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processes in acne
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Skin Health Research Center, Yunnan Characteristic Plant Extraction Laboratory, Kunming,
Yunnan, China
Acne vulgaris is one of the most prevalent skin conditions, affecting almost all

teenagers worldwide. Multiple factors, including the excessive production of

sebum, dysbiosis of the skin microbiome, disruption of keratinization within

hair follicles, and local inflammation, are believed to trigger or aggravate

acne. Immune activity plays a crucial role in the pathogenesis of acne. Recent

research has improved our understanding of the immunostimulatory

functions of microorganisms, lipid mediators, and neuropeptides.

Additionally, significant advances have been made in elucidating the

intricate mechanisms through which cutaneous innate and adaptive

immune cells perceive and transmit stimulatory signals and initiate immune

responses. However, our understanding of precise temporal and spatial

patterns of immune activity throughout various stages of acne

development remains limited. This review provides a comprehensive

overview of the current knowledge concerning the immune processes

involved in the initiation and progression of acne. Furthermore, we

highlight the significance of detailed spatiotemporal analyses, including

analyses of temporal dynamics of immune cell populations as well as

single-cell and spatial RNA sequencing, for the development of targeted

therapeutic and prevention strategies.
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1 Introduction

Acne vulgaris is a dermatological condition that predominantly affects

approximately 85% individuals in adolescence and early adulthood (1, 2). Acne

tends to occur in regions characterized by a high concentration of sebaceous glands,

such as facial and upper back regions (3). Pilosebaceous units (PSUs), composed of

sebaceous glands and hair follicles, are the fundamental structures affected in acne

lesions. In typical PSUs, the production and secretion of sebum (a mixture of lipids) are

primarily carried out by the sebaceous glands. Secreted sebum travels through the

sebaceous duct and enters the lumen of the hair follicle channel, where it coats

the keratinocyte wall. The commensal microbiota within the hair follicle possesses the
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ability to metabolize specific lipid species into free acids, resulting in

an environment with a low pH, hindering the colonization or

proliferation of harmful microorganisms.

Acne vulgaris manifests when the harmonious equilibrium

within the PSU is disturbed. Considering the hair follicle duct as

a conduit, hypercornification of the hair infundibulum combined

with excess sebum, microorganisms, and keratin squamae can result

in the development of microcomedones. These microcomedones

subsequently develop into either white or black comedones (4),

causing the obstruction of the hair follicle ducts.

Comedones coupled with the excessive production of sebum

establish a relatively anaerobic environment, which facilitates the

proliferation of specific species of microorganisms, ultimately

resulting in dysbiosis of the skin microflora. The altered composition

of microorganisms in the PSUs along with the virulence factors they

release in conjunction with the enlarged comedones exert pressure on

the wall of hair follicles, leading to their compression and subsequent

rupture. This process ultimately compromises the structural integrity of

the skin barrier within the hair follicles.

Subsequently, invading pathogens, their secreted virulence factors,

and degraded sebum penetrate the dermis and activate immune cells,

resulting in an intensified inflammatory response. This process results

in the development of inflammatory lesions, including papules and

pustules. In patients with severe acne, papules and pustules can lead to

the development of nodules or cysts. Owing to the destruction of the

dermis or hypodermis, certain lesions pose challenges in terms of

restoration, ultimately leading to scar formation.

Prior studies have established that the immune system plays a

critical role in all stages of acne development. This review provides a

comprehensive overview of the immune processes involved in acne

development, including a summary of the stimulators that activate

the immune response, the mechanisms involved in both innate and

adaptive immune responses, and the sequence of infiltrated

immune cells in different types of acne lesions.
2 Stimulators triggering
immune response

Substances that interfere with the regular functioning of PSUs

generally stimulate innate immune responses. At present, these

substances can be categorized into two distinct types: (1) exogenous

substances originating from the external environment, including a

diverse range of microorganisms and their virulent metabolites, and

(2) autoantigens generated by the host, such as specific lipid

mediators from sebum and blood and neuropeptides secreted by

neuroendocrine cells. Stimulators with experimental evidence using

human cells or tissues are listed in Table 1.
2.1 Skin microbiome

The skin microbiome consists of bacteria, viruses, fungi, and

archaea that reside in or temporarily inhabit the skin or its

appendages (41). The human skin provides diverse microhabitats
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(differing in thickness, moistness, gland and hair follicle density,

and other parameters) for various microbial communities. The

most frequently isolated microorganisms in hair follicles are

Cutibacterium acnes and Staphylococcus epidermidis (42).

The capacity of C. acnes to elicit an immune response has been

evaluated extensively (14). Previous in vivo and in vitro studies have

demonstrated that certain strains of C. acnes as well as their toxic

metabolites and cell wall components, such as peptidoglycan

(PGN), lipoteichoic acid (LTA), and short-chain fatty acids

(SCFAs) produced under lipid-rich hypoxic conditions, can

induce a significant increase in cytokine expression in cultured

keratinocytes (12, 31), sebocytes (16, 17), peripheral blood

mononuclear cells (PBMCs) (9, 29), and monocytes (12, 31). The

activation of the skin immune system in response to C. acnes has

also been demonstrated in vivo. For instance, Ashbee et al.

demonstrated that the levels of IgG1 and IgG3 antibodies

targeting C. acnes were higher in individuals with severe acne

than in those with normal skin, whereas IgG2 specific to C. acnes

was higher in patients with moderate-to-severe acne than in those

with mild acne (43). These in vivo results suggest that C. acnes plays

a progressive role in acne of varying severity.

Despite evidence that C. acnes contributes to the development

of acne, a consistent difference in the relative abundance of this

bacterium between individuals with and without acne has not been

detected (44–46). There is a widely accepted consensus that the

dysbiosis of C. acnes at the strain level, the presence of virulent

genetic elements, and altered transcriptional activity provide a more

comprehensive explanation for the observed functional disparities

between individuals with healthy skin and those with acne. This

viewpoint is supported by several studies (15, 25, 42, 46–51).

In addition to the extensively studied C. acnes, other

microorganisms, such as the most abundant skin commensal

fungal genus Malassezia and species of Staphylococcus, are

associated with acne (44, 52, 53). The potential impact of

Malassezia on the pathogenesis of acne is supported by its

positive response to antifungal agents in cases of refractory acne

(54), its increased abundance in young individuals with acne (20,

55), increased levels of secreted lipases and stimulation of immune

responses in PBMCs and keratinocytes (18, 48, 56).

There is evidence for associations between Staphylococcus

species and acne. For example, they are highly abundant on the

surfaces of comedones, papules, and pustules (45). Furthermore, the

occurrence of S. epidermidis is higher in patients with acne than in

heathy controls (57, 58). The NF-kB pathway is activated in

keratinocytes upon treatment with S. epidermidis (21) and the

mitogen-activated protein kinase (MAPK) is activated by S.

aureus (59). However, Xia et al. claimed that LTA generated by S.

epidermidis could inhibit the proliferation of C. acnes and reduce

the protein expression of toll-like receptor (TLR)-2 in keratinocytes

(60). Further studies are required to elucidate the functions of S.

epidermidis in acne development and resolve inconsistencies.

Given that the immune responses of cultured cells to

microorganisms or their secreted virulence factors depend on

direct physical contact in vitro, it is crucial to determine whether

pathogens co-localize with the same cells in vivo. To address this

issue, Alexeyev et al. used fluorescent in situ hybridisation,
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TABLE 1 Experimentally evidenced stimulators and receptors of immune responses in acne development.

Stimulators Receptors Response cell/tissue References

Microorganisms-related

C. acnes TLR2,
TLR4,
CD14,
PAR-2

KCs (5–8)

PBMCs (9–11)

Monocytes (12)

CD3+ T cells (13)

CD4+CD45R T cells (9, 13)

Explants (14, 15)

Sebocytes (16, 17)

THP-1 cells (12)

Malassezia species PBMCs (18)

KCs (19)

Acne lesions (20)

Staphylococcus species TLR2 KCs (21)

PBMCs (11)

Acne lesions (22, 23)

Porphyrin III KCs (24)

Acne lesions (25)

CAMP1 TLR2 KCs (26, 27)

Acne lesions (28)

Extracellular vesicles TLR2 KCs (29)

THP-1 cells (29)

HSP60 KCs (30)

SCFAs Monocytes (31)

KCs (31)

Lipase Acne lesions (20, 22, 32)

Lipoprotein TLR2 Monocytes (33)

KCs (34)

Enterotoxin B PBMCs (9)

Lipid mediators

Oleic acid CD36 Sebocytes (35)

Lauric acid CD36 Sebocytes (35)

Palmitic acid CD36 Sebocytes (35)

Squalene KCs (36)

TREM2+ macrophages (37)

Neuropeptides

Substance P Sebocytes (38, 39)

CRH CRH-R Sebocytes (5, 40)

a-MSH MC-1R Sebocytes (40)
F
rontiers in Immunology
 03
CAMP, Christie-Atkins-Munch-Peterson; HSP, heat shock protein; SCFAs, short-chain fatty acids; CRH, Corticotropin-releasing hormone; TLR, Toll-like receptor; PAR-2, proteinase-activated
receptor-2; CRH-R, corticotropin-releasing hormone receptor; a-MSH, alpha-melanocyte stimulating hormone; MC-1R, melanocortin-1 receptor; KCs, keratinocytes; PBMCs, peripheral blood
mononuclear cells.
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immunofluorescence microscopy, and immunohistochemistry.

They observed that within the hair follicle, both microcolonies

and biofilms of C. acnes were present on the follicular wall,

indicating that there is a direct interaction between C. acnes and

keratinocytes (32). Using quantitative PCR, Gram staining,

immunofluorescence microscopy, and 16S ribosomal RNA

sequencing, Nakatasuji et al. identified acne-associated C. acnes

and S. epidermidis within dermal tissues. This finding provides

evidence for direct physical interactions between bacteria and

different cells in the dermal layer (61). Further studies are

necessary to obtain more accurate observations of the direct

interactions between particular microbial species as well as

secreted virulence factors and skin cells in different acne lesions.
2.2 Lipid mediators

Lipids that function as immune-stimulating substances in acne

mainly originate from sebum (62). Under typical circumstances,

sebum contributes to the defense of the skin against pathogens and

maintenance of moisture. However, several studies have shown that

changes in the composition of lipid species as well as the oxidant/

antioxidant and saturated/unsaturated ratios may convert lipids into

immune stimulators during the development of acne (35, 36, 62–66).

For instance, sebum free fatty acids, such as lauric acid, palmitic acid,

and oleic acid, can enhance the innate immune defense of sebocytes

by upregulating a human antimicrobial peptide (AMP), human b-
defensin (hBD)-2 (35); Additionally, peroxidated squalene can

upregulate the expression levels of inflammatory mediators, such as

NF-kB, peroxisome proliferator-activated receptors (PPAR)a, and
IL-6 (36); Furthermore, quantities of sebum oxidation-induced lipid

peroxide (LPO) and interleukin (IL)-1a are higher in the

inflammatory comedones than in non-inflammatory comedones,

suggesting that a certain amount of LPO may be involved in

inflammatory changes in early acne lesions (67).

Various lipid species come from not only sebum but also other

skin surface lipids (62) and serum (68). Although several studies

have reported characteristic differences of these lipids between

patients with acne and healthy controls (66, 68–72), further

research is needed to understand the mechanisms linking these

lipids to immune activity.
2.3 Neuropeptides

Acne vulgaris is often exacerbated in individuals with mental

stress or endocrine dyscrasia (58, 73, 74). This highlights the

association between acne and the neuroendocrine system. As a

crucial component of the peripheral neuroendocrine system,

human skin not only acts as a recipient of signals from various

neuropeptides secreted by the central nervous system and

transported via the bloodstream but also produces neuropeptides

that modulate skin cells via paracrine, juxtracrine, autocrine, and

intracrine pathways (75–77).

Obligate immune cells, such as mast cells, Langerhans cells, and

macrophages, as well as nonobligate immune cells, such as

sebocytes, melanocytes, endothelial cells, and keratinocytes, have
Frontiers in Immunology 04
been identified as targets of neuropeptides in the cutaneous

immune system (75, 78). For example, calcitonin gene-related

peptide (CGRP) secreted by skin sensory nerve fibers stimulate

the adhesion of leukocytes and monocytes to endothelial cells as

well as the release of proinflammatory mediators, such as tumor

necrosis factor (TNF)-a and IL-8, from mast cells (79).

However, limited studies have characterized the direct effect of

neuropeptides on the immune response in acne. Corticotropin-

releasing hormone (CRH), a neuropeptide, shows significantly

stronger expression in sebaceous gland cells of acne-affected skin

than in non-affected skin (40). It can be secreted by the

hypothalamic-pituitary-adrenal axis, keratinocytes, melanocytes,

dermal fibroblasts, or endothelial cells and targets one of its

receptors, corticotropin-releasing hormone receptor 2 (CRH-R2),

to stimulate the release of IL-6 and IL-8 in SZ95 sebocytes (5).

Substance P (SP), another neuropeptide, is present at higher

concentrations in the nerve fibers around sebaceous glands in

patients with acne than in healthy controls (38). Cultured

sebocytes treated with SP exhibit increased secretion of

proinflammatory cytokines, including IL-6, IL-1, and TNF-a (39).

Further studies are needed to determine the secretory patterns

of other neuropeptides in patients with acne and their potential to

initiate an immune response.
3 Innate immune response

In response to aforementioned immunostimulators, immune-

related cells in the skin show alterations in proliferation and/or

differentiation as well as in signaling and/or metabolic pathways.

This response results in the production of defensin substances or

secondary signaling molecules that activate the immune systems.

The rapid and nonspecific immune response for the prevention

of the rapid spread of antigens is referred to as innate immunity. In

typical skin, a relatively low pH and low oxygen microenvironment,

epidermal keratinocytes in the hair follicles serve as the initial

barrier against a multitude of harmful microorganisms and external

factors. When the integrity of this barrier is compromised due to

imbalances in physiological activity or excessive stimulation from

external factors, antigens can penetrate the epidermis and reach the

dermis, thereby triggering a more intense and uncontrolled

inflammatory response in the deeper layers of the skin. The

components of the cutaneous innate immune system, including

skin cells (follicular keratinocytes, sebocytes, melanocytes and

Langerhans cells), haematopoietic cells, and soluble factors (e.g.,

cytokines and AMPs) have been comprehensively documented by

Dreno et al. (80). In this section, we illustrate the intricate processes

by which immune-related cells in acne identify immune

stimulators, transmit signals within cells, and generate responses.

A schematic of these immune processes is shown in Figure 1.
3.1 Recognition

TLRs, especially TLR2 and TLR4 in conjunction with CD14, are

major receptors involved in the recognition of microorganisms or
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microbial-derived factors, such as PGN and LTA. These

transmembrane proteins have been discovered in culture systems

and within skin tissues. They are expressed in various skin cells,

such as keratinocytes (81, 82) and sebocytes (16, 83), and in

haematopoietic cells, such as PBMCs (10) and monocytic (12,

84). Their expression levels are positively regulated by C. acnes

(81) and negatively regulated by retinoids (10). In addition to TLRs,

proteinase-activated receptor-2 (PAR-2) is directly stimulated by

proteases produced by C. acnes. Lee et al. found that PAR-2 levels

are higher in keratinocytes and sebaceous glands of acne lesions

than in non-lesional skin. Lee et al. found that PAR-2 levels are

higher in keratinocytes and sebaceous glands of acne lesions than in

non-lesional skin (85, 86). In vitro experiments using cultured

keratinocytes and sebocytes further demonstrated the role of

PAR-2 in mediating innate immunity and sebaceous lipogenesis.
Frontiers in Immunology 05
Few studies have evaluated signal-receiving elements

responsible for the recognition of various lipid mediators. Only

free fatty acids, including lauric acid, palmitic acid, and oleic acid,

have been shown to be transported by the transmembrane lipid

translocator CD36 in cultured SZ95 sebocytes (35).

Neuropeptides stimulate immune responses through

recognition by their corresponding neuropeptide receptors (40,

79, 87). However, studies of the roles of neuropeptide-mediated

immune responses in acne are limited.
3.2 Signal transduction

When TL2 or TL4 binds to antigens with the assistance of its co-

receptor, CD14, its cytoplasmic TIR domains interact with the TIR
FIGURE 1

Recognition of immune stimulators and the signaling pathways implicated in the innate immune response of acne and its subsequent biological
effects. Microorganisms-related stimulators can be detected by Toll-like receptors (TLRs) in conjunction with CD14 and proteinase-activated
receptor-2 (PAR2). The activation of TLRs triggers the downstream NF-kB signaling pathway, resulting in the translocation of NF-kB into the nucleus
and the upregulation of genes encoding cytokines, chemokines, and antimicrobial peptides (AMPs); The activation of PAR2 has been shown to elicit
the transcriptional upregulation of genes encoding cytokines, chemokines, and AMPs via an unidentified pathway. Additionally, PAR2 activation
triggers the downstream signaling pathway of activator protein-1 (AP-1), resulting in the translocation of AP-1 into the nucleus and an enhanced
transcriptional expression of matrix metalloproteinases (MMPs). As potent anti-inflammatory factors, the nuclear receptors, peroxisome proliferator-
activated receptors (PPARs) PPARa and PPARg have the ability to inhibit the activation of NF-kB. When cultivated in an environment rich in lipids, the
anaerobic fermentation of C. acnes can produce short chain free fatty acids (SCFAs). Certain species of SCFAs have the ability to inhibit the
deacetylation function of histone deacetylase (HDAC) 8/9. The inhibition of HDAC8/9 consequently results in an amplification of the acetylation
process on histone residues H3K9 and H3K27, which marker the promoter region of MAP2K3. This, in turn, leads to an enhanced transcription of
MAP2K3. The heightened expression level of MAP2K3 then triggers the phosphorylation of p38 MAPK, ultimately resulting in the activation of p38
MAPK and an increase in the expression of genes responsible for cytokines and chemokines. Lipid mediators produced by sebaceous glands, such as
certain species of free fatty acids (FFAs), have the potential to be identified by the lipid translocator CD36, while neuropeptide stimulators are
believed to be recognized by their corresponding neuropeptide receptors (NPRs). Both of these mediators have the ability to enhance the
expression of genes involved in immune responses, although the specific signaling pathways through which these receptors and immune response
genes operate remain unclear. Prior to being released in an active state into the extracellular region, the inactive form of proinflammatory cytokines,
such as pro-IL-1b, necessitates proteolytic processing. This processing is facilitated through the activation of the NLRP3 inflammasome complex.
Subsequently, proteins of cytokines, AMPs, chemokines, and MMPs are secreted into the extracellular regions in order to regulate the functioning of
neighboring cells, thereby resulting in a cascade of subsequent effects.
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domain of Myd88, an adaptor downstream of TLRs and IL-1

receptors. The death domain of Myd88 interacts with IL-1R-

associated kinase (IRAK) family kinases via homotypic protein–

protein interactions (88). Activated IRAK stimulates the NF-kB
signaling pathway. In humans, NF-kB is a transcription factor in a

complex consisting of p50 (NF-kB1) and p65 (rel-A) subunits (89).

In normal conditions, NF-kB is sequestered in the cytoplasmic

region by binding to the inhibitor of kB (IkB) in the cytoplasmic

region. After receiving the upstream inflammatory signals, IkB
kinase (IKK) is activated to phosphorylate IkB, and the

phosphorylated IkB will undergo ubiquitylation and proteasomal

degradation, resulting in the translocation of NF-kB members into

the nucleus (90). The nuclear translocation of NF-kB positively

regulates the mRNA expression of proinflammatory cytokines.

PAR-2 enables the activation of activator protein-1 (AP-1).

Once activated, AP-1 is translocated into the nucleus and promotes

the transcription of matrix metalloproteinases (MMPs) (85).

However, the downstream effectors that mediate the PAR-2

pathway and stimulate cytokines and AMPs in acne have not

been determined.

Before they are released into the extracellular region in an active

form, the inactive form of proinflammatory cytokines, like pro-IL-

1b, requires proteolytic processing. This process is dependent on

the proteolytic activity of caspase-1. The inactive form of pro-

caspase-1 is a part of the nucleotide-binding oligomerization

domain, leucine-rich repeat, and pyrin domain-containing protein

(NLRP) inflammasome complex. Several NLRPs have been

characterized according to the types of pathogen-associated

molecular patterns (PAMPs) and damage-associated molecular

patterns (DAMPs) they are activated by (6). In acne vulgaris,

NLRP3 contributes to the recognition of C. acnes in human

monocytes, and its activation by C. acnes requires ROS, K+ efflux,

phagocytosis, and lysosomal destabilization (12). The activation of

NLRP3 leads to proteolytic cleavage of the caspase recruitment

domain (CARD) of pro-caspase-1, resulting in active caspase-1 and

subsequent proteolysis of pro-IL-1b into mature and secreted active

IL-1b (91).

PPARs act as anti-inflammatory factors. Dozsa et al. observed

that patients with acne have lower expression levels of PPARg and
its target genes in sebocytes than those in healthy controls (92).

Ottaviani et al. found that in cultured keratinocytes, peroxidated

squalene could induce the secretion of the proinflammatory

cytokine IL-6 through the activation of NF-kB. In this

inflammatory environment, the PPARa expression level is

increased, supporting the feedback reaction of PPARs to reduce

inflammation via the inhibition of the NF-kB pathway (36).

Recently, histone deacetylases (HDACs) were identified as

negative regulators inhibiting TLR-induced cytokine expression in

keratinocytes. This regulation is crucial for maintaining immune

tolerance under normal microbial conditions (31). Under hypoxic

growth condition with lipid sources, C. acnes utilizes lipids to

produce SCFAs, which in turn inhibit the activity of HDAC8 and

HDAC9 (31). The inhibition of HADC8/9 increases the acetylation

of histone residues H3K9 and H3K27, which mark the promoter
Frontiers in Immunology 06
region of MAP2K3. This increased level of acetylation opens the

chromatin in MAP2K3 and activates the facilitates chromatin

transcription (FACT) complex, ultimately increasing the

transcription of MAP2K3. The heightened expression of MAP2K3

is responsible for the phosphorylation of p38 MAPK and

subsequent increased expression of IL-6, IL-8, TNF-a, thymic

stromal lymphopoietin (TSLP), chemokine (C-C motif) ligand 5,

and IFN-b (31, 93). IFN-b activates cutaneous immunity by

promoting dendritic cell (DC) maturation and subsequent T cell

proliferation (93).
3.3 Production of immune-related factors

After recognizing stimulators and modulating intracellular

signaling pathways, skin immune cells produce and secrete

immune-related soluble factors, including AMPs, cytokines,

chemokines, and MMPs. AMPs are 12–50 amino acid, cationic,

and amphiphilic peptides. In human skin, the best-characterized

AMPs are cathelicidins and b-defensins (35, 94). They are produced
in human keratinocytes and sebocytes in response to stimulators,

like C. acnes, PGN, LPS, and Malessezia furfur (19, 95). AMPs

directly inhibit C. acnes proliferation and immunomodulation by

inducing angiogenesis and cytokine release (94).

Cytokines are regulators produced by host cells in response to

infections and immune responses. IL-6, IL-8, IL-1b, and TNF-a are

the most well-studied cytokines in acne research. IL-6 and IL-8 are

secreted by monocytes (12), keratinocytes (31), PBMCs (29), and

sebocytes (39) when stimulated by C. acnes or SP. Elevated

expression levels of IL-6 and IL-8 in acne lesions also have been

reported (33, 96). IL-1b expression is induced in PBMCs (10, 29),

monocytes (12), and keratinocyte (31) when stimulated by C. acnes

and SCFAs produced by C. acnes. IL-1 receptors (IL-1R) expressed

on the membrane surface can transduce IL-1b signals into

intracellular signals to activate NF-kB and AP-1 signaling

pathways (89). These activated signals in effector cells promote

cytokine production. TNF-a could be stimulated by C. acnes in

cultured Th1 cells (29), infundibular keratinocyte (12), sebocytes

(39), and monocytes (12) when stimulated by C.acnes or SP.

Secreted TNF-a interacts with TNF-a receptors, stimulating the

expression of vascular intercellular adhesion molecule 1 (ICAM-1)

and increasing the activity of NF-kB and AP-1 (89). In addition to

the aforementioned well-studied cytokines, a recent study has

discovered that vascular endothelial growth factor a (VEGF-a), is
secreted by a specific subset of type I conventional dendritic cells

(cDC1s) during infection with either C. acnes or S. aureus in the

mouse model of inflammatory acne. This secreted VEGF-a has the

ability to attract neutrophils to the site of infection (97).

Chemokines are another important factor in the immune

response. They act as critical mediators of immune cell migration

during immune surveillance and immune development (98). In

acne vulgaris, keratinocyte-secreted chemokines, including CCL2

and CCL5, TREM2+ macrophage-secreted chemokines, such as

CXCL16 and SPP1 (37), and sebocyte-secreted chemokines, like
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CXCL8 (13), have the ability to attract immune cells to the

acne region.
4 Adaptive immune response

Theoretically, adaptive immunity is activated upon exposure to

antigens presented by the major histocompatibility complex (MHC)

of antigen-presenting cells. The adaptive immune response is

characterized by a slow speed, high specificity, and the ability to

develop memory. Dendritic cells (DCs) are the key professional

antigen-presenting cells activating T and B lymphocytes (3).

However, specific DC subtypes responsible for the antigen

presentation in acne remains understudied. In this section, we

illustrate the immune cells that have been identified as critical

players in adaptive immune response. And a model proposed based

on these discoveries is presented in Figure 2.

Th1 and Th17 represent distinct subsets of CD3+ CD4+ T

helper cells and are the predominant immune cell populations

infiltrating the dermal papilla and around the perifollicular regions

in early-stage acne. Th1 cells are recruited and activated in early

acne lesions, as determined by Mouser et al. (99). who generated 14

T-cell lines from early papular inflammatory acne lesions with

enhanced proliferative responses to antigens derived from C. acnes.

Further, a Th1 cytokine pattern characterized by high IFN-g
production and low IL-4 production indicated the involvement of

Th1 cells in the adaptive immune response in acne vulgaris,

particularly in the early stage (99). This result was later verified
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by Agak et al. in a study of peripheral blood mononuclear cells

treated with C. acnes (9).

The effector functions of Th17 cells differ from those of Th1

cells (99, 100). The differentiation and proliferation of Th17 cells are

facilitated by various cytokines, such as IL-17, IL-1b, IL-6, TGF-b,
and IL-23 (9). Agak et al. (9) found that Th17 can be differentiated

from CD4+ T cells rather than CD8+ T cells when stimulated by C.

acnes. This differentiation was indicated by the upregulation of IL-

17 related genes, including IL-17, IL-17 receptor genes (IL-17RA

and IL-17RC), and the downstream transcription factors (RORa
and RORc). Moreover, Vitamin A (ATRA) and D (1,25D3), two

commonly used immunomodulators in acne therapeutics, can

inhibit C. acnes-induced Th17 differentiation (9).

Matti et al. demonstrated an accumulation of CD4+ IL-17+ cells

in close proximity to the PSU, which suggests the interaction

between sebocytes and these CD4+IL-17+ cells (13). Moreover, the

chemoattractant process can be further enhanced by

proinflammatory cytokines, such as IFN-g, IL-17, and TNF-a.
Although the CD4+ CD45RO+ effector T cell subset was the most

abundant T cell subset attracted by sebocytes, functional activation

was not observed. In contrast, the small number of CD4+CDRA+

naïve T cells attracted by sebocytes are targets for differentiation

into Th17 cells. This differentiation is mediated by the sebocyte

supernatant in a manner dependent on IL-1b, IL-6, and TGF-b as

well as by the DCs generated in the presence of the SZ95

supernatant. This population of activated Th17 cells is

characterized by elevated levels of IL-17 and IL-22. The

supernatant of C. acnes-prestimulated SZ95 sebocytes has the
FIGURE 2

A proposed model of the adaptive immune response in acne. The innate immune response stimulates skin cells, such as sebocytes, to secrete
CXCL8, which in turn recruits CD4+ naïve T cells to the sites surrounding the pilosebaceous unit. CD4+ naïve T cells in this region receive various
stimulating signals, including cytokine signals from sebocytes, pathogen stress signals from C. acnes and major histocompatibility complex signals
from C. ances and seboctes-stimulated antigen presenting cells (APCs). These signals determine the differentiation of CD4+ naïve T cells into Th1,
Th17 or Tregs. C. acnes directly induces the differentiation of CD4+ naïve T cells into both Th1 and Th17 cells. Th17-related cytokines secreted by
sebocytes, including IL-6, TGF-b and IL-1b, as well as the IL-23 secreted by currently unidentified cells, induce the differentiation of CD4+ naïve T
cells toward Th17. Additionally, the functional interaction between sebocytes and C. acnes induces the maturation of APCs, resulting in a preferential
generation of Th17 cells over Th1 cells. The activation of Th1 and Th17 cells enhances both the innate and adaptive immune responses, while
activated Tregs function as suppressors that negatively regulate the immune response.
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potential to influence the primary capacity of DCs, leading to

increased differentiation of naïve T cells toward Th17 rather than

Th1 subsets (13).

T regulatory cells (Tregs) is characterized by high expression

levels of IL-10 and FOXP3. IL-10 is an anti-inflammatory cytokine,

and FOXP3 plays as a suppressive role in the immune system.

Elevated expression levels of these molecules were observed in both

the serum and papillary dermis of patients with acne. This finding

suggests that Tregs cells may contribute to the prevention of

autoimmunity and the suppression of excessive immune response

in acne (7).
5 Sequential involvement of
immune cells

In addition to characterizing the detailed functions of the

aforementioned immune-associated factors, it is crucial to

elucidate the order in which immune-related cells participate in

acne development. Recently, Eliasse et al. used a multipronged

approach that included flow cytometry, confocal microscopy, and

bioinformatics to demonstrate that distinct cell populations play

dominant roles at different stages of acne development (8).

Combined with the findings of in vivo studies of inflammatory

processes (8, 96, 101–103), a primary immune landscape of the acne

process is beginning to emerge (Figures 2, 3). Disrupted
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homeostasis caused by the dysbiosis of microorganisms, sebum,

neuroactivity, or environmental virulence factors triggers a

response in the cells of PSUs. The initial immune response is

triggered by keratinocytes and sebocytes, that secrete AMPs,

cytokines and chemokines to attract immune cells, including

CD4+ helper T cells, CD45RA+ memory/effector T cells, CLA+

skin homing T cells, mast cells and CD68+ macrophages. Although

with immune cells infiltration, there are no clinical symptoms at

this stage (non-lesional skin). Infiltrated immune cells in the

comedone lesions include APCs (CD14+ dermal DCs,

CD14+CD163+macrophages, CD1c+ conventional DC2s,

conventional DC1s), CD3+CD4+ helper T subsets (CD69+

resident T cells, regulatory T cells, naïve T cells, CD161+CXCR3-

Th17 cells, CD161-CXCR3+ Th1 cells, CD161+CXCR3+ Th1.17

cells) and IL17+ mast cells. These cells are predominantly cluster

in the papillary dermal, periductal or perivascular regions. As the

comedones progress into papules and pustules, the number of

CD69+ resident T cells decreases, while neutrophils and B

lymphocytes start to be recruited in large numbers within the

lumen of pilosebaceous ducts (Figure 3).

However, little is known about the immune processes at the

stages of pustules, nodules, cysts, and scars, and there are

inconsistencies in study results (Figure 3). For instance, Demina

et al. (104) revealed a decrease in anti-inflammatory cytokines (IL-4

and IL-10) in the serum of patients with acne. This suggests that an

insufficient anti-inflammatory immune response may contribute to
FIGURE 3

Sequential involvement of immune cells in different types of acne lesions and the critical events that drive the initiation and progression of acne. The
dysbiosis of microorganisms, sebum, neuroactivity, or environmental virulence factors triggers the initiation of an immune response. At this stage,
immune cells have already infiltrated the skin without any visible clinical lesions (non-lesional skin). This early-stage immune activity induces the
hypercornification of the hair infundibulum and overstimulates sebocyte function, resulting in the formation of microcomedones and later
comedones. C. acnes multiplies during the development of comedones. Continued stress from C. acnes and the enlargement of comedones on the
hair follicles result in the rupture of the follicle wall. The contents of the comedones, including microorganisms, sebum and keratin squamae are
released into the dermis, leading to the formation of papules or pustules. Ultimately, if the inflammation intensifies without control, papules or
pustules may develop into more severe lesions, such as nodules and cysts. The sequential involvement of immune cells currently observed in
different types of acne lesions is summarized in the corresponding text box. Further studies are needed to obtain more information, including the
cell numbers, tissue localization, differentiation and migration trajectory, as well as the biological functions of specific immune cells involved in
different acne lesions. Moreover, it is crucial to elucidate the molecular mechanisms that underlie these characteristics to facilitate the development
of targeted treatment and prevention strategies for acne.
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immunodeficiency. However, Kelhala et al. (96) found higher levels

of IL-10 and Foxp3+ Tregs, which can prevent autoimmunity and

suppress the immune response in acne. Further investigations

focused on various stages of acne are required to provide

additional clarification regarding these contradictory findings and

to construct a more comprehensive immune response process map

at a more precise temporal-spatial scale.

Recently, single-cell sequencing technology has emerged as a

powerful tool for acne research (37, 105). In an impressive example,

Do et al. (2020) used single-cell and spatial RNA sequencing techniques

to successfully identify a distinct subcluster of macrophages, known as

TREM2+ macrophages. These macrophages exhibit specificity and

accumulate in early-stage acne lesions. Differentially expressed genes

in TREM2+ macrophages are involved in lipid metabolism and

proinflammatory processes. A pseudo-time analysis revealed that

TREM2+ macrophages were differentiated from M2-like

macrophages. Spatial RNA sequencing and ultra-high-resolution Seq-

Scope have shown that TREM2 is localized in proximity to the hair

follicle epithelium, which expresses squalene epoxidase. Wet

experiments demonstrated that keratinocytes present in acne lesions

exhibit an increased capacity for squalene synthesis. Squalene

stimulates TREM2 expression in macrophages. Increased TREM2

expression enhances the phagocytic capacity of macrophages,

allowing them to effectively absorb C. acnes and lipids. However,

absorbed squalene inhibits the oxidative killing of C. acnes.

Additionally, the upregulation of 25 proinflammatory genes was

associated with the recruitment and activation of immune cells (37).

These data provide a basis for identifying the specific cell types involved

in the development of acne and provide information on their

distribution, differentiation and migration trajectory, gene expression

pattern, and biological function as well as interrelationships between

different skin cells and microorganisms (Figure 3).
6 Conclusion

There has been substantial progress in our understanding of the

mechanisms underlying the immune responses associated with acne

development. The immune response in acne is intricately connected

to the modified profiles of C. acnes phylotypes, related gene pools,

and altered transcriptional activity. It is crucial to recognize that acne

is not solely determined by the quantities of secreted sebum but also

by the composition of diverse lipid species and the oxidant/

antioxidant and saturated/unsaturated ratios, which ultimately

determine whether these lipids exert beneficial or detrimental

effects. The recognition of microbial pathogens and lipid mediators

is attributed to TLRs, PAR-2, and CD36. The NF-kB, AP-1, and
NLRP3 inflammasome signaling pathways play crucial roles in the

expression and secretion of soluble factors associated with immune-

inflammation. Conversely, the PPAR and HDAC8/9 pathways are

responsible for the negative regulation of these immune-and

inflammation-related soluble factors. Inflammatory events precede

hyperproliferative alterations in keratinocytes within the

pilosebaceous duct. Single-cell and spatial multi-omics techniques

have provided key insights into the distribution, expression patterns,
Frontiers in Immunology 09
and functional characteristics of specific skin immune-associated

cells in the context of acne and are important tools for

further research.

Additional research is necessary to fully understand the

influence of particular microbial phylotypes, genetic factors, lipid

species compositions, and neuroendocrine activity on immune

responses linked to acne in vivo. Obtaining comprehensive data is

crucial to accurately portray immune activity in diverse lesion types

with varying degrees of acne severity. Furthermore, it is imperative

to determine whether these immune processes differ according to

individual genetics, living conditions, and lifestyle choices. A

thorough understanding of the immune processes involved in the

development of acne can facilitate the implementation and

advancement of targeted treatments and prevention approaches.
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