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Background: Ovarian cancer (OC) is a highly heterogeneous and malignant

gynecological cancer, thereby leading to poor clinical outcomes. The study aims

to identify and characterize clinically relevant subtypes in OC and develop a

diagnostic model that can precisely stratify OC patients, providing more

diagnostic clues for OC patients to access focused therapeutic and

preventative strategies.

Methods: Gene expression datasets of OC were retrieved from TCGA and GEO

databases. To evaluate immune cell infiltration, the ESTIMATE algorithm was

applied. A univariate Cox analysis and the two-sided log-rank test were used to

screen OC risk factors. We adopted the ConsensusClusterPlus algorithm to

determine OC subtypes. Enrichment analysis based on KEGG and GO was

performed to determine enriched pathways of signature genes for each

subtype. The machine learning algorithm, support vector machine (SVM) was

used to select the feature gene and develop a diagnostic model. A ROC curve

was depicted to evaluate the model performance.

Results: A total of 1,273 survival-related genes (SRGs) were firstly determined and

used to clarify OC samples into different subtypes based on their different

molecular pattern. SRGs were successfully stratified in OC patients into three

robust subtypes, designated S-I (Immunoreactive and DNA Damage repair), S-II

(Mixed), and S-III (Proliferative and Invasive). S-I had more favorable OS and DFS,

whereas S-III had the worst prognosis and was enriched with OC patients at

advanced stages. Meanwhile, comprehensive functional analysis highlighted

differences in biological pathways: genes associated with immune function

and DNA damage repair including CXCL9, CXCL10, CXCL11, APEX, APEX2, and

RBX1 were enriched in S-I; S-II combined multiple gene signatures including

genes associated with metabolism and transcription; and the gene signature of

S-III was extensively involved in pathways reflecting malignancies, including
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many core kinases and transcription factors involved in cancer such as CDK6,

ERBB2, JAK1, DAPK1, FOXO1, and RXRA. The SVM model showed superior

diagnostic performance with AUC values of 0.922 and 0.901, respectively.

Furthermore, a new dataset of the independent cohort could be automatically

analyzed by this innovative pipeline and yield similar results.

Conclusion: This study exploited an innovative approach to construct previously

unexplored robust subtypes significantly related to different clinical and

molecular features for OC and a diagnostic model using SVM to aid in clinical

diagnosis and treatment. This investigation also illustrated the importance of

targeting innate immune suppression together with DNA damage in OC, offering

novel insights for further experimental exploration and clinical trial.
KEYWORDS

ovarian cancer, multi-factor, molecular subtypes, support vector machine,
diagnostic model
1 Introduction

Ovarian cancer (OC) has the highest mortality in gynecological

cancers, largely due to the lack of early obvious symptoms and

effective screening strategies, resulting in frequent diagnosis at

advanced stages (1). The standard of care for OC patients

generally encompasses surgery, chemotherapy, and targeted

therapy with poly-ADP ribose polymerase inhibitors (PARPi),

mainly for patients harboring homologous recombination

deficiency (HRD) or a BRCA mutation (1–4). Despite many

attempts made to reduce the risks of relapse, the majority of

patients suffered recurrences following initial interventions

because of high tumor heterogeneity, the immunosuppressive

tumor microenvironment (TME), or remaining micrometastases,

thereby leading to the poor clinical outcome of OC (5, 6).

Precision medicines have made early successes, which have

extensively contributed to refining the classification of complex

diseases including cancers and unraveling the underlying driving

biomarkers (7–13). Meanwhile, high-throughput muti-omics data or

methods constantly exploited also brought cancer into the precision

oncology era. Based on the massive information measured, molecular

subtyping to guide personalized management of cancer patients has

made a big success (8, 14). For example, TCGA study identified three

subtypes of colon and rectal cancer based on transcriptome, designated

“MSI/CIMP” (microsatellite instability/CpG island methylator

phenotype), “Invasive”, and “CIN” (chromosomal instability) (15).

Proteome-based stratification of lung adenocarcinoma also revealed

three subtypes, designated S-I (environment and metabolism high), S-

II (mixed type), and S-III (proliferation and proteasome) (16). The

identified subtypes exhibited distinct molecular and clinical features,

laying the foundation for more precise diagnosis and treatment in

the clinic.

To date, plenty of molecular subtypes of OC have been proposed

through molecular profiling of OC patients tissues. In 2008, Tothill

et al. applied an unsupervised approach, K-means clustering, to
02
determinate the pioneering molecular subtypes of OC using

microarray gene expression profiling (17). They conducted the

microarray gene expression profiling on a cohort of 285 serous and

endometrioid OC samples originated from the ovary, fallopian tube,

and peritoneum, which could be clustered into six optimal subtypes,

namely, subtypes C1, C2, C3, C4, C5, and C6. Patients belonging to

the C3 and C6 subtypes harbored a distinct molecular signature of

lower proliferation marker expression and shared predominantly

low-grade or early-stage tumor and thus had better PFS and OS. In

contrast, the C1 subtype was characterized with enhanced stromal

gene expression but low number of intratumoral T cells and up to

40% of tumors exhibited a lower tumor percentage in contrast to

other subtypes, which ultimately resulted in the poorest survival and

OS (17). Based on around 1,500 intrinsically variable genes, The

Cancer Genome Atlas (TCGA) team implemented non-negative

matrix factorization consensus clustering and yielded four subtypes

for 489 high-grade serous ovarian adenocarcinomas samples, which

were termed as Immunoreactive, Differentiated, Proliferative, and

Mesenchymal, based on gene signature in the clusters. The result was

also validated using the dataset of Tothill et al. with the same

approach. In this perspective, both studies proved that OC patients

could be stratified and managed according to accurate molecular

signatures and personalized treatment planning based on therapeutic

vulnerabilities, which could contribute to achieving precision

oncology, rather than be solely dependent on the histologic

classification. However, as these OC subtypes do not share

obviously distinct prognoses among all the clusters, their

application in prognostic evaluation is limited (Figure S1A).

In this study, we firstly identified 1,273 SRGs to stratified OC

patients into three subgroups, designated “Immunoreactive and

DNA damage repair,” “Mixed,” and “Proliferative and Invasive,”

based on the different molecular patterns of these SRGs. Kaplan–

Meier survival analysis was performed to investigate the prognosis

of the three clusters, reflecting that the prognosis of patients in S-I

was optimum, where patients in S-I had more favorable OS and
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DFS than those in S-II and S-III. Notably, a new dataset of the

independent cohort could be automatically analyzed by this method

and yield similar results. We also found that the clinical stages

showed significant differences in the three molecular subtypes.

Here, OC patients at a late stage were more enriched with in S-III

compared with the other subtypes, which was consistent with the

worst prognosis in S-III. Subsequently, our study showed that

potentially reprogramming M2-like pro-tumor macrophages into

an M1-like antitumor state might facilitate antitumor immunity for

OC patients and illustrate synergy of immune microenvironments

such as M1 and DNA damage repair molecules might contribute to

a favorable prognosis for OC patients. Moreover, we adopted a

machine learning algorithm SVM to develop a diagnostic model

and the results of the fivefold cross-validation and testing of the

independent cohort achieved area under curve (AUC) values of

0.922 and 0.901, respectively, which could precisely stratify OC

patients into two subgroups sharing completely different

outcomes (Figure 1).
2 Methods

2.1 Data extraction

We downloaded TCGA-OV gene expression dataset from

TCGA cohort (https://xenabrowser.net/datapages/?cohort=TCGA

%20Pan-Cancer%20(PANCAN)&removeHub=https%3A%2F%

2Fxena.treehouse.gi.ucsc.edu%3A443) (Table S1).

The GSE26712 expression dataset from the GEO database was

downloaded from NCBI (https://www.ncbi.nlm.nih.gov/geo/)

(Table S1) (18). Data of normal (non-tumor) tissue samples were

removed, and OV tissue samples were preserved. The GEO dataset

was used for the validation of prognosis-related subtyping, immune

characteristics, and predictive model.

Data of immune-related genes were downloaded from the

ImmPort database (https://immport.niaid.nih.gov), and duplicates

were removed (19).
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2.2 Data normalization

To ensure the data quality and maximally use the gene

expression profile data, mRNA quantified in 100% samples were

reserved. The log2-transformed median normalized RSEM counts

were used for the following analysis.
2.3 Survival analysis

The log-rank test and Cox proportional hazards regression

(HR) methods were used to fit survival models for survival

analyses between groups (20). To evaluate the prognostic power

of each gene, immune characteristics, or molecular subtyping and

screen OC risk factors, the two-sided log-rank test was performed

for the OC data (P< 0.05), and the Kaplan–Meier survival curve was

illustrated by the “survival” R package (survival 3.5-7, https://cran.r-

project.org/web/packages/survival/index.html) (21). Finally, we

obtained 1,273 SRGs (log-rank P< 0.05) from TCGA-OV dataset

and 1481 SRGs from the GEO dataset (Table S2).
2.4 Enrichment analysis

The two-sided hypergeometric test was adopted for the GO- or

KEGG-based enrichment analysis of the genes, respectively. Here,

we defined the following:
N = number of human genes annotated by at least one term

n = number of human genes annotated by term t

M = number of the target gene sets annotated by at least

one term

m = number of the target gene sets annotated by term t
Then, the enrichment ratio (E-ratio) was calculated and the P

value was computed with the hypergeometric distribution as below:
FIGURE 1

The flowchart of the research design.
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In this study, only statistically overrepresented GO terms and

KEGG pathways were considered (P< 0.05). GO annotation files

(released on 09/10/2023) were downloaded from the Gene Ontology

Consortium web site (http://www.geneontology.org/) (22). KEGG

annotation files (released on 01/01/2021) were downloaded from the

webserver of KEGG (http://www.genome.jp/kegg/) (23).
2.5 Molecular subtyping analysis

First, the normalization expression values of 1,273 SRGs from

TCGA dataset were used for clustering using ConsensusClusterPlus

(version 1.64.0, http://bioconductor.org/packages/release/bioc/html/

ConsensusClusterPlus.html) package of R (24). The basic parameters

were set as follows: k-means clustering with up to six clusters (maxK =

6), 1,000-time repetitions (reps = 1,000), resampling 80% of samples

(pItem = 0.8), and resampling 80% of proteins (pFeature = 0.8). The

number of clustering was determined by the average pairwise

consensus matrix within consensus clusters, and by the delta plot of

the relative change in the area under the cumulative distribution

function (CDF) curve. Because the consensus matrix with k = 3

deemed to be a cleanest separation among clusters, and the delta

plot showed that there was little increase in area for k = 3 compared

with k = 4, the gene expression data were clustered into three subtypes.
2.6 Immune characteristic analysis

We used the “ESTIMATE” package to calculate ESTIMATEScore,

ImmuneScore, and StromalScore values in each sample and analyzed

the distribution differences of scores in the three subtypes (25). We

further used the “CIBERSORT” package to calculate the distribution of

the 22 immune cells in each sample (26).
2.7 Relationship of subtypes with
clinical characteristics

To determine the relationships between subtypes and clinical

phenotypes, we analyzed the relationship between each subtype and

age, stage, and status and observed the distribution of each subtype.
2.8 Molecular characteristics of subtypes

To observe each subtype’s enriched pathway, we first analyzed

the differences in gene expression among three subtypes and the
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highly expressed genes in each subtype were selected. For highly

expressed genes of each subtype, we further analyzed the GO- and

KEGG-based enrichment analyses of the genes, respectively

(Table S3).
2.9 Relationship of subtypes with
immune characteristics

To determine the relationships between subtypes and immune

characteristics, the differential abundance distribution of 22

immune cells among three subtypes was calculated using

CIBERSORT (Table S4).
2.10 Correlation between molecular and
immune cell characteristics of subtypes

The abundance correlations between mRNA and immune cells

were measured using Spearman’s correlation (27). For the

abundance correlation, the coefficients of each mRNA and each

immune cell were calculated for each tumor sample, respectively.
2.11 The machine learning algorithm to
predict high- and low-risk subtypes

To predict high- and low-risk subtypes from OC SRGs, we

developed the machine learning model with three steps, including

feature gene selection, model training, and validation. S-I was taken

as the low-risk subtype, whereas S-III was taken as the high-risk

subtype. From 149 SRGs identified jointly in TCGA and GEO

datasets, feature genes were selected using the Recursive Feature

Elimination with Cross-Validation (RFECV) package of python 3.7

with Scikit-learn 0.22.1. For model training, the SVM algorithm was

adopted for the combination of these feature genes (28, 29) and

fivefold cross-validation was conducted to calculate the AUC value.

Finally, we performed model validation using the GEO dataset and

calculate the AUC value.
2.12 Statistical analysis

The methods of statistical analysis for transcriptomic data

analysis, immune characteristic analysis, and clinical characteristic

analysis are carefully described in corresponding Methods

subsections. Standard two-sided statistical tests used in this study

included but are not limited to log-rank test, Spearman’s

correlation, Student’s t test, and Kruskal–Wallis test. For

categorical variables vs. categorical variables, the Student’s t test

was used. For categorical variables vs. continuous variables, the

Kruskal–Wallis test was used to test if any of the differences between

the subgroups were statistically significant. For continuous variables

vs. continuous variables, Spearman correlation was used. The

threshold of the P value was set as 0.05.
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http://www.geneontology.org/
http://www.genome.jp/kegg/
http://bioconductor.org/packages/release/bioc/html/ConsensusClusterPlus.html
http://bioconductor.org/packages/release/bioc/html/ConsensusClusterPlus.html
https://doi.org/10.3389/fimmu.2023.1326018
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Guo et al. 10.3389/fimmu.2023.1326018
3 Results

3.1 Identification of molecular subtypes
of OC

Firstly, a total of 1,273 SRGs were identified using the log-rank

test and Cox proportional HR methods, among which 516 genes

were high-risk genes (HR >1) and 757 genes were low-risk genes

(HR<1) (Figure 2A, Table S2). Based on 1,273 SRGs, we used the

“ConsensusClusterPlus” package with parameters such as the k-

means clustering algorithm and 1,000 iterations to perform

clustering. Accordingly, we stratified OC patients into three

subgroups, designated “S-I, Immunoreactive and DNA damage

repair,” “S-II, Mixed,” and “S-III, Proliferative and Invasive,” based

on the different molecular patterns of these SRGs Figures 2B–D.

Subsequently, a heatmap of signature genes for each subtype was

depicted to highlight distinct expression profiles. S-I showed high

expression of pathway genes related to the immune system and DNA

damage repair such as CXCL9, CXCL10, CXCL11, HLAA, HLAB,

HLAF, APEX, APEX2, and RBX1. S-II was characterized by genes

mainly associated with metabolic and transcription pathways (GLSL,

SSDH, ALAT2, DYR, PPBT, GATM, CHDH, SERA, PRPF39,

THOC1), while the gene signature of S-III was extensively

involved in pathways reflecting malignancies, including many core

kinases and transcription factors involved in cancer such as CDK6,

ERBB2, JAK1, DAPK1, FOXO1, and RXRA (Figure 2E). In addition,

Kaplan–Meier survival analysis reflected that the prognosis of

patients in S-I was optimum and patients in S-III had the lowest

OS and DFS rates (Figure 2F). Next, we conducted separate

investigations on the same LUAD dataset from TCGA using both

the traditional analysis strategy based on traditional and our

subtyping strategy for comparison. Remarkably, we observed

significant differences between the two approaches, as the subtypes

identified by the former did not exhibit distinct prognostic outcomes

(Figures S1B, C).
3.2 Molecular features of OC subtypes with
distinct prognoses

As shown in Figures 3A, B, the molecular subtypes of OC are

significantly correlated with clinical stage in OC patients. Here, OC

patients at late stages were more enriched with S-III compared with

other subtypes, which was consistent with the worst prognosis in S-

III, but there was no difference in age among the three molecular

subtypes. Furthermore, as shown in Figure 3C and Table S3, KEGG

enrichment analysis revealed that S-I was significantly enriched in

pathways related to the immune system and DNA damage repair

such as antigen processing and presentation (hsa04612), allograft

rejection (hsa05330), graft-versus-host disease (hsa05332), toll-like

receptor signaling pathway (hsa04620), base excision repair

(hsa03410), DNA replication (hsa03030), and nucleotide excision

repair (hsa03420), which was consistent with the better prognosis in

S-I. In S-II, the genes were significantly enriched in some pathways

related to metabolism, transcription, and so on, including alanine,

aspartate, and glutamate metabolism (hsa00250), folate biosynthesis
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(hsa00790), and aminoacyl-tRNA biosynthesis (hsa00970),

suggesting that transcription and metabolic reprogramming might

play important roles for sustaining tumorigenesis and survival in this

stage. Notably, the folate receptor a (FRa) has been found

particularly overexpressed in OC, representing a promising

biomarker for OC patients (30). In 2023, Ursula et al. found that

mirvetuximab soravtansine (MIRV), an antibody–drug conjugate

targeting FRa, showed consistent clinically meaningful antitumor

activity and safety for OC patients in targeted therapy (31). S-III was

enriched with pathways involved in cancer progression such as

pathways in cancer (hsa04330), Notch signaling pathway

(hsa04330), osteoclast differentiation (hsa04380), insulin signaling

pathway (hsa04910), regulation of actin cytoskeleton (hsa04810), and

endocrine and other factor-regulated calcium reabsorption

(hsa04961). GO enrichment analysis at biological process (BP)

levels showed similar results. For instance, in S-I, the genes were

mainly enriched in the immune system, such as antigen processing

and presentation of peptide antigen (GO:0048002), positive

regulation of adaptive immune response (GO:0002821), response to

virus (GO:0009615), and defense response to virus (GO:0051607). In

S-II, the genes were related to double-strand break repair

(GO:0006302), mRNA processing (GO:0006397), and DNA

recombination (GO:0006310). In S-III, GO enrichment showed

that genes were involved in the pathway of cancer progression,

such as osteoclast differentiation (GO:0030316), insulin secretion

(GO:0030073), and Ras protein signal transduction and cell growth

(GO:0007265) (Figure 3D).

Moreover, ESTIMATEScore, ImmuneScore, StromalScore, and

TumorPurity for each subtype were computed using the

“ESTIMATE” package to infer tumor purity and stromal and

immune cell admixture (Figures 3E). The ImmuneScore and

StromalScore of S-I were higher than those of S-II and S-III. As

for TumorPurity, S-I had the lowest score. The result demonstrated

that S-I was enriched with immune cells or factors to regulate the

immune responses. Furthermore, the alluvial diagram also

indicated that the S-I group harbors the highest count of

immune-related genes such as CXCL10, CXCL11, CXCL9, HLA-A,

HLA-B, HLA-DOB, HLA-F, and STAT1 (Figures 3F).
3.3 Characteristics of immune infiltration
in subtypes

To elucidate the immune characteristics of each subtype, we

conducted immune infiltration analysis using the “CIBERSORT”

package. The results showed that compared with S-III, the

infiltration level of M1 macrophages in S-I was higher whereas

that of M2 macrophages was lower (Figure 4A, Table S4).

Correlation analysis also showed a positive correlation between

M1 macrophages and S-I (Figure 4B). The correlation analysis also

suggested that M1 macrophage-associated genes (IL1B, CXCL10)

showed a significant positive correlation with M1 macrophages (32,

33) and regulatory T cell (Tregs)-associated genes (FOXP3) also

showed a strong positive correlation with Tregs (Figure 4C) (34,

35), confirming the accuracy of our immune infiltration results.

Further survival analysis showed that compared with the low-
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proportion group, the high-proportion group of M1 macrophages

exhibited better OS. CXCL10 also observed a similar trend

(Figure 4D). The expression level of CXCL10 was also higher in

S-I than in S-II and S-III (Figure 4E). In addition, survival analysis

was conducted on the immune genes CXCL9 and CXCL11. Patients

with high expression levels of CXCL9 and CXCL11 also exhibited
Frontiers in Immunology 06
better OS (Figure 4F). By contrast, CX3CR1 was highly expressed in

S-III, which represented inhibitory (CX3CR1+) macrophages (36).

Evidence also showed that CX3CR1 was expressed at a lower level in

M1 macrophages but at a higher level in M2 macrophages, which

can extensively be involved in the migration and survival of tumor

cells (Figure 4G), confirming the accuracy of subtyping results.
B C

D E

F

A

FIGURE 2

Identification of molecular subtypes of OC. (A) Scatterplot showing HR and −lg (log-rank P) of all genes (n = 12,675) in TCGA database. The gray
dots denote the genes with log-rank P value ≥ 0.05 (n = 11,402). In the remaining dots, each red dot denotes an individual gene passing HR >1 (n =
516), and the blue dot denotes an individual gene passing HR<1 (n = 757). Only the first six genes with maximum or minimum HR and log-rank P<
0.05 are marked with gene names. (B) Line graph of the relative change in area under the CDF curve of clustered samples. (C) CDF curve of
clustered samples. (D) Heatmap of consensus matrix at k = 3. (E) Heatmap of normalized gene expression of 1,273 SRGs in all samples. The three
subtypes of the sample are shown in different colors. Characteristic gene markers are denoted to the right. (F) Kaplan–Meier curves for overall
survival (OS) and disease-free survival (DFS) stratified by OC subtypes. Log-rank test is used in (F).
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3.4 Validation of molecular subtypes in an
independent dataset

By GEO database mining, 1,481 SRGs (log-rank P< 0.05) were

identified through log-rank test between high- and low-expression

groups in the independent dataset (Table S2). In order to validate the

OC molecular subtypes and their prognostic significance, we clustered

the independent dataset correlated with OC via the same method. We
Frontiers in Immunology 07
also obtained similar results (Figures 5A–C). Subsequently, a heatmap

of distinct expression profiles of each subtype in 1,481 SRGs was

depicted (Figure 5D). Corresponding OS clinical information was used

to generate a Kaplan–Meier survival plot, which is also compatible with

the result from a previous study (Figure 5E). Furthermore, performing

immune characteristic analysis on the verification set, it was found that

the percentage of M1 macrophages in S-I and S-II was significantly

higher than that in S-III (Figure 5F).
B

C

D

E F

A

FIGURE 3

Molecular features of OC subtypes with distinct prognoses. (A) The age of all patients in each subtype, P = 0.559 (Kruskal–Wallis test). (B) The
fractions of clinical stage and status in each subtype, P = 0.008 (stage) and P = 0.049 (status), Kruskal–Wallis test is used in (B). (C) KEGG
enrichment analysis in each subtype. (D) GO-BP enrichment analysis in each subtype. (E) ImmuneScore, TumorPurity, StromalScore, and
ESTIMATEScore were calculated using the “ESTIMATE” package in R (Kruskal–Wallis test). (F) Alluvial diagram establishing associations among
molecular subtypes, immune-related genes, and immune pathways.
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3.5 Construction of diagnostic models
based on SVM

To establish an accurate diagnostic model for distinguishing

subtypes with different prognoses, we identified 33 feature genes in

TCGA and GEO datasets using RFECV and SVM (Table S5). Among

them, six genes were overlapped with the ImmPort gene set, namely,
Frontiers in Immunology 08
CALR, ANGPTL4, PSME1, TAP1, RXRA, and CX3CR1. Using TCGA

dataset as the training set and the GEO dataset as the independent

validation set, we established a diagnostic model based on the 33

feature genes using SVM. Subsequently, we conducted the fivefold

cross-validation on the training set and prediction on the

independent validation set. The performance of the diagnostic

model was evaluated using the receiver operating characteristic
B

C

D E

F G

A

FIGURE 4

Characteristics of immune infiltration in subtypes. (A) The histogram shows the proportion of immune cells among the three subtypes. (*P<0.05,
**P<0.01, ***P<0.001, ****P<0.0001). (B) Heat map of correlation between gene expression of each subtype and immune cells. (C) Correlation
display between IL1B, CXCL10 and M1 macrophage, FOXP3, and Treg. (D) OS curve of M1 macrophages (log-rank P = 4.00e-04) and CXCL10 (log-
rank P = 0.007). (E) Boxplots of CXCL10 expression in each subtype, P = 2.22e-16 (S-I vs. S-II), P = 2.60e-13 (S-I vs. S-III), and P = 2.30e-06 (S-II vs.
S-III) Student’s t-test is used in (E). (F) OS curve of CXCL9 (log-rank P = 0.011) and CXCL11 (log-rank P = 9.00e-04). (G) Boxplots of CX3CR1
expression in each subtype, P = 0.2 (S-I vs. S-II), P = 6.70e-14 (S-I vs. S-III), and P = 1.50e-14 (S-II vs. S-III) Student’ s t-test is used in (G).
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(ROC) curve. In the fivefold cross-validation and independent

validation sets, the values of AUC were 0.922 and 0.901

(Figure 5G), indicating that the diagnostic model had exceptional

classification performance. Further survival analysis of the predicted

classification results of the independent validation set showed that

patients with S-I had better OS than those with S-III, which was
Frontiers in Immunology 09
consistent with our validation set clustering results (Figure 5H). In

order to assure the quality and accuracy of our diagnostic models, we

have employed various algorithms, including random forest (RF),

penalized logistic regression (PLR), and Bayesian, to construct

diagnostic models, which also had exceptional classification

performance in common with SVM (Figures S1D–F).
B C

D E

F

G H

A

FIGURE 5

Validation of molecular subtypes and construction of diagnostic models. (A) Line graph of the relative change in area under CDF curve of clustered
samples. (B) CDF curve of clustered samples. (C) Heatmap of consensus matrix at k = 3. (D) Heatmap of normalized gene expression of 1,481 SRGs
in all samples. The three subtypes of the sample are shown in different colors. (E) Kaplan–Meier curves for overall survival (OS) stratified by OC
subtypes. Log-rank test without adjustment is used in (E). (F) The fractions of M1 macrophages in three subtypes, P = 7.67e-05 (Kruskal–Wallis test).
(G) The AUC curve of diagnostic model with fivefold cross-validation and GEO validation (AUC of GEO validation = 0.901, AUC of fivefold cross-
validation = 0.922). (H) Kaplan–Meier curve for predicting subtypes of OC based on diagnostic model (log-rank P = 5.87e-05).
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4 Discussion

OC is the most lethal gynecological tumor and overwhelms

worldwide around 207,252 women each year (37). OC encompasses

epithelial ovarian, primary peritoneal, or fallopian tube cancer, a

phenomenon which represents the extensive heterogeneity in tumor

and the TME, largely contributing to patients’ resistance to treatment

options, while most of these tumors are sensitive to initial treatment

(38). Therapeutic options for OC treatment include cytoreductive

surgery, radiotherapy, chemotherapy, and the recent emerging

targeted drug therapy (39). For women who carried driver germline

mutant in BRCA1/2, they were recommended to undergo a risk-

reducing salpingo-oophorectomy but should receive hormone

replacement therapy if necessary (40). Platinum-based chemotherapy

or PARPi including olaparib is the cornerstone for OC treatments, and

these treatments applied to patients who carry HRD or a BRCA

mutation were proved to produce durable response and better OS in

patients with newly diagnosed advanced OC and a BRCAmutation (4).

However, drug resistance leading to relapse, widespread intraperitoneal

metastasis, and other risk factors are ultimately attributed to the overall

high mortality (39). In summary, tumor heterogeneity of OC

profoundly compromises patient stratification, prognostic prediction,

and personalized treatment, hence leading to the overall poor

clinical outcome.

Stratified care has been proved to possess tremendous potential to

tailor a more appropriate and effective approach to treatment and

improve outcomes in many complex diseases (41–43). In this study,

we firstly identified 1,273 SRGs using univariate Cox analysis and

successfully stratified OC patients into three subgroups based on the

different molecular patterns of these SRGs. To investigate whether the

three clusters were related to clinical information, Kaplan–Meier

survival analysis was performed, reflecting that patients in S-I had

more favorable OS and DFS than those in S-II and S-III. We also

found that the clinical stage showed significant differences in the

molecular subtypes of OC. Here, the end-stage OC patients were

more enriched within S-III compared with the other subtypes, which

is consistent with the worst prognosis in S-III. Moreover, the

enrichment analysis was conducted based on signature genes

belonging to these three clusters, and a deeper characterization of

the regulated pathways delineated that genes associated with immune

function and DNA damage repair were enriched in S-I whereas

signature genes of S-III were extensively involved in pathway

reflecting malignancies. For instance, in S-I, the genes were mainly

enriched in antigen processing and presentation of endogenous

peptide antigen, Toll-like receptor signaling pathway, base excision

repair, and nucleotide excision repair. On the contrary, some core

kinases and transcription factors involved in cancer such as CDK6,

ERBB2, JAK1, DAPK1, FOXO1, and RXRA were highly expressed in

S-III. For example, ERBB2 had been proved to induce transition of

adherent cells to non-adherent cells to contribute to peritoneal spread

of OC through upregulating ZEB1 (44) and CDK6 was found to

protect OC cells from death by stabilizing FOXO3 upon platinum

treatment (45). In addition, FOXO1, an upstream transcription factor

of SOX2, participating in cancer stemness had been identified to

participate in paclitaxel resistance in OC (17, 46). Moreover, retinoic

acid receptor alpha (RARA) also highly expressed in S-III was found
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to mediate DNA polymerase q expression to promote resistance of

PARPi (47). All above evidence explained why patients in S-III tend

to have a poor prognosis.

Radiotherapy has been largely abandoned in clinical treatment

for OC patients except for palliative care. Although immunotherapy

has made big success in many types of cancers such as non-small

cell lung cancer (NSCLC), and immune checkpoint inhibitors have

been proved to induce significant and sustained responses, OC

remains poorly responsive to immunotherapy (48). However, new

data indicated that rational combinations of radiotherapy with

immunotherapy might impair or eradicate OC, which might

suggest that radiation can reprogram the TME to promote

antitumor activity in OC (49). In fact, in the TME, many such as

tumor-specific expression of CCL5 in conjunction with CXCL9 can

enhance lymphocyte infiltration whereas the deficiency of these

genes can also promote M2 macrophage differentiation, resulting in

immune suppression and poor prognosis. In 2023, Nikki also found

that tumors especially for end-stage OC patients were relatively

devoid of immune cell infiltrates and CCL5, which might contribute

to a diminished lymphocyte infiltration and shift toward a

protumorigenic and immunosuppressive TME (50). In our study,

the ESTIMATE algorithm was applied to evaluate immune cell

infiltration for each subtype and the results also showed higher

immune cell infiltration in S-I compared with S-II and S-III,

representing an immunoreactive subtype characterized with

higher expression of chemokines such as CXCL9, CXCL10, and

CXCL11, indicating a better prognosis, which showed a clear

correlation with results of Tothill et al. and TCGA teams (14, 17).

Moreover, a deeper characterization of the immune cell infiltration

of each of these three subtypes delineated that the infiltration level

of M1 macrophages is higher in S-I whereas that of M2

macrophages is lower, when compared with S-III, which also

supports that pro-inflammatory M1 macrophages might produce

immunostimulatory cytokines such as CXCL9, CXCL10, and

CXCL11 to maintain its tumoricidal capacity and contribute a

better prognosis (39). Additionally, we also found that patients

with higher expression of these immunostimulatory cytokines

harbor higher OS and a better prognosis, whereas CX3CR1, a

biomarker of M2 macrophages, also showed different expressions

in different clusters especially higher expression in S-III, which

might explain why S-I has a better prognosis whereas S-III has the

worst prognosis.

To validate the robust subtypes, the same analysis pipeline was

applied to a publicly available dataset from GEO, also automatically

yielding three clusters and exhibiting a similar molecular expression

pattern, survival prognosis, and immune modulation pattern. In

order to construct a predictive model to evaluate different

prognoses, a machine learning method, SVM, was adopted based

on these signature genes. Subsequently, we evaluated the

performance of the diagnostic model using the ROC curve. In the

fivefold cross-validation and GEO validation, the values of AUC

were 0.922 and 0.901 (Figure 5G), indicating that the diagnostic

model had exceptional classification performance. Further survival

analysis of the predicted classification results of the validation set

showed that patients in S-I had better OS than S-III (Figure 5H),

which was consistent with our validation set clustering results.
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5 Conclusion

Based on bulk transcriptomes, this study exploited a useful

approach to construct previously unexplored robust subtypes

significantly related to different clinical and molecular features for

OC, including Immunoreactive and DNA damage repair, Mixed,

Proliferative, and Invasive. Additionally, a new dataset can be

automatically analyzed by this method and yield similar results.

Subsequently, this investigation potentially showed that

reprogramming M2-like pro-tumor macrophages into an M1-like

antitumor state might facilitate antitumor immunity for OC patients.

Our study illustrated that synergy of immune microenvironments such

as M1 and DNA damage repair molecules might contribute to a

favorable prognosis for OC patients, indicating that this combination

might produce therapeutic benefits for OC patients. STING agonists

had been proved to reprogram M2-like macrophages into an M1-like

state in a macrophage STING-dependent manner and synergizes with

PARPi to suppress breast cancer growth. However, a more profound

impact on OC remained elusive. Our data illustrated the importance of

targeting innate immune suppression together with DNA damage in

OC, offering novel insights for future comprehensive research in this

field. Moreover, a machine learning algorithm, SVM, was adopted to

develop the diagnostic model to aid in clinical identification. Despite of

rigorous bioinformatics approaches, this study has limitations

including without experimental validation, in spite of being validated

in a new dataset from GEO. It is imperative to perform molecular

experiments to corroborate the results. Furthermore, large cohorts are

needed to deeply test the diagnostic model for OC.
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