trafficking, a process that is required for the activation

of Mjs (16). Apart from lipid raft formation, reports also suggest

that LPS-induced de novo lipogenesis is important for phagocytosis

as it requires ongoing lipid synthesis in the ER for membrane

expansion, such that Mjs can surround and capture targeted

pathogens for internalization (17, 18). The mechanism that links

lipogenesis with phagocytosis was later elucidated by Lee et al., who

showed that phagocytosis was impaired in LPS-activated Mjs
isolated from mice deficient in sterol regulatory element binding

protein 1a (SREBP-1a) (19), which regulates the transcription of

genes related to lipogenesis (20). Specifically, the study revealed that

SREBP-1a-dependent lipid species mediate the interaction between

membrane lipid rafts and the actin cytoskeleton, an association that

is critical for the early stages of phagocytosis (19). Finally, SREBP-1a

is also known to regulate genes that are related to NADPH synthesis

(21), and Mjs with genetic deficiency of SREBP-1a demonstrated

decreased cytokine production and inflammasome activation upon

challenge by pro-inflammatory stimuli (22). Collectively, these

studies have demonstrated the importance of de novo lipogenesis,

an anabolic process that is NADPH-dependent, in regulating the

inflammatory response of myeloid cells.

Apart from lipid biosynthesis, another critical pro-

inflammatory process that NADPH supports in myeloid cells is

the production of cytotoxic, diffusive reactive radicals, such as

reactive oxygen species (ROS) via NADPH oxidases (NOXes), as

well as nitric oxide (·NO) via nitric oxide synthases (NOSes).

Indeed, mice with defects of NOX2 or NOS2 failed to restrain

bacterial replication (23, 24). The importance of ROS generation by
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NOX2, including superoxide anions (O2
-) and hydrogen peroxide

(H2O2), has been extensively reviewed in the past (25, 26). Apart

from Mjs, a new study now revealed that PMA-activated

neutrophils repurpose glycolysis and the PPP in order to

maximize the yield of NADPH from glucose metabolism (27).

This adaptation is required to meet the high demands of NAPDH

needed for the oxidative burst mediated by NOXes (27). Taken

together, these studies have shown the significance of NADPH-

dependent production of ROS via NOXes in regulating the

inflammatory response in myeloid cells. Upon activation by
Frontiers in Immunology 03
pathogenic microorganisms, Mjs produce a burst of ROS and

NO that limit bacterial infection in the host (23, 28, 29). Low

levels of ROS act as second messengers for activating inflammatory

intracellular signaling, such as NF-kB and MAP kinase

pathways (30).

Similar to the production of ROS by NOXes, the production of

NO by NOSes is also dependent on NADPH. Specifically, three

genes encode NOSes in mammals: Nos1, Nos2 and Nos3. NOS2 is

also known as iNOS (“i” refers to its immunologically inducible

nature) and was first cloned in Mjs (31). It is only expressed in cells
B

A

FIGURE 1

(A) The molecular structure of NAD+ and NADP+. Left diagram shows the structure of NAD+ while right diagram shows the structure of NADP+. The
phosphate in red illustrates the additional phosphate on the 2' position of the ribose ring attached on NADP+. (B) The consumption of NADPH in
activated myeloid cells for inflammatory processes. (Left) NADPH serves as a co-factor for many enzymes involved in the production of de novo
lipid synthesis (steroids, cholesterol and fatty acids). The increased production of these lipid species is important for the membrane expansion of
Golgi network and endoplasmic reticulum, a requirement for the secretion of pro-inflammatory cytokines. (Right) NADPH is an important co-factor
for NOX2 and its generation of superoxide anions. NOX2 is a 6-subunit complex assembled on the plasma membrane that transfers one electron
from NADPH, which is the primary substrate of the reaction, to oxygen, thereby forming O2

-. Under basal conditions, the components of the
complex are localized in different subcellular compartments, with the gp91phox and p22phox subunits localized on the plasma membrane as one
heterodimeric complex, known as flavocytochrome b558 (cyt b558). On the other hand, the p47phox/p67phox/p40phox subunits are co-localized
in the cytosol, forming another complex. Upon stimulation, p47phox is phosphorylated, which leads the cytosolic complex, together with small
GTPase Rac1/Rac2, to bind to the flavocytochrome complex, ultimately forming the final oxidase. (Bottom) NADPH is a critical co-factor for NOS2
and its generation of nitric oxide (NO) in a two-step reaction. The first reaction involves 1 molecule of L-arginine as a substrate being oxidized at a
guanidino nitrogen to produce Nw-OH-L-arginine as an intermediate. The second reaction involves Nw-OH-L-arginine being further oxidized to
produce 1 molecule of NO and L-citrul-line. During both reactions, a total of 1.5 molecules of NADPH and 2 molecules of dioxygen, which are
co-substrates of the reactions, are converted to 1.5 molecules of NADP+ and 2 molecules of water as co-products. Created with BioRender.com.
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that are activated by proinflammatory cytokines or stimuli. NOS2

function is not regulated by the elevation of intracellular Ca2+. The

production of NO by NOS2 (in micromolar amounts) is much

higher and more sustained than by other NOSes, thereby making

NOS2 an important player in regulating inflammation and infection

(28, 32). Regardless of the NOS isoform, the biochemical pathway to

produce NO is the same and all require cofactors including

NADPH, flav in aden ine d inuc l eot ide (FAD) , flav in

mononucleotide (FMN), tetrahydrobiopterin (BH4) and ferrous

iron (Fe2+). NADPH is of primary importance as its selective

omission mostly impaired the activity of NOS2 in activated

Mjs (33).
3 NADPH usage for
antioxidative purposes

While cytotoxic reactive radicals produced by myeloid cells are

essential for limiting bacterial replication, they can also be harmful

to the host (34, 35). It is intriguing that NADPH-dependent

detoxification pathways have evolved as defense mechanisms

utilized by myeloid cells (Figure 2). In general, three major

systems help to protect host cells from oxidative and nitrosative

stress: (1) the superoxidase dismutase (SOD) and catalase system,
Frontiers in Immunology 04
(2) the glutathione system and (3) the thioredoxin system. Briefly,

SOD converts superoxide anions to hydrogen peroxide and oxygen,

which is then detoxified to water by catalase. After the discovery of

SOD as the first line of defense against ROS (36), three SODs have

been identified: SOD1 (cytoplasmic and peroxisome), SOD2

(mitochondrial) and SOD3 (extracellular matrix). Like SOD, three

types of catalases have also been characterized (37), with the

monofunctional heme-containing type being the most common

(38). In a two-step reaction, catalase breaks down two hydrogen

peroxide molecules, which are derived from the reaction catalyzed

by SOD, into one molecule of oxygen and two molecules of water.

While the heme group is critical for its activity, past studies have

also demonstrated the requirement of a tightly bound NADPH to

the active conformation (39, 40). Furthermore, given the important

role of catalases in regulating ROS levels, its localization in the

peroxisome (41, 42) has been linked to the modulation of innate

immune signaling. For instance, the reduction of catalase in

peroxisomes from Drosophila-derived Mjs was found to impair

actin organization and phagocytic activity in a p38-MAPK-

dependent manner (43).

Apart from the SOD and catalase system, the glutathione

system, which is composed of glutathione (GSH), g-glutamyl

cysteine synthase (GCS), GSH synthetase, glutathione peroxidase,

and glutathione reductase (GSR), also plays an important role in
FIGURE 2

The consumption of NADPH in activated myeloid cells for anti-inflammatory processes. (Left) Superoxide dismutase detoxifies superoxide anions
(·O2

-) into hydrogen peroxide (H2O2) and oxygen (O2). Binding of NADPH to catalase is critical for activating its enzymatic function, specifically the
conversion of hydrogen peroxide to water. (Right) Glutathione reductase reduces glutathione disulfide (GS-SG) to glutathione (GSH) in a NADPH-
dependent manner. GSH is an important intracellular antioxidant used by glutathione peroxidase to reduce hydrogen peroxide or lipid hydroperoxide
(LOOH) to water and oxygen. (Bottom) Thioredoxin reductase (TrxR) supports the reduction of thioredoxin (Trx(SH)2) proteins and peroxidases (Prx
(SH)2) in a NADPH-dependent manner (selenium, Se). The reduction of peroxidases is important for the conversion of hydrogen peroxide to water,
as well as reduction of oxidized proteins. Created with BioRender.com.
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mediating cellular redox homeostasis. GSH is a tripeptide

antioxidant, in which its synthesis is catalyzed by GCS and GSH

synthetase from glutamate, cysteine and glycine. Cellular GSH is

found mostly in the cytosol, with the remainder spread across

organelles (44). Due to the cysteine residues of GSH, it can be

readily oxidized to glutathione disulfide (GSSG) by electrophilic

species directly (e.g., combine with NO to form less reactive S-

nitrosoglutathione), or indirectly through enzymatic reactions (e.g.,

reduce hydrogen peroxide to water by glutathione peroxidase).

GSSG can be reduced back to GSH by GSR in a NADPH-

dependent manner.

The thioredoxin system is composed of Trx proteins and Trx

reductases (TrxR), in which the reduced form of Trx proteins (Trx

(SH)2) are disulfide reductases as they contain dithiol groups in

their highly conserved active site (-Cys-Gly-Pro-Cys-) (45, 46).

Specifically, the dithiol groups of Trx(SH)2 can directly reduce

oxidized proteins or provide electrons to thiol-dependent

peroxidases (Prx) to convert hydrogen peroxide to water. The

oxidation of the dithiol groups of Trx(SH)2 consequently results

in the formation of intra-chain disulfide bridges and hence the

oxidized form of Trx proteins (TrxS2). The intra-chain disulfide

bridges in TrxS2 can be reversibly reduced back to Trx(SH)2 by

TrxR in a NADPH-dependent manner. To date, three isoforms of

Trx have been identified in mammalian cells: Trx1 (cytosolic), Trx2

(mitochondrial), and SpTrx (spermatozoa cells) (47). Similar to Trx

proteins, TrxR are also oxidoreductases that can catalyze reduction

on small-molecule substrates, such as H2O2 and lipid

hydroperoxide, in addition to TrxS2. Specifically, TrxR are

selenocysteine-containing enzymes that utilize the reducing

equivalents from NADPH to catalyze reduction reactions.

4 Competition for NADPH between
proinflammatory and
antioxidative processes

NADPH plays a dual role in regulating both oxidative and

antioxidative processes during inflammation; thus, the abundance

of NADPH is significantly limited during the activation of myeloid

cells. For instance, Everts et al., showed a significant depletion of

NADPH pools in LPS-activated DCs, while others also reported

similar findings in Mjs stimulated with LPS alone, or LPS with

IFN-g (27, 33, 48). To regenerate more reduced equivalents of

NADPH, LPS-activated Mjs upregulate NADPH-generating

pathways, including glucose-6-phosphate dehydrogenase (G6PD),

which is the rate limiting enzyme of the PPP (2, 49, 50). Specifically,

it decarboxylates G6P and forms ribose-5-phosphate (R5P) via

three irreversible reactions. During these reactions, two molecules

of NADP+ are reduced to NADPH with the simultaneous liberation

of one CO2 molecule. Like enzymes in glycolysis, G6PD is

allosterically regulated. Under resting condition where there is a

high NADPH/NADP+ ratio, G6PD remains as an inactive

monomer since NADPH binds to its allosteric site. However,

during inflammatory condition where there is a high demand to

consume NADPH, G6PD is released from its inhibition and forms

an active homodimer (51, 52). Apart from the PPP, two subtypes of
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isocitrate dehydrogenase (IDH) isoenzymes can also generate

NADPH based on their intracellular localization: mitochondrial

NADP+-dependent IDH (Idh2), as well as cytosolic and

peroxisomal NADP+-dependent ICDH (Idh1). Both families of

enzymes use NADP+ as cofactors to perform reversible reactions,

where isocitrate is oxidatively decarboxylated to alpha-ketoglutarate

and generates one NADPH per reaction. In the context of LPS-

activated Mjs, the expression of Idh1 has been conflicting as

various studies have reported its expression to be increased (53),

decreased (2) or unaffected (50). Finally, folate-mediated one

carbon metabolism, in which its activity is induced in LPS-

activated Mjs (54) also contributes to the regeneration of

reduced NADPH levels, with serine and glycine as the major

carbon sources of this pathway. Specifically, methylene

tetrahydrofolate (THF) dehydrogenases catalyze the oxidation of

5,10-methylene-THF to form 10-formyl-THF, which is

subsequently oxidized to CO2 with concomitant NADPH

production by 10-formyl-THF dehydrogenases (55). Overall, all

the studies above have shown that upon inflammatory activation of

myeloid cells, there is a high demand for NADPH consumption.

This leads to its marked depletion with a concomitant increase of

activity in the PPP as the primary mechanism to generate more

reducing equivalents of NADPH.

Since the concentration of NADPH in resting Mjs is in the

micromolar range (33), which is within the range of the Km’s of

NADPH-dependent enzymes, such as NOS2 (33), NOXes (56),

glutathione reductase (57), small changes in intracellular NADPH

abundance will greatly impact the activity of these enzymes (58).

Therefore, under inflammatory conditions where NADPH is even

further depleted, these enzymes may compete for reduced NADPH

equivalents. Indeed, one study has shown that administrating

Kuppfer cells with t-butyl hydroperoxide, a substrate for

glutathione peroxidase, inhibited the production of superoxide

(59), which implied that the increased activity of the antioxidative

pathway limits the availability of NADPH for the use by oxidative

pathways (58). In addition, recently we showed that NADPH

consumption by HIF-1a versus NRF2-dependent apoenzymes is

vital for regulating inflammation in Mjs (60). Specifically, the

accumulation of oxidized low-density lipoprotein (oxLDL) in

Mjs enhanced LPS-induced expression of NRF2-dependent ROS

detoxification enzymes (i.e., GSR) and suppressed the expression of

HIF-1a-dependent ROS producing enzymes (i.e., NOS2). This

subsequently led to a shift of NADPH consumption from

oxidative to antioxidative processes, eventually impairing the

inflammatory responses in Mjs with accumulated oxLDL.

Apart from this, the competition between NADPH-dependent

enzymes in inflammatory versus antioxidative pathways can also be

revealed by blocking the function of G6PD under inflammatory

conditions as the output of both pathways will be impaired. For

instance, for inflammatory pathways, blocking the expression of

G6PD impaired pro-inflammatory cytokine expression and lipid

accumulation in LPS-activated DCs (12). In addition to de novo

lipid synthesis, the loss of G6PD function also led to impaired NOS2

activity in Mjs activated by LPS (61) or by IFN-g and infected by

Trypanosoma cruzi (62). Human granulocytes that are deficient of

G6PD also have impaired production of superoxide, nitric oxide,
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and hydrogen peroxide (63). Similar findings were also reported in

PMA-stimulated mouse and human neutrophils where inhibition of

G6PD significantly impaired their ability to undergo oxidative

burst (64).
5 Future perspectives and conclusion

Many studies in the last few decades have identified and

characterized the multifunctional roles that NADPH plays in

regulating inflammation, redox homeostasis, and anabolic

processes. However, how NADPH simultaneously coordinates

these disparate functions to regulate the extent of an inflammatory

response remains unclear. In this review, we have highlighted studies

that demonstrate how NADPH metabolism is altered in activated

myeloid cells, and how the competition for NADPH consumption

between oxidative and antioxidative pathways reflects a potential way

to efficiently regulate the magnitude of inflammation. More

importantly, recent technological advancements have enabled the

development of tools to quantify and trace NADPH levels in real-

time and across subcellular compartments, thereby providing spatial

and temporal information that was previously unavailable with

traditional methodologies (65–68). For instance, quantitative flux

analysis of NADPH, which employs tracking of deuterium

incorporation into NADPH, has revealed that folate-dependent

methylenetetrahydrofolate dehydrogenase (MTHFD)-mediated

NADPH production provides anti-oxidant activity to cells and

enables resistance to oxidative stress (68). Not surprisingly, many

human cancer cells overexpress genes of theMTHFD family (69) and

thus are promising targets for anti-cancer therapeutics.

To date, NADPH metabolism has been targeted primarily for

cancer therapeutics as cancer cells upregulate NADPH synthesis to

support their massive antioxidative and anabolic requirements (55).

The differential metabolic requirements between cancerous and

non-cancerous cells provides a therapeutic opportunity for

regulating selective cellular immune responses. Indeed, inhibitors

that target NADPH synthesis enzymes, which aim to manipulate

ROS levels and induce cell death selectively in cancerous cells, have

been extensively developed (55). Several inhibitors of G6PD and

IDH, such as RRx-001, DHEA and AG-881, have demonstrated

promising efficacy and have entered Phase III clinical trials (55).
Frontiers in Immunology 06
However, the synthesis of highly selective or isoform-specific

inhibitors that reduce unwanted side effects still remains

challenging. Future research is warranted to address these

challenges and investigate the possibility of synergizing inhibitors

of NADPH synthesis for novel combinatorial therapies with

current chemotherapeutics.
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