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Case report: Refractory Evans
syndrome in two patients with
spondyloenchondrodysplasia
with immune dysregulation
treated successfully with
JAK1/JAK2 inhibition
Yael Gernez1*, Mansi Narula2, Alma-Martina Cepika2,
Juanita Valdes Camacho3, Elisabeth G. Hoyte1,
Kirsten Mouradian2, Bertil Glader2, Deepika Singh4,
Bindu Sathi5, Latha Rao5, Ana L. Tolin6, Kenneth I. Weinberg2,
David B. Lewis1, Rosa Bacchetta2 and Katja G. Weinacht2*

1Division of Allergy, Immunology and Rheumatology, Department of Pediatrics, Stanford School of
Medicine, Stanford, CA, United States, 2Division of Hematology, Oncology, Stem Cell Transplantation
and Regenerative Medicine, Department of Pediatrics, Stanford School of Medicine, Stanford, CA,
United States, 3Division of Allergy and Immunology, Department of Pediatrics, Louisiana State
University (LSU) Health, Shreveport, LA, United States, 4Division of Rheumatology, Department of
Pediatrics, Valley Children Hospital, Madera, CA, United States, 5Division of Hematology, Department
of Pediatrics, Valley Children Hospital, Madera, CA, United States, 6Division of Immunology,
Department of Pediatrics, Hospital Pediatrico Dr. Humberto Notti, Mendoza, Argentina
Biallelic mutations in the ACP5 gene cause spondyloenchondrodysplasia with

immune dysregulation (SPENCDI). SPENCDI is characterized by the phenotypic

triad of skeletal dysplasia, innate and adaptive immune dysfunction, and variable

neurologic findings ranging from asymptomatic brain calcifications to severe

developmental delay with spasticity. Immune dysregulation in SPENCDI is often

refractory to standard immunosuppressive treatments. Here, we present the

cases of two patients with SPENCDI and recalcitrant autoimmune cytopenias

who demonstrated a favorable clinical response to targeted JAK inhibition over a

period of more than 3 years. One of the patients exhibited steadily rising IgG

levels and a bone marrow biopsy revealed smoldering multiple myeloma. A

review of the literature uncovered that approximately half of the SPENCDI

patients reported to date exhibited increased IgG levels. Screening for multiple

myeloma in SPENCDI patients with rising IgG levels should therefore

be considered.
KEYWORDS

spondyloenchondrodysplasia, ACP5, tartrate-resistant acid phosphatase, autoimmunity,
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Introduction

SPENCDI (OMIM 607944) is a rare immuno-osseous dysplasia,

with an increasing number of affected individuals reported in the

literature (1–9). Clinically, the syndrome exhibits a broad

phenotypic variability, but most patients present with skeletal and

immune manifestations. Adaptative immune dysregulation and

autoinflammation comprise the prevailing immune phenotype (1–

4, 6–8) although immunodeficiency has also been reported (5, 9). In

addition, SPENCDI can manifest with neurologic symptoms (1, 2,

4, 6, 8). Immune dyscrasias, most commonly manifesting as

cytopenias and SLE-like symptoms (10–12), are often recalcitrant

and refractory to conventional immunomodulatory therapies (1, 2,

6, 10, 13). SPENCDI is an autosomal recessive disease secondary to

biallelic pathogenic variants in the ACP5 gene. ACP5 encodes for

tartrate-resistant acid phosphatase (TRAP). In patients with

SPENCDI, ACP5 mutations lead to abolished TRAP activity in

the serum and increased phosphorylation of osteopontin (OPN).

OPN has emerged as a possible unifying mediator, as it is expressed

in osteoclasts and in cells of the immune system (Figure 1).

Increased OPN phosphorylation has been linked to increased

osteoclast activity, which is believed to contribute to the observed

bone and cartilage defects in this disease (6). In antigen presenting

cells of the immune system, increased OPN phosphorylation has

been associated with increased interferon (IFN)-a release (6).

Increased levels of IFN-a may contribute to both, cell

autonomous largely autoinflammatory manifestations propagated

by innate immune cells as well as non-cell-autonomous systemic

autoimmunity in which deregulatory inflammatory signals

adversely affect adaptive immune responses.
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The constellation of clinical symptoms and biomarkers, i.e.

increased type I interferon (IFN) levels and upregulated expression

of interferon stimulated genes (ISGs) suggest that SPENCDI is a

type I interferonopathy (1, 2, 6, 14, 15). Janus kinase (JAK)

inhibitors, also known as jakinibs, are immunomodulators that

inhibit the activity of one or more of the JAK enzyme family. The

JAK inhibitors ruxolitinib and baricitinib inhibit JAK1 and JAK2

activity downstream of the type I interferon receptor. JAK

inhibitors have shown therapeutic benefits in patients with type I

interferonopathy, such as SAVI (stimulator of IFN genes–associated

vasculopathy with onset in infancy), CANDLE (chronic atypical

neutrophilic dermatosis with lipodystrophy and elevated

temperature), and Aicardi Goutières syndrome (AGS), as well as

patients with undefined interferonopathies (16–18). Two of the

patients with higher initial IFN signatures and undefined

interferonopathies improved significantly, suggesting that

genotype was not necessary to tailor treatment decisions (6). We

therefore reasoned that our two patients with SPENCDI may also

benefit from targeted JAK inhibition. Here, we report the favorable

clinical and biological response of two patients with SPENCDI and

recalcitrant cytopenias to ruxolinitb therapy.
Results

Patient 1

is a 19-year-old male who initially presented at 3-years of age

with short stature, hypothyroidism (Hashimoto’s disease), and

Evans syndrome, manifesting with autoimmune hemolytic
FIGURE 1

Model for the disease mechanism in SPENCDI, adapted from (6). ACP5 encodes for tartrate-resistant acid phosphatase (TRAP). Lack of TRAP
phosphatase activity results in hyperphosphorylation of OPN. Increased OPN phosphorylation has been linked to increased osteoclast activity, which
is believed to contribute to the observed bone and cartilage defects in this disease (6). In antigen presenting cells of the immune system, increased
OPN phosphorylation has been associated with increased interferon (IFN)-a release (6). This figure was created using BioRender.com.
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anemia (AIHA), thrombocytopenia and neutropenia (Table 1). He

had been glucocorticoid-dependent since diagnosis. Although his

AIHA had initially been responsive to prednisone, the subsequent

discovery of multiple vertebral compression fractures (Figure 2A)

led to discontinuation of glucocorticoids due to concerns for bone

metabolism side effects. These therapeutic considerations preceded

the diagnosis of SPENCDI with osseous dysplasia as a possible

alternative explanation for the vertebral abnormalities. Various

other combinations of immunosuppressive therapies including

immunoglobulins (IVIG), rituximab, sirolimus, bortezomib and

mycophenolate mofetil (MMF) failed to improve his cytopenias

or caused severe side effects, such as transaminitis (sirolimus) and

anaphylaxis (bortezomib), ultimately necessitating their

discontinuation. Further details on presentation and treatment

are listed in the Supplementary Materials. After a brief period of

clinical stability on MMF, the patient’s AIHA eventually recurred,

requiring prolonged courses of oral steroids, and prompting referral

to immunology for evaluation of an underlying immune

dysregulation syndrome.

Trio whole-exome-sequencing (WES) revealed biallelic

compound heterozygous pathogenic variants in the ACP5 gene

(c.325G>A, p.Gly109Arg/c.526C>T, p.Arg176*) establishing the

diagnosis of spondyloenchondrodysplasia with immune

dysregulation (SPENCDI). Both parents were identified as

heterozygous asymptomatic carriers of one of the variants

(Figures 2B, C; Supplementary Materials; Supplementary Table 1).

Based on the favorable therapeutic response of other patients with

type I interferonopathies to JAK inhibitors (3, 4, 12, 19–21), and the

shared pathophysiologic hallmarks of SPENCDI with other type I
TABLE 1 Clinical features, laboratory parameters and treatments
rendered prior to ruxolitinib therapy for patients #1 and #2.

Patient #1 Patient #2

Ethnicity Hispanic Hispanic

Age of onset 3 yo 4 yo

Short stature Yes Yes

Developmental
delay

No Yes

Infections No Yes (pneumonia)

Hepatosplenomegaly Yes Yes

Autoimmunity Yes Yes

Thyroid dysfunction Yes Yes

Autoantibodies
(ANA, DNA,
myeloperoxidase,
and
thyroglobulin
antibody)

Positive ANA Positive thyroglobulin antibody

Cytopenia Evans syndrome:
ITP,
AIHA,
neutropenia

Evans syndrome: ITP,
AIHA, neutropenia

Laboratory parameters at time of presentation

CD4 T cells (/uL)
(NR: 300-2,000)

216 236

CD8 T cells (/uL)
(NR: 300-1,800)

223 954

CD19 Cells (/uL)
(200-1,600)

247 <20 (s/p Rituximab)

CD56CD16 cells
(/uL) (92-1,200)

73 40

IgG (mg/dL) (NR:
440-1,470)

3,460 761 (on IVIG)

IgA (mg/dL) (NR:
31 – 180)

169 <8

IgM (mg/dL) (NR:
25-190)

87.2 272

Titer to Diphtheria
(NR: positive)

Positive Positive

Titer to Tetanus
(NR: positive)

Positive Positive

Titers
to Pneumovax

21/23

ESR (mm/h) (NR:
0-10)

78

CRP (mg/
dL) (NR<0.50)

1.2 1

Bone
marrow biopsy

Normal cellularity Hypercellularity

(Continued)
TABLE 1 Continued

Patient #1 Patient #2

Xray Metaphyseal
dysplasia
and platyspondyly

Metaphyseal dysplasia
and platyspondyly

Brain MRI Calcification of the
bilateral
globus pallidus

Symmetrical bilateral basal
ganglia calcifications, bilateral
cerebral subcortical calcifications,
and symmetrical bilateral
cerebellar calcifications

Cytokine testing (Luminex)

IFNa2 (pg/mL) 136.8 224.69

IL-1Ralpha (pg/mL) 17008398.6 521.06

IL-6 (pg/mL) 3421.89 9.38

IL-18 (pg/mL) NA 490.84

TNF-alpha (pg/mL) 1052.83 25.93

Therapy prior to
ruxolitinib
treatment

Prolonged therapy
with steroids,
sirolimus,
rituximab, IVIG,
bortezomib, MMF

Prolonged therapy with steroids,
rituximab, IVIG, MMF
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interferonopathies (14, 22), a therapeutic trial with the JAK1/JAK2

inhibitor ruxolitinib was initiated (0.4 mg/kg/day). Within a week

from initiation of therapy, the patient reported significantly

improved energy levels. Within three months, the patient’s

anemia and thrombocytopenia were brought into remission and

he has remained clinically stable with red blood cell indices in the

normal range and platelet counts of approximately 100,000 per

microliter of blood without any other additional therapies for the
Frontiers in Immunology 04
following three-and-a-half years (Figure 3A; Supplementary

Table 2).

While on treatment with ruxolitinib, the patient has not

experienced any significant infections. His shorter stature

compared to his siblings is likely a sequela of his underlying

disease, possibly confounded by early and prolonged

glucocorticoid use. He remains neurologically asymptomatic and

is performing well academically. Upon transfer to our care, an
A

B

C

FIGURE 2

Genetic and clinical characteristics of SPENCDI patients. (A) Xray of the left hand (patient #1). Well-defined metaphyseal irregularity (indicated by red
arrow) and sclerosis of the distal radius and ulna consistent with bone growth abnormality. Brain MRI (patient #1): nonspecific calcifications of the
globus pallidus bilaterally without acute intracranial abnormality (indicated by red arrow). Xray of spine (patient #1): Multilevel compression
deformities of the thoraco-lumbar spine (indicated by red arrows). Nd: not determined. (B) Family pedigree for patient #1 and patient #2.
(C) Diagram illustrates the distribution of the reported ACP5 variants for patient #1 and patient #2. * : stop codon.
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initial screening MRI brain was obtained which showed nonspecific

findings, including calcifications of the globus pallidus bilaterally,

but no acute intracranial abnormalities. A subsequent brain MRI

three years later showed stable calcifications but no additional

abnormal findings. He was immunized with the mRNA COVID-

19 vaccine and did not experience any side effects. Despite being
Frontiers in Immunology 05
fully vaccinated and boosted against COVID-19, he contracted the

infection but remained asymptomatic without flaring of

his autoimmunity.

In the context of a slowly but steadily rising serum IgG level

over 36 months, a bone marrow biopsy screening was obtained

which revealed a monotypic population of kappa light-chain
A

B

FIGURE 3

Laboratory parameters and interferon scores pre- and post-ruxolitinib therapy. (A) Hemoglobin and platelet count pre and post therapy with
ruxolitinib in patient #1 and patient #2. Asterix (*) indicates time of hospital admission for acute viral and bacterial pneumonia complicated by acute
SPENCDI flare. Asterix (**) indicates ISG expression in patient #1 transiently spiked during an infectious trigger while he remained clinically symptom
free (B) Interferon Score of a panel of interferon stimulated genes in 4 SPENCDI patients at various time points throughout treatment, three subjects
with IPEX and eight healthy donors. Dashed lines indicate the start of ruxolitinib. HD: healthy donors, Pat: patient, pre: pre ruxolitinib, post: post
ruxolitinib, ruxo: ruxolitinib, IS: Interferon Score. Grouped statistical analysis performed using One-Way ANOVA (Kruskal-Wallis test) with Dunn’s
multiple comparison test. p-value between groups indicated on the graph. Overall p-value: <0.0001. Level of significance (p)=0.05. Additional
information on ACP patient #3 and #4 is detailed in Supplementary Table 3.
frontiersin.org
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restricted plasma cells without an overall increase in blasts. This

monotypic population, which lacked cytogenetic abnormalities,

encompassed 20% of all bone marrow cells. The patient was

subsequently referred to an oncologist and diagnosed with

smoldering multiple myeloma. These findings prompted a review of

the literature that revealed that approximately half of the patients with

SPENCDI also report hypergammaglobulinemia (2, 4, 12, 13, 20, 22).
Patient 2

is an 8-year-old female who was diagnosed with systemic lupus

erythematosus (SLE) at the age of 5 years old. The patient presented

with short stature and developmental delay. At diagnosis, the patient

suffered from mucocutaneous disease (petechia, purpuric rash),

anemia, thrombocytopenia, and splenomegaly. The patient also

had, elevated inflammatory markers [ESR: 78 mm/h (normal range

(NR):0-15mm/h); CRP:1.2 mg/dL(NR:<0.3 mg/dL)], severely

decreased complement levels [CH50: 0 (NR: 42-95 U/mL); C3: 41

mg/dL (NR: 89-173 mg/dL); C4: <2.9mg/dL (NR: 17.0-42.0 mg/dL)],

hypergammaglobulinemia, positive ANA titer (>1:1280), elevated

dsDNA antibodies (>300 IU/mL), and elevated myeloid peroxidase

(MPO) antibodies (Table 1). There was no evidence of renal

involvement. Cytopenias were moderately responsive to

glucocorticoid therapy, but refractory to rituximab and IVIG. At

the time of initial assessment in immunology clinic, the patient was

treated with glucocorticoids and MMF. Further details on

presentation and treatment are listed in the Supplementary Materials.

Genetic analysis revealed that the ACP5 gene had a pathogenic

variant with a premature stop codon (c.733C>T, p.Gln245*) and a

variant of unknown significance (VUS) resulting in an amino acid

substitution (c.611G>A, p.Gly204Asp). Both parents were identified as

heterozygous asymptomatic carriers of one of these variants

establishing that the patient was compound heterozygote for these

two variants (Figures 2B, C; Supplementary Materials; Supplementary

Table 1). Given these findings, the patient was assessed for the

presence of metaphyseal dysplasia. X-rays of hands and spine

showed metaphyseal dysplasia and platyspondyly. Additionally,

characteristic radiolucent metaphyseal and vertebral lesions were

identified. Apart from an episode of pneumonia at age 4 years,

there was no significant history of infections. Due to unclear

developmental delay, the patient underwent a screening MRI of the

brain which was normal. Considering the positive outcome observed

in patient #1, we initiated treatment with ruxolitinib at a dosage of 0.4

mg/kg/day and this patient also showed significantly improved energy

levels within one week and improved platelet counts within less than

one month from starting treatment. She remained clinically stable and

was steroid-free for the next 2-and-a-half years until she developed

acute respiratory failure due to parainfluenza and rhinoviral

pneumonia with bacterial superinfection and sepsis. Ruxolitinib was

discontinued and the patient experienced, after a few days, an acute

flare of ITP treated with glucocorticoids. After resolution of sepsis and

following the reinitiation of ruxolitinib therapy, the patient’s platelet

count improved within 4 weeks (Figure 3A).

There is no specific biomarker for tartrate-resistant acid

phosphatase activity, however, increased expression in interferon
Frontiers in Immunology 06
stimulated genes (ISG) has consistently been found in SPENCDI

patients. The interferon score of both patients with SPENCDI in our

study (patient 1 and 2) was significantly elevated at baseline

compared to healthy controls and patients with IPEX (immune

dysregulation, polyendocrinopathy, enteropathy, X-linked)

syndrome, where autoimmunity is caused by a regulatory T cell

defect (Figure 3B; Supplementary Figure 1). As previously reported

by Fremond et al., we only observed a minimal decrease in

interferon score in patient #1 following the initiation of

ruxolitinib therapy (Figure 3B) (23). However, the resolution of

cytopenias, combined with the increase in energy, academic

performance and general wellbeing associated with ruxolitinib

treatment in both patients suggests that interferon scores fail to

adequately capture the clinical response. Notably, ISG expression in

patient #1 transiently spiked during an infectious trigger while he

remained clinically symptom free (Figures 3A, B; Supplementary

Figure 1).
Discussion

There is growing evidence that SPENCDI is a type I

interferonopathy that shares clinical features with other

interferonopathies, including autoimmune and autoinflammatory

manifestations (1–9). Specifically, a clinical presentation consistent

with SLE, in patient #2, should prompt consideration for further

genetic testing as monogenic forms of SLE have been described in

association with variants inC1Q, C1R, C1S, CA, DNASE1, TREX1 and

ACP5 (11, 12, 24). Genetic testingwas pursued for this patient because

of the severe and refractory nature of Evans’s syndrome (25–28).

The long-term prognosis and quality of life in patients with

SPENCDI is influenced by multiple factors. The severity of the

immune dysregulation and the side effects of conventional

immunosuppressive therapies play an important role. The use of

JAK inhibition in interferonopathies (14) aims at achieving

immunomodulation, i.e., a normalization of the augmented

immune response by downregulating the signal that is

downstream of the type I interferon receptor; which is expected

to ameliorate both, autoinflammatory and adaptive autoimmune

manifestations alike. Patient #1 has experienced multiple vertebral

compression fractures, likely associated with his primary disease but

possibly confounded by the long-term glucocorticoid use. The two

patients reported in our study were refractory to conventional

immunosuppressive therapies but responded to ruxolitinib within

only a few weeks from starting treatment, while their interferon

score remained elevated. One plausible explanation for this

discrepancy could be the consequence of JAK inhibitors on the B

cell differentiation by blocking the effects of pro-inflammatory

cytokines. JAK inhibitors are known to inhibit the differentiation

of human B cells into plasmablasts in response to type I interferon

stimuli, thereby reducing the levels of autoantibodies (29, 30).

While JAK inhibitor treatment did yield significant improvements

in autoimmune cytopenias, it is possible that genes associated with

type I interferonopathy remain activated in immune cells with cell-

intrinsic defects. Importantly, both patients are tolerating

ruxolitinib well, with no significant adverse effects, except for
frontiersin.org
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mild neutropenia in patient #1 which constitutes a manageable dose

limiting toxicity. Ruxolitinib has been associated with various side-

effects including myelosuppression, increased risk of viral

infections, transaminitis and non-melanoma skin malignancy.

Patients on prolonged ruxolitinib treatment can also develop

treatment resistance (31). Both patients were regularly monitored

for Epstein-Barr virus, cytomegalovirus, JC, and BK virus

reactivation by PCR. which remained negative throughout

treatment with ruxolitinib. Ruxolitinib discontinuation syndrome

has been documented among myelofibrosis patients, manifesting

after the cessation of ruxolitinib treatment. The reported rebound

effects vary significantly in severity, ranging frommild to potentially

life-threatening symptoms. Abrupt discontinuation of ruxolitinib in

myelofibrosis patients may lead to conditions such as worsening of

cytopenia, splenomegaly, spleen rupture or acute respiratory

syndrome, affecting approximately 15% of individuals (32). The

patients and their families have been educated about the risk of

rebound if ruxolitinib is abruptly discontinued.

An increase in IgG levels in patients with SPENCDI has been

observed by us and others (2) and ultimately lead to the diagnosis of

smoldering multiple myeloma in patient #1. We therefore

recommend SPENCDI patients should be monitored prospectively

for the development of monoclonal gammopathy and regular

assessment of immunoglobulin levels, free kappa/lambda light

chain ratio and 24 hours urine analysis for Bence-Jones proteinuria

should be considered. Any abnormal findings may warrant a referral

to the hematologist to assess the need for a bone marrow biopsy.

To the best of our knowledge, there have been no reports of

multiple myeloma in patients with SPENCDI. It’s important to

highlight that MM and MGUS have also been observed in

individuals with VEXAS (Vacuoles, E1 enzyme, X-linked,

Autoinflammatory, Somatic) syndrome, a condition propelled by

somatic myeloid mutations resulting in autoinflammatory responses

(33, 34). In a comprehensive study involving 116 French patients

diagnosed with VEXAS syndrome, MDS (myelodysplastic syndrome)

was detected in 58 out of 116 cases (50%). Out of these 58MDS cases,

12 exhibited MGUS (17%) (35). Nevertheless, there remains

uncertainty regarding whether somatic UBA1 variants directly

instigate MM’s development or whether these variants contribute to

conditions like MGUS and plasma cell disorders.

We carefully assessed the potential involvement of the JAK

inhibitor therapy in the pathogenesis of multiple myeloma in patient

#1. Notably, the patient’s hyperglobulinemia predated the initiation of

ruxolitinib treatment. Furthermore, multiple myeloma is not a

malignancy associated with either primary T-cell immunodeficiency

or prolonged immunosuppressive therapy. There is no documented

association between STAT-1 loss-of-function and multiple myeloma

(36). In contrast, recent clinical approaches have demonstrated some

success in treating refractorymultiplemyelomausing a combinationof

ruxolitinib, corticosteroids, and lenalidomide (37). Given the scarcity

of literature specificallyaddressingbaricitinib in the context ofmultiple

myeloma, we have elected to continue treatment with ruxolitinib in

patient #1.

Another important consideration for the long-term prognosis

in patients with SPENDCI is the development of neurologic

symptoms in the context of nonspecific brain calcifications.
Frontiers in Immunology 07
Despite exhibiting bilateral calcification of the globulus pallidus

on the brain MRI, patient #1 did not display any neurological

symptoms. By contrast, patient #2 exhibited developmental delay

but no calcifications noted in the brain MRI. Notably, the

neurological status of both patients has remained stable on

ruxolitinib treatment for more than 2 years. One might speculate

that mitigating systemic inflammation with ruxolitinib could also

have beneficial effects on the neurologic manifestations in

SPENCDI as has been shown for patients with type I

interferonopathy due to Aicardi-Goutières syndrome (38).

The presented cases by us and others (3, 4, 12, 19–21) support the

use of JAK-inhibitors as an effective targeted therapy for patients with

SPENCDI and severe cytopenias. Lack of effective biomarkers to

capture the clinical response to JAK-inhibitors (e.g. IFN scores)

highlight the need for further studies to delineate the exact

underlying disease mechanism in SPENCDI. SPENCDI patients

should be monitored prospectively for the development of

monoclonal gammopathy. Further randomized controlled trials will

be needed to confirm these findings in larger patient cohorts and

evaluate possible neuroprotective benefits of targeted JAK-STAT

inhibition in patients with SPENCDI and other interferonopathies.
Methods

Laboratory testing

T, B and NK subsets as well as immunoglobulin levels (IgA, IgM

and IgG levels) were measured by flow cytometry in the CLIA-

certified clinical core laboratory at Stanford (Stanford, CA, USA).
Cytokines and chemokine testing

IL-18 serum level and CXCL9 were measured by ELISA in a

CLIA-certified clinical core laboratory (Cincinnati Children’s

hospital, Cincinnati, OH, USA). In Table 1, IFNa2, IL-1Ralpha,

IL-6, IL-18 and TNF-alpha were measured via Luminex (Human

Immune Monitoring Center Stanford, CA, USA). In Supplementary

Table 2: IL-1b, IL-2 receptor, IL-6, IL-10, IL-18, IFN-gamma, IFN-

a were measured by ELISA method (ARUP, Salt Lake City,

UT, USA).
Interferon score

Six out of 15 ISGs were selected based on their expression

level in a previous study (15) and measured by quantitative

reverse transcription polymerase chain reaction (qRT-PCR)

(Supplementary Figure 1. In brief, 2.5 mL of blood was collected

into PAXgene tubes (PreAnalytix), and total RNA was extracted

from whole blood using a PAXgene RNA isolation kit (MagMAX).

qRT-PCR analysis was performed using the TaqMan Universal

PCR Master Mix (Applied Biosystems) and cDNA derived

from 40 ng of total RNA and TaqMan probes for the ISGs

IFI27 (Hs01086370_m1), IFI44L (Hs00199115_m1), IFIT1
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(Hs00356631_g1) , ISG15 (Hs00192713_m1) , RSAD2

(Hs01057264_m1), and SIGLEC1 (Hs00988063_m1). Taqman

probes for HPRT1 (Hs03929096_g1) and 18S (Hs999999001_s1)

ribosomal RNA was used for internal normalization of the PCR

assay (Applied Biosystems qpcr analysis module). Delta delta Ct

method was used for relative quantification (RQ) of gene expression

for each of the six probes, against a single reference control sample.

Subsequently, Interferon Score (IS) was calculated by the fold

change in the median of the six probes per sample compared to

the median of all the healthy controls (n=8).
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