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RNF5 is an E3 ubiquitin ligase involved in various physiological processes such as

protein localization and cancer progression. Recent studies have shown that

RNF5 significantly inhibits antiviral innate immunity by promoting the

ubiquitination and degradation of STING and MAVS, which are essential

adaptor proteins, as well as their downstream signal IRF3. The abundance of

RNF5 is delicately regulated by both host factors and viruses. Host factors have

been found to restrict RNF5-mediated ubiquitination, maintaining the stability of

STING or MAVS through distinct mechanisms. Meanwhile, viruses have

developed ingenious strategies to hijack RNF5 to ubiquitinate and degrade

immune proteins. Moreover, recent studies have revealed the multifaceted

roles of RNF5 in the life cycle of various viruses, including SARS-CoV-2 and

KSHV. Based on these emerging discoveries, RNF5 represents a novel means of

modulating antiviral immunity. In this review, we summarize the latest research

on the roles of RNF5 in antiviral immunity and virus life cycle. This comprehensive

understanding could offer valuable insights into exploring potential therapeutic

applications focused on targeting RNF5 during viral infections.
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1 Introduction

Innate immunity serves as the first line of defense against viral infections, relying on

various cellular mechanisms to detect and eliminate invading pathogens. The recognition

of viral nucleic acids, particularly DNA, triggers a cascade of signaling events leading to the

production of type I interferon (IFN) and other proinflammatory cytokines. This response

is crucial for initiating antiviral defenses and shaping subsequent adaptive immune

responses. However, precise regulation of these signaling pathways is essential to prevent

excessive inflammation or autoimmunity.
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Cytosolic DNA sensing is a critical aspect of antiviral immune

responses, and the cyclic GMP-AMP synthase (cGAS)-stimulator of

interferon genes (STING) pathway has been extensively studied in

this context (1, 2). STING, also known as MITA, MPYS and ERIS (3–

5), consists of the transmembrane (TM) at the N-terminal, which

anchors STING on the endoplasmic reticulum (ER), mitochondria

membrane, and mitochondrial-associated membrane (6), and the C-

terminal spherical domain (7). Upon binding to cytosolic DNA in a

sequence-independent manner, cGAS synthesizes cyclic GMP-AMP

(cGAMP) (2, 8), whose cyclic dinucleotides (CDNs) activate the

adaptor STING on the ER. STING then traffics from the ER to the

Golgi complex and eventually to perinuclear compartments, during

which process RNF5 recruits downstream signaling molecules, such

as TANK-binding kinase 1 (TBK1), leading to the activation of

transcription factors including nuclear factor-kB (NF-kB) and

interferon regulatory factor 3 (IRF3), and subsequent induction of

type I IFN and proinflammatory cytokines. Therefore, the cGAS-

STING pathway has shown a significant defense role against a variety

of DNA viruses (9), retroviruses (10, 11), and bacteria (12, 13).

Besides DNA from these sources, the cGAS-STING is also activated

by extracellular, mitochondrial, and nuclear DNA, including

increased cytosolic DNA levels in cancers. With increasing studies

providing mechanistic insights into the cGAS-STING pathway, it has

been found that inappropriate activation of STING has been involved

in the development of several diseases, including pulmonary fibrosis

(14), senescence (15), neurodegeneration (16), cancer (16),

amyotrophic lateral sclerosis (17). Moreover, research also explores

the crosstalk between cGAS-STING and other innate immune

pathways, which develops a balanced immune defense in the host.

In addition to STING, two crucial cytoplasmic pathogen

recognition receptors, retinoic acid-inducible gene I (RIG-I) (18,

19) and melanoma differentiation-associated protein 5 (MDA5)

(20) also play a role in recognizing viral RNAs. These receptors bind

with viral RNAs and induce conformational changes and

recruitment to the adapter protein mitochondrial antiviral

signaling (MAVS, also known as Cardif, IPS-1, or VISA) (21–24).

MAVS is a 540-amino-acid protein that contains a caspase

activation and recruitment domain (CARD) that interacts with

the N termini of RIG-I and MDA5, a proline-rich region (PRR),

three TRAF-interacting motifs (TIMs), and a C-terminal

transmembrane (TM) domain (21). MAVS triggers the formation

of TRAF proteins (25), activates IRF3 and NF-kB, transmits the

activation signal downstream, and induces the production of type I

IFN and other antiviral molecules (21, 22).

Interestingly, studies have uncovered an intriguing interplay

between RING finger protein 5 (RNF5, as known as RMA1) (26, 27)

and both the STING and MAVS pathways (28, 29). As an E3

ubiquitin protein ligase in the ubiquitin modification system, RNF5

includes a classic RING domain which confers ligase activity and is

anchored to the ER membrane through a single TM domain located

within the C- terminal region. RNF5 has emerged as a key regulator

in the modulation of these antiviral immune signaling pathways.

Specifically, RNF5 has been shown to regulate the stability and

function of both STING and MAVS (28, 29). RNF5 acts as a

negative regulator of STING by promoting its ubiquitination and

subsequen t deg rada t i on (28 ) . Through K48- l inked
Frontiers in Immunology 02
polyubiquitination, RNF5 targets STING for proteasomal

degradation, thereby limiting the duration and magnitude of

STING-dependent immune responses. Similarly, RNF5 has also

been implicated in the regulation of MAVS stability and function. It

has been shown to promote the degradation of MAVS through

ubiquitination, thereby dampening the downstream signaling

events triggered by MAVS during viral infections (29). The

dysregulation of RNF5-mediated regulation of STING and MAVS

can have significant implications for host antiviral immunity.

Aberrant activation or dysregulated expression of RNF5 may lead

to compromised immune responses, allowing for increased viral

replication and pathogenesis. Conversely, the regulation of RNF5

and its interaction with STING and MAVS presents potential

therapeutic avenues for modulating immune responses and

combating viral infections.

Given the fundamental role of STING and MAVS in triggering

type I interferon signaling following infection, numerous viruses

have developed ingenious strategies to counteract antiviral

immunity through the modulation of RNF5. Pseudorabies virus

(PRV), also known as Aujeszky’s disease virus or suid herpesvirus 1,

an alpha-herpesvirus subfamily member, has evolved multiple

evasion tactics to thwart host innate immune responses. Notably,

the PRV envelope protein UL13, a novel viral immunoevasion

protein, can collaborate with RNF5 to induce ubiquitination and

degradation of STING, thereby inhibiting the antiviral immune

response (30). Moreover, during infection with herpes simplex virus

type 1 (HSV-1), RNF5 expression is upregulated in corneal tissues

and corneal epithelial cells (31). This increase leads to a significant

reduction in STING levels through ubiquitination and degradation.

By promoting RNF5, the PB1 protein from the H7N9 virus

facilitates K27-linked ubiquitination and recruits the selective

autophagic neighbor of BRCA1 (NBR1) to aid in the degradation

of ubiquitinated MAVS (32).

In this review, we aim to comprehensively explore the current

understanding of the interplay between RNF5 and antiviral immunity,

with a particular focus on its interaction with the cGAS-STING and

MAVS pathways. We will discuss the regulatory mechanisms

underlying RNF5-mediated ubiquitination and degradation of both

STING and MAVS and highlight the implications of RNF5

dysregulation in viral pathogenesis. Additionally, we will delve into

the strategies employed by viruses to exploit RNF5 for immune

evasion. Finally, we will discuss potential therapeutic approaches

targeting RNF5 to modulate immune responses and combat viral

infections. Overall, the dynamic interplay between RNF5, STING, and

MAVS holds great promise in advancing our knowledge of host-virus

interactions and may provide opportunities for the development of

novel antiviral strategies.
2 Immune antagonism of RNF5

The protein levels of STING, MAVS, IRF3 are delicately regulated

through the ubiquitination mechanism to elicit antiviral immunity

and avoid excessive harmful autoimmunity, with RNF5 acting as a

negative regulator. Recent studies have shown that RNF5 promotes

the degradation of STING, suggesting it as a potential target for
frontiersin.org
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treating pathological conditions such as cardiac hypertrophy (28).

Additionally, RNF26mediates a different type of polyubiquitination of

STING, which is required for efficient antiviral response (33).

However, many DNA viruses have evolved mechanisms to

manipulate RNF5 to counteract the function of STING. Several host

factors have been identified that regulate MAVS and immune

responses by targeting RNF5. RNA viruses have also been shown to

exploit RNF5 to degrade MAVS. IRF3, a transcription factor involved

in antiviral responses, is another substrate of RNF5 (34). RNF5-

mediated degradation of IRF3 serves to suppress innate immunity and

promote the replication of some RNA viruses.
2.1 STING

STING plays a critical role in the innate immune response

against DNA viruses. Mice lacking STING have been shown to have
Frontiers in Immunology 03
impaired responses and decreased type I IFN production against

various DNA viruses, such as HSV-1 and vaccinia virus (9).

However, aberrant activation of STING can also lead to

autoinflammatory and autoimmune diseases. Research has shown

that the protein level of STING is regulated through the

ubiquitination mechanism, with RNF5 acting as a negative

regulator, which requires their respective TM domains (28). The

intricate relationship between DNA viruses, host factors, and RNF5

in modulating STING-mediated innate immunity during viral

infections is illustrated in Figure 1. Overexpression of RNF5

results in K48-linked ubiquitination of STING at K150,

subsequently inducing a significant downregulation of STING.

However, this RNF5-mediated degradation could be effectively

reversed by the proteasome inhibitor MG132. Therefore, RNF5

targets STING for K48-linked ubiquitination and degradation

through the proteasome pathway, exerting a negative regulatory

effect on the antiviral response (28). Additionally, RNF5 has been
FIGURE 1

Complex interaction among DNA viruses, host factors, and RNF5 in the regulation of STING-mediated innate immunity during infections. HSV-1 and
the UL13 protein of PRV facilitate the RNF5-mediated ubiquitination of STING, resulting in the inhibition of type I interferon production as a means
to evade the innate antiviral response. Conversely, RNF26 and REC8 play a delicate role in suppressing the K48-linked ubiquitination of STING
catalyzed by RNF5. This stabilization of STING protein enhances innate immunity, ultimately leading to the inhibition of DNA viral infections.
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found to suppress the development of pathological cardiac

hypertrophy by potentiating the degradation of STING in cardiac

myocytes, suggesting a potential treatment strategy for this

condition (35).

Recent research has expanded our understanding of RNF5

regulation by demonstrating that in black carp, RNF5 promotes

the degradation of black carp STING through the K48-linked

ubiquitin-proteasome pathway. This provides new insights into

the regulatory mechanisms involved in the appropriate immune

response of black carp (36). Another E3 ubiquitin ligase, RNF26,

mediates K11-linked polyubiquitination of STING as a reservoir of

STING. Interestingly, RNF26-mediated polyubiquitination of

STING also targets K150, which is targeted by RNF5 for K48-

linked ubiquitination. Knockdown of RNF5 enhances RNF26-

induced K11-linked polyubiquitination of STING, indicating a

regulatory relationship between these two ubiquitin ligases. The

balance between RNF5-mediated K48-linked ubiquitination and

RNF26-mediated K11-linked polyubiquitination is crucial for

efficient type I IFN and proinflammatory cytokine induction

following infection (33).

Given the important role of STING in activating the type I IFN

signaling pathway after infection, it is not surprising that many

DNA viruses have evolved mechanisms to counteract STING’s

function and facilitate their activities within host cells by

manipulating RNF5. PRV employs various strategies to evade the

host’s innate antiviral response. One of its tegument proteins, UL13,

acts as a viral immune escape protein that partners with RNF5 to

induce ubiquitination and degradation of STING, suppressing

antiviral immunity (30). UL13 interacts with the cyclic

dinucleotide (CDN) domain of STING and facilitates the binding

of RNF5 to STING. Interestingly, RNF5 enhances UL13-related

K27-/K29-linked ubiquitination of STING instead of K48-linked

ubiquitination. The significance of K27-/K29-type linkage in this

context is still largely unknown.

Furthermore, RNF5 expression was found to increase in corneal

tissues and corneal epithelial cells during infection with HSV-1,

which, like PRV, is a neurotropic herpesvirus. HSV-1 infection

often results in corneal opacity and haze, with numerous

neutrophils infiltrated the cornea, eventually leading to blindness

due to inflammation and angiogenesis (37). RNF5 was shown to be

constitutively expressed in corneal tissues and its expression

increased upon HSV-1 infection, leading to a decrease in STING

content through ubiquitination and degradation (31). Silencing

RNF5 inhibited viral replication and reduced the number of

inflammatory cells and the secretion of proinflammatory

cytokines, thus alleviating corneal tissue injury. This suggests that

targeting RNF5 could be a potential therapeutic approach for the

treatment of HSV-1 infection.
2.2 MAVS

The content and activity of MAVS are tightly regulated by RNF5

and other factors (38). The intricate interplay between RNA viruses,

host factors, and RNF5 in modulating MAVS-mediated signaling

during viral infections is summarized in Figure 2. Zhong et al.
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previously found the interaction between RNF5 and MAVS in a

mammalian overexpression system (28) and further investigated the

association later (29). The intermediate domain, along with either the

RING or the TM of RNF5, and the C-terminal TM domain of MAVS

are essential for the interaction. Coimmunoprecipitation experiments

revealed a progressively strengthened association between the proteins

at 6-12 hours post-infection, suggesting an early stage regulation that

differs from that of RNF125 and PSMA7 (39, 40). In human HeLa

cells, RNF5 catalyzes K48-linked ubiquitination of MAVS at K362 and

K461, analogous to K363 and K462 in monkey Vero cells (41). Similar

to STING, RNF5 targets MAVS for ubiquitin-mediated and

proteasome-dependent degradation in the mitochondria, and it can

also interact with MAVS in fish, indicating a novel negative regulatory

factor of the RIG-I signaling pathway (42).

Several host factors have been reported to regulate MAVS and

the immune response by targeting RNF5. ER-associated inactive

rhomboid protein 2 (iRhom2) antagonizes the protein level of

RNF5 in uninfected and early infected HEK 293 cells to maintain

MAVS stability (43). iRhom2 mediates the self-association and

auto-polyubiquitination of RNF5, impairing the ERAD of MAVS

and promoting innate antiviral immunity (43). The function of

iRhom2 might also be responsible for maintaining the stability of

STING (44). In addition, lung-derived miR-483-3p, presenting at

high levels in bronchoalveolar lavage fluid (BALF) exosomes,

directly targets the 3’UTR region of RNF5, downregulating both

its gene and protein levels, which enhances the RIG-I signaling

pathway involving MAVS and further potentiates innate immunity

to influenza virus infection (45). Rec8 meiotic recombination

protein (REC8), a member of the structural maintenance of

chromosome (SMC) protein partners, inhibits the degradation of

both MAVS and STING by RNF5 after being SUMOylated at K30

and K530 and translocating from nucleus to the cytoplasm,

stabilizing these two proteins during viral infection (Figure 2).

The underlying mechanism still needs further investigation (46).

Like DNA viruses, various RNA viruses hijack RNF5 to ubiquitinate

and degrade MAVS, aiding in their replication or evasion. For example,

Newcastle disease virus (NDV), a member of the Paramyxoviridae

family, significantly degrades MAVS at the post-translational level. The

NDV V protein interacts with MAVS and targets its K48-linked

ubiquitination and degradation through RNF5 (47). Avian

metapneumovirus (aMPV), another member of the Paramyxoviridae

family, also mediates MAVS K48-linked ubiquitination and degradation

through RNF5. However, the mechanisms employed by aMPV are

different from those of NDV (41). Influenza viruses (IAVs), single-

stranded negative-sense RNA viruses, also exploit RNF5 to degrade

MAVS. The PB1 protein of H7N9 serves as a negative regulator that

destabilizes MAVS by promoting RNF5. PB1 enhances K27-linked

ubiquitination and recruits the selective autophagy receptor NBR1 to

facilitate the degradation of ubiquitinated MAVS via the selective

autophagic pathway (32).
2.3 IRF3

As previously explained, both STING and MAVS activate TBK1,

which in turn activates the transcription factor IRF3. IRF3 plays a
frontiersin.org
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crucial role as the downstream signal of MAVS. Upon viral infection,

IRF3 undergoes phosphorylation-dependent dimerization, leading to

the production of IFNs and other cytokines (48). Additionally, IRF3

acts as a direct effector in the transcriptional response, stimulating the

synthesis of antiviral proteins (49). IRF3 has been identified as a

substrate of RNF5 (34). This process involves the participation of

Jumonji domain-containing protein 6 (JMJD6), which forms a

tripartite complex with RNF5 and IRF3. JMJD6 plays a crucial role

in recruiting RNF5 and IRF3, facilitating their translocation from the

cytoplasm to the nucleus upon viral infection (34). Once activated,

IRF3 is subsequently degraded by RNF5, which is recruited by JMJD6

(Figure 2). This mechanism serves to maintain the immune

homeostasis and identify the role of JMJD6 as a negative regulator

in the innate immunity during RNA viral infection, such as foot-and-

mouth disease virus (FMDV) (34), which develops the previous

notion that JMJD6 may be an unidentified third receptor of

FMDV (50).
Frontiers in Immunology 05
3 RNF5 in virus life cycle

The role for RNF5 in virus life cycle is gradually unfolding.

Recent findings have revealed that RNF5 plays a role in limiting the

replication and virulence of SARS-CoV-2 through the process of

ubiquitination, particularly targeting the envelope (E) protein.

Interestingly, in the study of Kaposi sarcoma-associated

herpesvirus (KSHV) and its association with primary effusion

lymphoma (PEL), a fascinating connection between RNF5 and

Ephrin receptors has been discovered, opening up potential new

avenues for the treatment of KSHV and management of PEL.
3.1 SARS-CoV-2

SARS-CoV-2, which belongs to the Betacoronavirus genus of

the Coronaviridae family, has had an unprecedented and
FIGURE 2

Diagram illustrating the modulation of MAVS-mediated signaling by RNA viruses and host factors through RNF5 during infections. The V protein of
NDV, PB1 protein of IAV, and aMPV/C exploit RNF5 to orchestrate the ubiquitination of MAVS, thus inhibiting the type I interferon response.
However, iRhom2 and miR-483-3p act as antagonists by decreasing the protein levels of RNF5. Additionally, REC8 downregulates the RNF5-induced
ubiquitination of MAVS. Furthermore, JMJD6 functions as a negative immune regulator by degrading activated IRF3 in an RNF5-dependent manner.
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devastating impact on global society and the economy. The

transmission of SARS-CoV-2 heavily relies on its viral proteins,

including 4 structural proteins (spike [S], E, membrane [M], and

nucleocapsid [N]), 16 nonstructural proteins, and 9 accessory

proteins (open reading frame 3a [ORF3a], ORF3b, ORF6, ORF7a,

ORF7b, ORF8, ORF9b, ORF9c, and ORF10) (51). While extensive

research has been conducted on the binding of the S protein to the

human angiotensin-converting enzyme 2 (ACE2) (52), the roles

and regulatory mechanisms of the E and M proteins in the viral

particle assembly process remain unclear.

Ubiquitination and deubiquitination, two reversible

modifications, have been implicated in the pathogenesis of SARS-

CoV-2 (53, 54). It has been found that RNF5 is involved in the

replication, assembly, budding, and release of SARS-CoV-2

(Figure 3). By mediating the K63-linked ubiquitination of M at

the K15 site, RNF5 promotes the interaction of M’s NTD with E,

stabilizing the M-E complex on the membrane, which mediates

viral assembly and budding and ensures the uniform size of the viral

particle. Additionally, this ubiquitin modification of M and the M-E

interaction is necessary for the trafficking of M from the Golgi

apparatus to autophagosomes, which facilitates virion release.

Therefore, RNF5 is considered an emerging target for antiviral

therapy as it facilitates virion release by mediating the ubiquitin

modification of SARS-CoV-2 M (55).

However, some researchers have drawn adverse conclusions,

suggesting a more complex role for RNF5 than previously thought.

Recent evidence highlights that RNF5 mediates K48-linked

ubiquitination of E at K63, leading to subsequent proteasomal

degradation. This antagonistic action against SARS-CoV-2

replication and virulence limits the propagation of the virus. The
Frontiers in Immunology 06
RNF5 activator Analog-1 has been shown to significantly inhibit

SARS-CoV-2 replication in infection models, making it a potential

candidate for treating infections caused by related viruses. The

levels of both RNF5 mRNA and protein are higher in adolescents

than in older populations, and interestingly, the mRNA levels in

mild SARS-CoV-2 patients exceed those in patients with severe

symptoms, suggesting a potential role for RNF5 in reflecting the

prognosis of SARS-CoV-2 patients (56). Due to the critical role of

STING in chronic inflammation and functional decline during

aging, the decrease of RNF5 in older populations, which leads to

the declined degradation of STING, may also be involved in

neurodegenerative processes in the elderly (16). Another

important substrate of RNF5 in SARS-CoV-2 is ORF3a, which

has been reported to inhibit autophagy activity and contribute to

the infectivity of SARS-CoV-2 (57). RNF5 is responsible for the

ubiquitination and degradation of ORF3a, thereby suppressing

SARS-CoV-2 infection and replication (56).

The contradictory reports on the role of RNF5 during SARS-

CoV-2 infection add complexity to the underlying mechanisms.

These contradictions may be partly attributed to the diversity of cell

types and the different rates studied, such as infection rate and

virion release rate. It is possible that RNF5 may have diverse

functions in different types of cells and viral stages. Additionally,

the use of N or C-terminus-tagged RNF5 in experiments may also

influence the results, as RNF5 is a tail-anchor TM protein with a C-

terminal TM domain. Furthermore, some conclusions greatly rely

on the utilization of specialized methods like virus-like particle

(VLP) systems and super-resolution proximity labeling (SR-PL)

rather than employing wild-type viruses, which might not

completely reflect accurate status of viral infection and could
FIGURE 3

The regulatory role of RNF5 in the SARS-CoV-2 life cycle. During SARS-Cov-2 infection, RNF5 is responsible for K63-linked ubiquitination of the M
protein, which enhances its interaction with the E protein and facilitates subsequent viral assembly, budding, and release. Furthermore, RNF5 also
targets the ORF3a and E proteins for ubiquitination, thus suppressing SARS-CoV-2 replication and infection.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1324516
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Ge and Zhang 10.3389/fimmu.2023.1324516
potentially lead to different conclusions. In terms of the opposite

influences of RNF5-mediated ubiquitination of M and E on SARS-

CoV-2 infection, additional experiments have indicated that the

activity of RNF5 against E is physiologically significant, while M has

a higher affinity for RNF5 and appears to compete for RNF5,

suppressing the degradation of E and promoting viral replication. It

is important to note that the current understanding of the

relationship between RNF5 and SARS-CoV-2 is limited, and

further research is needed to elucidate the specific mechanisms

and functional significance of this interaction. Considering the

recognition of E from various SARS-CoV-2 strains, investigating

the interplay between RNF5 and SARS-CoV-2 can provide valuable

insights into the viral replication strategies and potential targets for

board-spectrum therapeutic interventions.
3.2 KSHV

In addition to several crucial substrates involved in innate

immunity, certain Ephrin receptors have been reported as novel

substrates of RNF5. Ephrin receptors, consisting of 9 type-A

members and 5 type-B members, have played diverse but

contradictory roles in normal physiology and disease

pathogenesis, particularly in tumorigenesis (58). Notably, specific

Ephrin receptors have been identified to play significant roles in the

entry and pathogenesis of KSHV (59, 60). KSHV is a critical factor

in the development of PEL, a rare B-cell malignancy that mostly

occurs in immunocompromised patients, such as individuals with

AIDS (61).

Interestingly, the phosphatidylinositide 3-kinase (PI3K)-Akt

and extracellular regulated kinase (ERK)-MAPK pathways are

constitutively activated by PEL, and the activation of ERK and
Frontiers in Immunology 07
Akt can enhance viral gene expression and viral loads in PEL cells,

which is essential for KSHV replication (Figure 4) (60–62). RNF5

interacts with EphA3 and EphA4, promoting their ubiquitination

and degradation, leading to the downregulation of EphA3 and

EphA4 levels and subsequently upregulating ERK and Akt

activation in PEL cells. Importantly, the introduction of inh-2, a

specific RNF5 inhibitor, significantly suppresses KSHV lytic

replication and the activation of ERK and Akt pathways by

increasing EphA3 and EphA4 levels. Consequently, this

downregulates the expression of multiple cellular pathways and

KSHV viral genes in PEL cells (63). Collectively, these findings

highlight the crucial role of RNF5 in both KSHV lytic replication

and PEL tumorigenesis, suggesting the exciting possibility of

utilizing RNF5 inhibition as a strategy for treating KSHV

infection and PEL.
4 Conclusion and prospect

As an ER-associated E3 ubiquitin ligase, RNF5 demonstrates

widespread expression in various cells and tissues, with the highest

expression in breast cancer and melanoma (64). It induces selective

ubiquitination of several proteins to regulate multiple physiological

processes, indicating a pivotal regulatory role in ERAD (65), protein

localization (66), autophagy (67), cancer procession (68, 69), and

inflammation (70). Notably, RNF5 acts as an emerging negative

regulator of antiviral innate immunity, which is the host’s first line

of defense against virus infections. It functions in the K48-linked

ubiquitination and degradation of STING and MAVS, essential

adaptor proteins that resist DNA and RNA viral infections,

respectively, as well as their downstream signal IRF3. Moreover,

studies have also highlighted several host factors that collaborate
FIGURE 4

The regulatory role of RNF5 in the KSHV life cycle. During KSHV infection, RNF5 ubiquitinates and downregulates the levels of EphA3 and EphA4,
further bolstering the activation of ERK and Akt, which could enhance KSHV lytic replication.
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with RNF5 to regulate innate immunity. For instance, RNF26,

REC8, iRhom2, and miR-483-3p inhibit the degradation of

STING or MAVS triggered by RNF5 via various mechanisms (33,

43–46). These factors maintain the stabilities of signaling proteins

and promote the antiviral innate immune response. Conversely,

JMJD6 contributes to IRF3 degradation in an RNF5-dependent

way, achieving an opposite effect (34). In addition, viruses have

developed ingenious strategies to hijack RNF5 for countering and

escaping from antiviral defense. Certain DNA viruses, including

neurotropic herpesviruses, PRV, and HSV-1, inhibit the antiviral

effects of IFN I response by facilitating RNF5-mediated

ubiquitination and degradation of STING/IRF3 signaling proteins.

Similarly, RNA viruses such as IAV, NDV, and aMPV/C enhance

MAVS degradation by usurping RNF5. In some cases, viral proteins

play a pivotal role, including the UL13 protein of PRV, the V

protein of NDV, and the PB1 protein of IAV, while mechanisms of

other viruses still need further investigation. Surprisingly, UL13 and

PB1 induce degradation of STING or MAVS through RNF5-

mediated K27-linked ubiquitination, and PB1 promotes MAVS

degradation via a selective autophagic pathway distinct from the

canonical K48-linked polyubiquitination and subsequent

proteasome pathway. These findings suggest that RNF5 can

modulate different types of protein ubiquitination and

degradation pathways in response to distinct viral infections. In

general, RNF5 exhibits antagonistic roles in the cellular innate

immune response to several viruses, with its abundance

elaborately regulated by various host factors while simultaneously

manipulated by RNA and DNA viruses.

There is growing evidence indicating that RNF5 is a promising

drug target (63, 71), and the development of modulators and

inhibitors of RNF5 holds significant importance. Notably, previous

studies have shown that RNF5 suppression has no observable

negative effects in vitro or in vivo, and mice lacking RNF5

expression show no altered phenotypes (67, 72). These findings

highlight the potential for exploitation and druggability of RNF5

inhibitors. The first ever validated specific and selective inhibitor of

RNF5, inh-2, belonging to the 1,2,4-thiadiazol-5-ylidene scaffold, was

identified through ligand docking and virtual screening of the RING

finger of the RNF5 structure. It also modulates ATG4B (67) and

paxillin (66), which are both downstream targets of RNF5. However,

the precise mechanism by which inh-2 exerts its activity through

direct binding with RNF5 remains largely unknown (73). Further

research has investigated the structure-activity relationships (SAR) of

this class of compounds and identified compound 16 as a more

potent RNF5 ligase activity inhibitor, directly binding to the RNF5

RING domain. These findings suggest that the 1,2,4-thiadiazolylidene

scaffold may hold promise for the development of novel RNF5

inhibitors and drug-like derivatives (74). The original discovery of

FX12, a small molecule that acts as both an inhibitor and degrader of

the RNF5 ubiquitin ligase, provides a novel strategy for RNF5

inhibition. Rather than solely suppressing RNF5 E3 activity, FX12

directly binds to RNF5 and hijacks ERAD to initiate degradation of

RNF5, possibly by altering RNF5’s normal structure to be recognized

as a misfolded ER protein (75). However, while these studies have

focused on the potential use of RNF5 inhibitors in the treatment of
Frontiers in Immunology 08
cystic fibrosis, limited research to date has explored their application

in antiviral therapy (63). Therefore, further research into the effects of

RNF5 inhibitors on antiviral immunity holds important implications.

Interestingly, RNF5 has recently been found to play a novel role

in regulating SARS-CoV-2 viral replication and infection. However,

there are contradictory reports on the subject. Initially, RNF5 was

reported to mediate K63-linked ubiquitination of the M protein of

SARS-CoV-2, thereby faci l i tating virion release, with

autophagosomes possibly involved (55). In contrast, subsequent

studies identified ORF3a and E proteins of SARS-Cov-2 as RNF5

novel substrates, revealing that RNF5 exerts a negative regulatory

effect on viral replication and propagation, exerting anti-viral

activities within host cells (57, 76). Furthermore, conflicting

findings have been reported regarding the impact of SARS-CoV

infection on RNF5 expression in different cell cultures. Given the

contradictions in these studies, it is important to further investigate

and fully comprehend the complex mechanisms of RNF5 in SARS-

CoV-2, which could be facilitated through the application of RNF5

activators and inhibitors.

Exosomes are extracellular vesicles derived from cells that regulate

cell-to-cell communication by transferring functional proteins and

RNAs between cells (77). They contain functional proteins, mRNAs,

and microRNAs (miRNAs). Interestingly, miR-483-3p is highly

present in BALF exosomes in influenza virus-infected mice and

directly targets the 3’ UTR of the RNF5 gene (78). The treatment of

cells with miR-483-3p leads to the downregulation of RNF5 at both

the gene and protein levels, enhancing the innate immune response

against influenza. Considering RNF5’s role in mediating the

degradation of both STING and MAVS, miR-483-3p may have

broader implications beyond influenza, with great potential in

limiting multiple respiratory viruses, including not only RNA

viruses like parainfluenza virus and respiratory syncytial virus

(RSV), but also DNA viruses like adenovirus. However, miR-483-3p

can transfer between lung epithelial cells and vascular endothelial cells

mediated through exosomes, promoting the expression of

proinflammatory cytokine genes responsible for inflammation

during influenza virus infection. Highly pathogenic avian influenza

(HPAI) viruses have previously been reported to elicit dysregulation of

proinflammatory cytokine production, resulting in multiple organ

damage (79, 80). Therefore, further study is necessary to fully

understand the mechanism behind exosomal miR-483-3p’s potential

as an activator of the innate antiviral response.

From the above discussion, most existing studies have

elucidated the multifaceted roles of RNF5 in innate antiviral

immunity and virus life cycle. In addition, several host factors

deliberately regulate RNF5 to maintain appropriate immunity,

while viruses manipulate it for immune escape. These studies

shed light on the broad-spectrum antiviral effects of targeting

RNF5 on both DNA and RNA viruses, providing a theoretical

basis for novel therapeutic strategies and the development of high-

efficiency vaccines. However, due to the complex nature of its

mechanism and interaction with proteins, more insights into

RNF5 and the potential applications of RNF5 inhibitors in

antiviral response will be instrumental in filling the gaps in our

understanding of this field.
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