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Lipid metabolism-related gene
expression in the immune
microenvironment predicts
prognostic outcomes in
renal cell carcinoma

Qian Zhang1†, Bingbiao Lin2,3†, Huikun Chen2†, Yinyan Ye1,
Yijie Huang1, Zhen Chen1 and Jun Li2*

1Department of Rehabilitation Medicine, Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen,
Guangdong, China, 2Department of Urology, Seventh Affiliated Hospital, Sun Yat-sen University,
Shenzhen, Guangdong, China, 3Department of Radiotherapy, Cancer Hospital of Shantou University
Medical College, Shantou, Guangdong, China
Background: Rates of renal cell carcinoma (RCC) occurrence and mortality are

steadily rising. In an effort to address this issue, the present bioinformatics study

was developed with the goal of identifying major lipid metabolism biomarkers

and immune infiltration characteristics associated with RCC cases.

Methods: The Cancer Genome Atlas (TCGA) and E-MTAB-1980 were used to

obtain matched clinical and RNA expression data from patients diagnosed with

RCC. A LASSO algorithm and multivariate Cox regression analyses were

employed to design a prognostic risk model for these patients. The tumor

immune microenvironment (TIME) in RCC patients was further interrogated

through ESTIMATE, TIMER, and single-cell gene set enrichment analysis

(ssGSEA) analyses. Gene Ontology (GO), KEGG, and GSEA enrichment

approaches were further employed to gauge the mechanistic basis for the

observed results. Differences in gene expression and associated functional

changes were then validated through appropriate molecular biology assays.

Results: Through the approach detailed above, a risk model based on 8 genes

associated with RCC patient overall survival and lipid metabolism was ultimately

identified that was capable of aiding in the diagnosis of this cancer type. Poorer

prognostic outcomes in the analyzed RCC patients were associated with higher

immune scores, lower levels of tumor purity, greater immune cell infiltration, and

higher relative immune status. In GO and KEGG enrichment analyses, genes that

were differentially expressed between risk groups were primarily related to the

immune response and substance metabolism. GSEA analyses additionally

revealed that the most enriched factors in the high-risk group included the

stable internal environment, peroxisomes, and fatty acid metabolism.

Subsequent experimental validation in vitro and in vivo revealed that the most

significantly differentially expressed gene identified herein, ALOX5, was capable

of suppressing RCC tumor cell proliferation, invasivity, and migration.

Conclusion: In summary, a risk model was successfully established that was

significantly related to RCC patient prognosis and TIME composition, offering a
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robust foundation for the development of novel targeted therapeutic agents and

individualized treatment regimens. In both immunoassays and functional

analyses, dysregulated lipid metabolism was associated with aberrant

immunological activity and the reprogramming of fatty acid metabolic activity,

contributing to poorer outcomes.
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Introduction

Renal cell carcinoma (RCC) incidence and mortality rates are

continually rising, comprising ~90% of all malignant renal tumors

and 3% of all malignancies (1, 2). An estimated 60% of RCC cases

are asymptomatic such that they are only incidentally discovered

during physical examinations (3), with patients only rarely

exhibiting a triad of characteristic symptoms including an

abdominal mass, gross hematuria, and flank pain (4). While

ablative or surgical approaches can successfully treat ccRCC in

many patients, up to one in three already harbor distant metastases

when first diagnosed, and these patients face a poor prognosis (5–8).

As such, researchers have increasingly sought to enable early-stage

detection of RCC and to design new approaches to assessing the

prognosis of affected patients.

Research has recently demonstrated that genetic testing

technologies can enable the more reliable early-stage detection of

RCC. As a result, there have been many analyses focused on the

identification of novel prognostic and/or diagnostic biomarkers

associated with this cancer type, providing new opportunities to

improve the identification of this form of cancer and prolong

patient survival (9, 10). Kim et al. explored the clinical relevance

of nine biomarkers associated with disease progression and other

pathophysiological changes in RCC and ultimately determined that

both pS6 and Ki-67 were predictive of primary RCC patient

prognosis (11). An et al. determined that a nomogram

constructed based on TNM staging and higher levels of the

independent prognostic factor CXCR4 was capable of predicting

clinical outcomes in ccRCC patients (12). While these results are

extremely promising, they are not exhaustive and there remain

many opportunities to define novel diagnostic and prognostic genes
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associated with this cancer type. The systematic characterization of

these biomarkers may yield new mechanistic insight into the

pathogenesis of RCC while also supporting the design of new

diagnostic and treatment strategies that can be implemented in a

clinical setting.

As a canonical hallmark of cancer, metabolic reprogramming

can allow cancer cells to modulate their lipid metabolism such that

they can thrive even under conditions of nutrient deprivation by

ensuring that cell signaling, energy storage, and membrane

biosynthesis can persist (13). ccRCC cases are so named because

the high levels of lipids and glycogen that accumulate within these

tumor cells via lipid uptake, synthesis, and storage in lipid droplets

cause them to appear transparent when visualized with a

microscope. When kidney damage occurs, renal epithelial cells

undergo metabolic pathway alterations that boost lipid

accumulation (14). Innovative therapeutic methods for regulating

the lipid balance of cancer cells, whether by inhibiting biosynthesis

or uptake of fatty acids and cholesterol, have demonstrated

promising outcomes in both in vitro and in vivo studies (14).

Despite this important characteristic, research focused on

metabolic remodeling in ccRCC has not received as much focus

as in other cancer types to date.

The tumor immune microenvironment (TIME) is a niche

wherein tumor cells engage in complex interactions with the

stroma, the extracellular matrix (ECM), and a range of immune

cells including T cells, B cells, natural killer (NK) cells, and

macrophages. While many immune cells can initially target and

eliminate emergent tumor cells early in the oncogenic process, over

time tumors develop approaches to suppressing the cytotoxic effects

of these immune cells and/or evading immune-mediated detection.

The composition of the TIME includes a range of cytokines,

chemokines, and immune checkpoint molecules that shape tumor

growth, progression, and responses to particular treatments (15–

17). In the case of advanced RCC, there is a growing trend of

recommending and researching molecular-targeted drugs,

specifically tyrosine kinase inhibitors (TKIs), and immune

checkpoint inhibitors (ICIs). Owing to the presence of a dynamic,

adaptive, and heterogeneous TIME, along with the unique glucose

and lipid metabolism in RCC, this cancer can exhibit diverse forms

of resistance to TKIs and ICIs. Therefore, comprehensive research

on the TIME is essential for advancing the development of cancer

immunotherapies (18).
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Here, lipid metabolism- and overall survival (OS)-related

differentially expressed genes (DEGs) were analyzed in a

comprehensive manner in an effort to more fully understand the

association between lipid metabolism, TIME composition, and

survival outcomes in ccRCC patients. A DEG-based risk model

was then designed to examine the prognostic relevance of these lipid

metabolism- and OS-related DEGs in ccRCC. Together, these

findings have the potential to offer new insights into the

mechanisms governing ccRCC development and progression, thus

providing a foundation for efforts to more reliably diagnose and

treat this disease in a targeted manner on an individualized basis.
Materials and methods

Data collection

RNA-seq data and associated clinical information were

obtained from The Cancer Genome Atlas (TCGA) database

(https://portal.gdc.cancer.gov/) and E-MTAB-1980 (https://

www.ebi.ac.uk/), which were utilized as a training cohort and an

independent validation cohort in this study respectively. To be

eligible for inclusion, samples had to be diagnosed ccRCC cases with

available gene expression and clinical data, including information

related to patient age, sex, clinical stage, pathological grade, survival

status, and survival duration. Samples were excluded if clinical

information or gene expression data were incomplete. In total, 526

ccRCC samples from TCGA and 101 ccRCC samples from the

EMBL-EBI database meeting these inclusion criteria were

incorporated into the present analyses. Lipid metabolism-related

genes (N=742) were identified using the Molecular Signature

Database (MSigDB) (19).
Identification of lipid metabolism and
survival-related differentially
expressed genes

To explore differences in lipid metabolism-related gene

expression and their association with OS in ccRCC, the R ‘limma’

package was used to identify DEGs when comparing control and

ccRCC tumor tissue samples (20). DEGs were defined as targets that

exhibited an adjusted p value (q value) < 0.05 and a |log2FC| >1

(upregulated DEGs) or log2FC <-1 (downregulated DEGs) (21).

These genes were presented with Volcano plots and heat maps. The

association between genes and ccRCC patient prognosis was

evaluated through univariate Cox regression analyses performed

with the R ‘survival’ package (22). DEGs associated with both lipid

metabolism and OS were identified based on the overlapping DEGs

identified when comparing control and diseased samples for lipid

metabolism and OS-related gene sets, as visualized using

Venn diagrams.
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Risk model establishment, verification,
and prediction

The 526 ccRCC samples derived from the TCGA database were

separated randomly at a 2:1 ratio into training and validation cohorts.

To reduce the number of lipid metabolism and OS-related DEGs

included in these analyses, a least absolute shrinkage and selection

operator (LASSO) analysis was conducted with the R “glmnet”

package, enabling the selection of an optimal minimum lambda

value (23). Multivariate Cox regression analyses were employed to

select DEGs for the establishment of a risk model, and risk scores

were then calculated for individual patients in each cohort with the

following formula: Risk Score = expression of Gene1 × coef +

expression of Gene2 × coef + expression of Gene3 × coef … Risk

score values were then used to stratify patients into low- and high-risk

groups. Model predictive efficiency was assessed based on receiver

operating characteristic (ROC) curves and the Martingale residuals

method. In order to more reliably predict ccRCC patient outcomes, a

nomogram incorporating risk scores and clinical features was

additionally established (24).
Immune analyses

Four immune-related algorithms were employed to assess the

immune landscape disparities between the high- and low-risk groups.

Stromal, immune, and ESTIMATE scores, along with tumor purity

were calculated using the ESTIMATE algorithm based on the ratio of

immune and stromal cells. Additionally, the TIMER database and

CIBERSORT algorithm were also utilized to predict the composition

of infiltrating immune cells in each tumour sample. To better

understand the immunological characteristics of these samples, 22

infiltrating immune cell types and 29 immune-associated gene sets

covering a range of cell types and pathways from MSigDB were

analyzed (25). Levels of cell, functional, or pathway enrichment in

tumor samples were assessed through a single-sample gene set

enrichment analysis (ssGSEA) approach (26).
Functional enrichment analyses

Gene Ontology (GO) functional enrichment analyses enable the

detection of enriched biological terms associated with particular

gene sets (27). KEGG pathway enrichment analyses similarly allow

for the identification of enriched pathways associated with these

genes (28). For this study, GO and KEGG enrichment analyses were

performed with the R clusterProfiler package, with the resultant

data being visualized with Metascape (29). A false discovery rate-

corrected P < 0.05 serves as the cut-off for statistical significance.

GSEA approaches enable the computational evaluation of changes

in particular biological activities and pathways in a given dataset. Here,

the GSEA program was used to analyze ccRCC patient gene expression
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profiles using the “c2.cp.kegg.v2023.1.Hs.symbols.gmt” gene set from

MSigDB. P < 0.05 served as the cut-off for statistical significance.
Cell culture

Human ccRCC cell lines from the ATCC cell databases were

cultured in DMEM or RPMI-1640 (HyClone, UT, USA) containing

fetal bovine serum (FBS; Gemini, CA, USA) and penicillin/

streptomycin (Sigma-Aldrich, MO, USA) in a humidified 5% CO2

incubator at 37°C. Media was routinely replaced every 2-3 days, and

cells were subcultured when confluent by rinsing cells with FBS-free

media, detaching them with trypsin (HyClone, UT, USA),

resuspending them in complete media, and transferring them to a

new dish at a lower culture density.
qPCR validation

qPCR approaches are widely used to assess gene expression.

Relative gene expression in this study was assessed via qPCR using

the 2-DDCt method, with b-actin serving as a normalization

control (30).
Western blotting

Western blotting enables the semi-quantitative assessment of

protein levels in a given sample. To confirm the results of

bioinformatics analyses in the present study, Western blotting

was conducted. Initially, RIPA buffer was used to lyse ccRCC

cells, and protein lysates were separated via SDS-PAGE,

transferred to PVDF membranes (Bio-Rad, CA, USA), and these

blots were probed overnight with 1:1000 dilutions of primary

antibodies at 4°C. Primary antibodies were anti-ALOX5

(Abcam™, ab169755), anti-DPEP1(Abcam™, ab230977), anti-

HADH(Abcam™, ab110284), anti-PLIN2(Abcam™, ab108323),

anti-SCD5(A13127, ABclonal, Wuhan, China), anti-SLC44A4

(A10435, ABclonal, Wuhan, China), anti-TRIB3(Abcam™,

ab75846), and anti-UGT8(A16442, ABclonal, Wuhan, China).

Membranes were then probed using an HRP-conjugated

secondary antibody (ABclonal, A3610, Wuhan, China), followed

by protein band detection with a hypersensitive chemiluminescence

kit (Feienbio, ES-0006, Wuhan, China) (31).
Nile red staining

Lipid content was evaluated via Nile Red staining. Briefly, cells

were treated for 15 min with Nile Red (1 mM, HY-D0718, MCE) in

the dark at 37°C (32, 33). After rinsing with PBS, these cells were

counterstained with DAPI (1:2000 in PBS) for 10 min to facilitate

nuclear counterstaining (34). After rinsing with HBSS/Ca/Mg, cells

were analyzed via fluorescence microscopy (IX73, Olympus or
Frontiers in Immunology 04
Imager D2, Carl Zeiss). Plasma triglyceride (TG) and total

cholesterol (TC) levels were analyzed with Labassay™ kits (Wako,

Saitama, Japan) in accordance with provided instructions (35).
CCK-8 assay

A Cell Counting Kit-8 (CCK-8) assay was performed based on

provided instructions to assess cellular viability. Briefly, cells were

added to 96-well plates (2,000/well). At 0, 1, 2, 3, and 4 days post-

seeding, 10 mL of CCK-8 solution (KeyGEN, Nanjing) was added

per well, and absorbance at 450 nm was assessed with a microplate

reader (Spark 10M, Shenyang, China). Samples were analyzed in

triplicate (36).
Cell proliferation assay

Cells in appropriate experimental groups were cultured in a

monolayer, detached using trypsin, and added to 6-well plates (400-

1000 cells/well) followed by incubation for 14 days or until colonies

were visible. Media was exchanged every 2-3 days. After colonies had

formed, cells were rinsed with PBS and fixed for 15 min with

formaldehyde, followed by Giemsa staining for 10-30 min. Running

water was then used to rinse plates, followed by sample air-dying.

Colonies containing > 50 cells were then counted by eye or under low-

level magnification, with colony-forming efficiency being computed as

follows: number of colonies/number of seeded cells * 100% (37).
EdU assay

Cell-Light EdU Apollo®567 In Vitro Imaging Kits (RiboBio)

were employed to evaluate cellular EdU uptake. Briefly, 2,000 cells

were added per well of a 96-well plate and treated with 100 mL of

media supplemented with 20 mM EdU. Following incubation for 2

h, cells were fixed for 30 min using 4% paraformaldehyde, rinsed

with PBS, and permeabilized using 0.5% Triton X-100 followed by

nuclear counterstaining for 30 min using Hoechest 33342 at room

temperature. Proliferation rates were then calculated based on

provided instructions (Ribo Biotech, Guangzhou), and positively

stained cells were assessed with a fluorescence microscope (Leica,

Germany) following a PBS wash (38).
Wound healing assay

A straight line was drawn on the bottom of individual wells of 6-

well plates into which cells were then plated and allowed to attach

overnight. A 100 uL tip was then used to generate a scratch wound

on this line, and PBS was used to rinse the wounded cell monolayer

2-3 times followed by the addition of fresh serum-free media. Cells

were then imaged via microscopy after a 24 h incubation, and

ImageJ was used to compute the frequency of migrated cells (39).
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Transwell assay

For cell invasion assays, Transwell plates with an 8 mm pore

polycarbonate membrane (Corning, USA) were utilized. The upper

chambers were seeded with 5 × 105 cells in serum-free media after

the chamber had been Matrigel-coated (BD Biocoat, USA). Then,

600 ml of complete media was placed in the lower chamber.

Following a 24 h incubation period, cells on the lower side of the

membrane were fixed and stained using crystal violet (40).
Animal studies

The Experimental Animal Care Commission of Sun Yat-sen

University approved all animal studies, with were consistent with

both the NC3Rs ARRIVE protocols and with institutional ethical

guidelines. Tumor xenograft models were established by randomly

assigning 4-week-old male nude BALB/c mice from the Sun Yat-sen

University Experimental Animal Center to groups, after which they

were subcutaneously implanted on the dorsal side of the thigh with

5 × 106 RCC cells. Tumors were measured weekly, and tumor

volume (mm3) was measured as Volume = 0.5 × length × width2.

After five weeks, mice were euthanized with CO2 and tumors were

resected and weighed (41).
Frontiers in Immunology 05
Statistical analyses

R v 4.1.2 was used for statistical analyses and figure construction

was conducted with GraphPad Prism v 8.0.1. Kaplan-Meier curves

were used to evaluate survival outcomes, and risk model validation

was performed with the R ‘survivalROC’ package that enabled the

generation of time-dependent ROC curves. Age, sex, clinical stage,

and grade were used to conduct subgroup analyses. Continuous

data were reported as means ± standard deviation while categorical

data were reported as numbers and percentages. Data were

compared with t-tests and one-way ANOVAs as appropriate, and

P < 0.05 was selected as the cut-off to define significant differences.
Results

Identification of lipid metabolism- and
OS-related DEGs in ccRCC

Initially, mRNA expression data from 526 ccRCC samples and

72 normal control tissues from the TCGA data for which clinical

data were available were downloaded and analyzed (Figure 1).

These analyses revealed 2278 total DEGs, of which 1098 and 1180

were respectively up- and down-regulated (Figures 2A, B).
FIGURE 1

Flow chart.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1324205
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhang et al. 10.3389/fimmu.2023.1324205
When this DEG list was compared with a list of lipid metabolism-

and OS-related genes, 56 total overlapping DEGs were identified of

which 44 were downregulated while 12 were upregulated

(Figures 2D, E). These DEGs were used to generate heat maps

and plots highlighting deviations in gene expression between

tumors and normal tissues (Figures 2F, G).
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Risk model establishment

Next, the 526 ccRCC tissue samples derived from the TCGA

cohort were separated at a 2:1 ratio into training and validation

cohorts containing 350 and 176 samples, respectively. A risk

signature model was then developed for use in the assessment of
A B

D E

F

G

C

FIGURE 2

Identification of differentially expressed genes (DEGs) associated with overall survival and lipid metabolism. (A) DEGs in ccRCC samples were
represented using a volcano plot, with log2(FC) and -log10(adj.P-value) on the x- and y-axes, respectively. Red, green, and black points correspond
to genes that were significantly upregulated, significantly downregulated, and not differentially expressed, respectively. (B) ccRCC-related DEG
expression levels were represented with a heatmap, with dark blue denoting diseased samples, red indicating healthy samples, blue indicating lower
levels of gene expression, and red representing higher levels of gene expression. (C) A Venn diagram for genes overlapping from three datasets.
(D, E) Venn diagrams for upregulated (D) and downregulated (E) DEGs, where purple represents the upregulated/downregulated genes, green
denotes lipid metabolism-related genes, and tallow indicates OS-related genes. (F) A heatmap of the 56 OS and lipid metabolism-related DEGs in
ccRCC, with dark blue denoting diseased samples, red indicating healthy samples, blue indicating lower levels of gene expression, and red
representing higher levels of gene expression. (G) A deviation map for these 56 DEGs and associated gene expression levels, with upregulated and
downregulated DEGs respectively represented in blue and yellow.
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ccRCC patient prognostic outcomes based on their expression of

OS- and lipid metabolism-related DEGs. A LASSO approach was

used to develop the risk model, ultimately identifying 21 genes for

incorporation into this model based on an optimal lambda value

(Figures 3A, B). Based on multivariate Cox analyses of these genes

and associated survival analyses, 8 total genes were identified and

used for risk model construction including ALOX5, DPEP1,
Frontiers in Immunology 07
HADH, PLIN2, SCD5, SLC44A4, TRIB3, and UGT8 (Table 1).

The formula for the final risk model was: Risk Score =

ALOX5expression × (0.284602291782237) + DPEP1expression ×

(-0.173223599727972) + HADHexpression × (-0.377221547511465)

+ PLIN2expression × (-0.165758076212933) + SCD5expression ×

( - 0 . 1 4 8 2 6 0 3 6 9 1 2 2 6 0 3 ) + S L C 4 4 A 4 e x p r e s s i o n ×

(-0.200778865464863) + TRIB3expression × (0.145106539947866) +
A C

D

E F

B

FIGURE 3

Risk model development in the training cohort. (A, B) A LASSO analysis was performed with the minimum lambda value. (C) Risk score, survival
status, and expression level distributions for 8 risk-related genes in low- and high-risk ccRCC patients. (D) Forest plots and corresponding hazard
ratios. (E) Survival curves for ccRCC patients in both groups. (F) Risk model-related time-dependent ROC curve.
TABLE 1 The eight characteristic genes to construction risk models.

Characteristic genes Coefficient HR
HR 95%CI
(lower)

HR 95%CI
(upper)

P-value

ALOX5 0.284602292 1.329233276 1.116996907 1.581795877 0.001343276

DPEP1 -0.1732236 0.840949558 0.705414201 1.002526115 0.053380774

HADH -0.377221548 0.685764128 0.42707188 1.10115524 0.118483853

PLIN2 -0.165758076 0.84725118 0.740821628 0.968970848 0.01551239

SCD5 -0.148260369 0.862206594 0.719806361 1.032778051 0.107446757

SLC44A4 -0.200778865 0.81809332 0.679147444 0.98546595 0.03450459

TRIB3 0.14510654 1.156162741 0.979254628 1.365030346 0.086795128

UGT8 -0.302444888 0.739009216 0.580229576 0.941238853 0.014259554
fr
HR, hazard ratio; CI, confidence interval.
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UGT8expression × (-0.302444887507542). This model was then

employed to separate ccRCC patients into low- and high-risk

groups using an optimized cut-off value (Figure 3C). High-risk

patients exhibited higher ALOX5 and TRIB3 expression levels

together with lower DPEP1, HADH, PLIN2, SCD5, SLC44A4,

and UGT8 levels as compared to low-risk patients. Consistent

with the group names, low-risk patients exhibited superior

survival outcomes as compared to high-risk individuals

(Figure 3C). Forest plots also demonstrated that ALOX5 and

TRIB3 were associated with a poor prognosis (HR > 1), whereas
Frontiers in Immunology 08
the other six genes were associated with a positive prognosis (HR <

1) (Figure 3D).

Low-risk patients consistently exhibited better OS than high-

risk patients (Figure 3E). Model diagnostic performance was

assessed with ROC curves, revealing acceptable predictive utility.

Time-dependent ROC curve analyses of this model revealed an

AUC of 0 .80 , 0 .76 , and 0 .79 at 1 , 3 , and 5 years ,

respectively (Figure 3F).

Next, correlations among the expression of these 8 signature

genes were evaluated. In healthy samples, a strong correlation of
A B

D E

F

C

FIGURE 4

Correlation analysis of 8 genes. (A) Analyses of correlations between the expression of the 8 risk genes in healthy control and ccRCC samples.
Asterisks represent significance levels for correlations, while numbers correspond to the correlation coefficient. (B, C) The distributions of gene
expression for the 8 risk genes in healthy (B) and ccRCC (C) samples. (D) Correlation analyses for the 8 risk genes in the low- and high-risk groups.
(E, F) Distributions of the 8 risk genes in the high-risk (E) and low-risk (F) groups. *P < 0.05, **P < 0.01, ***P < 0.001.
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0.813 was noted between DPEP1 and HADH, while the correlation

between SLC44A4 and SCD5 in ccRCC samples was 0.538

(Figure 4A). SCD5 distributions in healthy samples were fairly

concentrated, whereas a broader range of DPEP1 expression levels

was evident (Figure 4B). In ccRCC samples, HADH expression

levels were fairly concentrated whereas PLIN2 expression was more

variable (Figure 4C). The correlation coefficient between PLIN2 and

UGT8 was 0.367 in the high-risk group while that between

SLC44A4 and ALOX5 in the low-risk group was 0.631

(Figure 4D). HADH expression was relatively concentrated while

that of PLIN2 was more variable in both the high- and low-risk

groups (Figures 4E, F).
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Evaluation of the immune status of low-
and high-risk ccRCC patients

These data support the value of the developed risk model as a

tool for the prognostic evaluation of patients with ccRCC. To assess

the relationship between this risk model and patient immune status,

the ESTIMATE algorithm was used, revealing that high-risk

patients exhibited a significantly higher stromal score (P=0.0017),

immune score (P<0.0001), and ESTIMATE score (P<0.0001),

together with lower levels of tumor purity (P<0.0001) relative to

the low-risk group (Figures 5A–D. The TIMER algorithm also

revealed significantly increased in CD4 T cell (P<0.0001), CD8 T
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FIGURE 5

Immune score analyses for low- and high-risk ccRCC patients. (A–D) Stromal, immune, and ESTIMATE scores and tumor purity as assessed with the
ESTIMATE algorithm. (E) The degree of infiltration by 6 immune cell types as estimated with the TIMER algorithm. (F) Comparisons of infiltration by
22 different immune cell types between low- and high-risk ccRCC samples. (G) Enrichment levels for 29 immune-related gene sets are shown in a
heat map as determined with the ssGSEA algorithm. (H) Correlations were analyzed for the 11 immune cell populations that differed significantly
between groups in (F), with numbers representing correlation coefficients. (J–L) Correlations between the 8 risk-related genes and immune cell
populations in the overall ccRCC patient cohort (J), high-risk patients (K), and low-risk patients (L). All 21 immune cell types other than
T.cells.CD4.naive are shown on the horizontal axis, and the vertical axis represents the 8 risk-related genes. The presence of a node indicates a
significant correlation (P < 0.05). Node color is indicative of correlation strength, while node size is proportional to significance level.
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cell (P=0.0375), neutrophil (P<0.0001), and DC (P<0.0001) levels in

high-risk samples, whereas no differences in B cell (P=0.7327) or

macrophage (P=0.5382) levels were evident (Figure 5E). An analysis

of 22 different infiltrating immune cell types in these risk groups

revealed significant differences for 11 of these cell types, including

resting memory CD4 T cells, activated memory CD4 T cells, T

follicular helper (Tfh) cells, regulatory T cells (Tregs), resting NK

cells, M0 macrophages, M2 macrophages, resting DCs, activated

DCs, and resting mast cells (Figure 5F).

Clear differences in the immune landscape, as identified

through a ssGSEA analysis (Figure 5G), were evident when

comparing these risk groups. Correlation analyses of the 11

significant immune cell types revealed that CD4 T cells and Tregs

were negatively correlated in the high-risk group (r = -0.44)

(Figure 5F), while M0 macrophages and resting mast cells were

respectively negatively and positively correlated with most immune

cell types (Figure 5H). Resting memory CD4 T cells were also

correlated with Tfh cells in the low-risk group (r = -0.34). Plasma

cells, as well as resting and activated memory CD4 T cells, were

negatively correlated with most cell populations (Figure 5I).
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Strong correlations were also noted between the 8 risk-related

genes and different immune cell populations in the overall ccRCC

patient cohort (Figure 5J), high-risk patients (Figure 5K), and low-

risk patients (Figure 5L). None of these genes were correlated with B

cells, DCs, activated mast cells, or gamma delta T cells (Figure 5J),

while resting cells were only somewhat correlated with these genes.

Similar results were evident in both the low- and high-risk groups

(Figures 5K, L). The observed correlations suggest that lipid

metabolism is likely to be associated with immune functionality

in ccRCC.
Functional analyses

Next, a new set of 192 DEGs was identified through a

comparison of the low- and high-risk groups that included 77

and 115 down- and up-regulated genes, respectively (Figure 6A).

GO enrichment and network analyses demonstrated that these

DEGs were enriched in a range of immune-associated pathways

including the antigen binding and complement activation pathways
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FIGURE 6

Functional analyses. (A) DEGs identified when comparing low- and high-risk groups were presented with a Volcano plot. (B) A circle plot was used
to visualize enriched GO biological processes associated with these DEGs. (C) Enriched GO biological processes were presented in a network
visualization. (D) Enriched KEGG pathways associated with these DEGs were presented in a bubble diagram. (E) DEGs were used to conduct a PPI
analysis. (F–H) GSEA plots were used to visualize GSEA analysis results.
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(Figures 6B, C). In a similar vein, KEGG enrichment analyses

indicated that these genes were enriched in substance metabolism

and immune response pathways including the PPAR signaling,

metabolism of xenobiotics by cytochrome P450, and fatty acid

degradation pathways (Figure 6D). In a protein-protein interaction

(PPI) analysis (42), IL-6 and MMP9 were closely related to the

immune response, supporting key roles for lipid metabolism and

immune activity in ccRCC development (Figure 6E). In line with

these data, GSEA analyses revealed that the most strongly enriched

stable internal environment, peroxisome, and fatty acid metabolism

pathways were expressed at low levels in the high-risk group

(Figures 6F–H). Together these results suggest that lipid

metabolism- and OS-related genes are related to substance

metabolism and the immune response in ccRCC, contributing to

poor patient outcomes.
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The clinical implications of patient
risk scores

Next, risk score value associations with patient clinical

characteristics were assessed in the training, validation, and

prediction cohorts (Table 2). In training set, no differences in age

or sex were detected as a function of risk score (Figures 7A, B),

whereas both metastatic status and clinical stage significantly

differed based on risk score (Figures 7C, D). When these ccRCC

patients were grouped based on age (Figure 7E), sex (Figure 7F),

metastatic status (Figure 7G), and clinical stage (Figure 7H), the

predictive performance of the risk model remained intact such that

low-risk patients exhibited better outcomes. In Cox regression

analyses, this risk model independently predicted ccRCC patient

prognosis (Figures 7E–H). Together, these data demonstrate that
TABLE 2 Characteristics of patients in the training, validation, and prediction set.

Total
(N=526)

Training set
(N=350)

Validation set
(N=176)

Prediction set
(N=101) PTV-value FTV-value

n/% n/% n/% n/%

Age 0.0818 0.0855

<65years 332/65.97 230/65.71 102/57.95 52/51.49

≥65years 194/34.03 120/34.29 74/42.05 49/48.51

Sex 0.1606 0.1750

Female 183/34.79 129/36.86 54/30.68 23/22.77

Male 343/65.21 221/63.14 122/69.32 78/77.23

Survival Status 0.3347 0.3742

Alive 356/67.6 232/66.29 124/70.45 78/77.23

Dead 170/32.3 118/33.71 52/29.55 23/22.77

Clinical Stages StageI 261/49.62 171/48.86 90/51.14 67/66.34

StageII 57/10.84 31/8.86 26/14.77 11/10.89

StageIII 123/23.38 80/22.86 43/24.43 22/21.78

StageIV 82/15.59 65/18.57 17/9.66 1/0.99

Not Available 3/0.57 3/0.86 0/0 0/0

0.0885 0.1070

StageI~II 318/60.46 202/57.71 116/65.91 78/77.23

StageIII~IV 205/38.97 145/41.43 60/34.09 23/22.77

Pathological Grading Grade1 13/2.47 8/2.29 5/2.84 13/12.87

Grade2 226/42.97 153/43.71 73/41.48 58/57.43

Grade3 205/38.97 129/36.86 76/43.18 23/22.77

Grade4 74/14.07 53/15.14 21/11.93 5/4.95

Not Available 8/1.52 7/2.00 1/0.57 2/1.98

0.6092 0.6418

Grade1~2 239/45.44 161/46.00 78/44.32 71/70.30

Grade3~4 279/53.04 182/52.00 97/55.11 28/27.72
The PTV-value and FTV-value were obtained, respectively, from the age, sex, Survival Status, Clinical Stages (StageI~II and StageIII~IV), and Pathological Grading (Grade1~2 and Grade3~4)
between the training and validation set.
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this risk model can effectively assess ccRCC patient outcomes

independent of other clinical characteristics.

When assessing the association between expression levels for

particular genes and patient clinical characteristics, significant

differences in ALOX5, HADH, SCD5, SLC44A4, and TRIB3

expression were detected when comparing patients with

metastatic and non-metastatic disease (Figure 7I) In addition,

differences in DPEP1, HADH, SCD5, SLC44A4, TRIB3, and

UGT8 levels were noted among patients with different clinical

stages of disease (Figure 7J). Associations between genes and

clinical characteristics were presented with a heat map

(Figure 7K), revealing the overexpression of ALOX5 and TRIB3

in high-risk ccRCC patients such that they may play important

oncogenic roles. High-risk patients also presented with higher rates

of mortality, later clinical staging, and a higher likelihood of having
Frontiers in Immunology 12
metastatic disease. The other 6 genes in the risk model were

expressed at lower levels in high-risk ccRCC patients.
Evaluation of ccRCC risk model diagnostic
efficacy and prognostic performance

Next, developed risk score model performance was assessed in

the validation cohort. Patients were stratified into high- and low-

risk groups using the formula established above, and the expression

of the eight risk score candidate genes was presented in these groups

with a heat map (Figure 8A). Survival analyses confirmed that high-

risk patients in this cohort faced worse prognostic outcomes

(Figure 8B), and time-dependent ROC curves revealed that the

AUC values for this model when predicting 1-, 3-, and 5-year
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FIGURE 7

(A–D) Relationships between risk scores and clinical characteristics were evaluated, revealing that no differences in ccRCC patients were evident as a
function of age (A) or sex (B), while significant differences were evident with respect to metastatic status (C) and clinical staging (D). (E–H) Risk
model independence was evaluated by initially generating survival curves for patients grouped according to age (E), sex (F), metastatic status (G), and
clinical stage (H). (I–K) Associations between genes and clinical characteristics including metastatic stage (I), clinical stage (J), and multiple clinical
variables (K) were assessed. *P < 0.05, ***P < 0.001, ****P < 0.0001.
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survival were 0.72, 0.64, and 0.67, respectively (Figure 8C).

Individuals in the high-risk group also exhibited a significantly

higher stromal score (P = 0.0017), immune score (P < 0.0001), and

ESTIMATE score (P < 0.0001) relative to low-risk individuals

(Figures 8D–F), whereas their tumor purity was significant below

that for low-risk patients (P < 0.0001; Figure 8G).

To assess the universality of the developed risk model beyond

the training cohort, we introduced an independent cohort from E-

MTAB-1980 as the prediction group. Survival analyses validated

that individuals classified as high-risk in this cohort experienced

poorer prognostic outcomes (Figure S1A). Additionally, time-

dependent ROC curves illustrated the model’s predictive

performance for 1-, 3-, and 5-year survival, with corresponding

AUC values of 0.82, 0.76, and 0.75, respectively (Figure S1B).

These findings confirmed the excellent diagnostic efficacy and

performance of the established model, given its close association

with ccRCC patient outcomes and immune status in the validation

and prediction cohort.
Nomogram development and calibration

To build on the promising data presented above, patient risk

scores were integrated with clinical characteristics and used to
Frontiers in Immunology 13
develop a nomogram capable of more reliably predicting

prognostic outcomes (Figure 9A). In this nomogram, scores were

assigned in accordance with patient risk scores and other clinical

characteristics, and the total score was used to gauge their odds of

survival. Calibration curves and decision curve analyses for this

nomogram in both cohorts suggested that its accuracy was

acceptable (Figures 9B–G). Specifically, the predicted and actual

OS for these patients aligned well at 1, 3, and 5 years in the training

(Figures 9B–D) and validation (Figures 9E–G) cohorts. As such, this

nomogram was capable of effectively predicting ccRCC patient

outcomes. Ultimately these data support the important role that

dysregulated lipid metabolism plays in shaping poor ccRCC patient

outcomes such that a risk model based on dysregulated OS- and

lipid metabolism-related genes was capable of reliably predicting

the prognosis of these patients.
Validation of risk-related gene expression
in ccRCC

To confirm the bioinformatics predictions discussed above, the

expression levels of the 8 risk-related genes were assessed in ccRCC

samples via qPCR and Western immunoblotting. Primers used for

these qPCR analyses are presented in Table 3. At the mRNA level,
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FIGURE 8

Risk model validation. (A) Risk score, survival status, and gene expression level distributions for low- and high-risk ccRCC patients in the validation
cohort. (B) Survival curves demonstrating low- and high-risk patient outcomes for the validation cohort. (C) Model time-dependent ROC curves for
the validation cohort. (D-G) Stromal, immune score, ESTIMATE, and tumor purity calculations for the validation cohort.
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significantly increased ALOX5 and TRIB3 expression was evident in

ccRCC samples, whereas the opposite was evident for DPEP1,

HADH, PLIN2, SCD5, SLC44A4, and UGT8, with differential

expression being most significant for ALOX5 (Figure 10A). These

data were consistent with the reliability of the bioinformatics results

on which the risk model was based. Western blotting was also used

to detect ALOX5 protein levels in the 786-O, ACHN, Caki-1, OS-

RC-2, and A498 human ccRCC cell lines and the control HK-2 cell

line, ultimately revealing that this protein was upregulated in

ccRCC cells relative to HK-2 cells (Figure 10B), consistent with

results observed at the mRNA level. Moreover, we conducted PCR
Frontiers in Immunology 14
and immunohistochemistry (IHC) staining on 12 clinical ccRCC

tissue specimens. The resultes revealed an overexpression of

ALOX5 mRNA levels in human ccRCC specimens (Figure S2A),

consistent with the observed results in cell lines. Utilizing IHC, we

assessed ALOX5 protein expression levels in ccRCC tumor tissues

and normal tissues. As illustrated in Figure S2B, our study

demonstrated intense ALOX5 immunostaining signals in the

ccRCC cells, while such signals were weaker in healthy renal

tissues. The IHC score of ccRCC tumor tissues exceeds that of

normal tissues, signifying statistically significant distinctions

between these two tissue groups. (Figure S2C).
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FIGURE 9

Nomogram development and calibration. (A) The established nomogram incorporating risk score values and clinical characteristics.
(B–D) Nomogram calibration in the training cohort at 1, 3, and 5 years. (E–G) Nomogram calibration in the validation cohort at 1, 3, and 5 years.
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Functional validation of risk-related genes
in ccRCC

To confirm the functional importance of ALOX5 in ccRCC, it

was next knocked down, with knockdown efficiency in 786-O and

A498 cells being successfully confirmed through qPCR andWestern

immunoblotting (Figures 11A, B). Total cholesterol and triglyceride

accumulation in these cells was then assessed through Nile Red

staining and confocal imaging (Figure 11C). In these analyses, lipids

were red while nuclei were blue. Total cholesterol and triglyceride

levels in these cells were also quantified (Figures 11D, E). To further

assess the functional importance of ALOX5 in these two cell lines, a

series of functional analyses were performed. The knockdown of

ALOX5 impaired cell proliferation (Figure 11F) and colony
Frontiers in Immunology 15
formation (Figure 11G). Similarly, EdU uptake was impaired with

ALOX5 silencing (Figure 11H), indicating a reduction in DNA

synthesis activity. Knocking down ALOX5 also impaired the

migratory and invasive activity of these ccRCC cells in wound

healing and Transwell assays (Figures 11I, J). In line with these in

vitro data, reduced ALOX5 expression was associated with the

significant impairment of xenograft tumor growth in tumor-

bearing mice (Figure 11K).
Discussion

Here, DEGs associated with lipid metabolism and ccRCC

patient OS were used to establish a prognostic risk model capable
A

B

FIGURE 10

Validation of differential risk-related gene expression. (A) The mRNA level expression of ALOX5, DPEP1, HADH, PLIN2, SCD5, SLC44A4, TRIB3, and
UGT8 was assessed via qPCR in the 786-O, ACHN, Caki-1, OS-RC-2, and A498 ccRCC cell lines and in control HK-2 cells. (B) ALOX5 protein levels
in ccRCC cells were detected via Western immunoblotting. Data are means ± SD. *, P<0.05; **, P<0.01.
TABLE 3 PCR primers.

Characteristic genes Forward primer sequence Reverse primer sequence

ALOX5 TGGCGCGGTGGATTCATAC CCAGTCGTCATTCAGCCAGT

DPEP1 GACAGCCTGGTGATGGTGAA TGTTCCACAGCCTCGAAGAC

HADH AGCTAATGCCACCACCAGAC AGCCCAAACCCGAGTTAGAA

PLIN2 TGATGGCAGGCGACATCTAC CTGGCTGCTCTTGTCCATCT

SCD5 GGTGCTCATGTGCTTTGTGG GTCATAGGGCCGGTTTCCAT

SLC44A4 TTCGAGGCCCCATCAAGAAC CTTGTGATCACCGTCTGGGG

TRIB3 TGCGTGATCTCAAGCTGTGT GCTTGTCCCACAGGGAATCA

UGT8 GGATCAACCTGGTCACCCTG GGAGATCTGATGGACAGCGG

b-actin AGGATTCCTATGTGGGCGAC ATAGCACAGCCTGGATAGCAA
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of predicting outcomes for these patients with a high degree of

accuracy. Model-derived risk scores were employed to stratify

patients into low- and high-risk groups. Patients in these two

groups exhibited distinct immune landscapes and significantly

different survival outcomes. Those patients exhibiting a poorer

prognosis tended to present with higher immune and ESTIMATE

scores as well as reduced tumor purity relative to patients that

experienced better outcomes. Functional analyses demonstrated

that reduced immune activity was associated with a stable

internal environment, peroxisomes, and fatty acid metabolism.

ALOX5 was also selected as a functional gene associated with

these phenotypic results for subsequent validation. Together,

these results will aid in the design of new treatments for ccRCC

such that clinicians can make more informed and effective

treatment-related decisions.

In an effort to clarify the molecular factors that govern the onset

and progression of ccRCC, interactions between tumor gene
Frontiers in Immunology 16
expression and the tumor-associated microenvironment were also

explored (2, 43). The ESTIMATE algorithm enables the

approximation of tumor purity and levels of immune cell

infiltration based upon gene expression data (44). In one prior

report, Xu et al. noted that lower tumor purity and higher immune

score values were associated with poorer ccRCC patient prognostic

outcomes (15). Consistently, the present data revealed that patients

who experienced worse prognostic outcomes had lower tumor

purity and higher immune score values. TIMER and ssGSEA

approaches were similarly employed to compare the immune

status of low- and high-risk patients. Of the six immune cell types

analyzed with the TIMER tool (45), four were found to exhibit

significantly higher abundance within the tumors of high-risk

ccRCC patients, in line with the increases in immunological gene

expression noted in ESTIMATE analyses. The ssGSEA approach

also enabled the analysis of 28 different immune-associated cell

types, ultimately demonstrating that the immune status of high-risk
A B

D E F

G

I

H

J

K

C

FIGURE 11

ALOX5 promotes abnormal lipid metabolic activity, proliferation, migratory activity, and invasivity in ccRCC cells. (A, B) ALOX5 knockdown was
associated with a reduction in the expression of this gene in 786-O and A498 cells at the mRNA (A) and protein (B) levels. (C) Nile Red staining was
performed to detect lipids in ccRCC cells and the results were quantified. (D, E) Total cholesterol and triglyceride levels were measured following
ALOX5 knockdown. (F–J) Knocking down ALOX5 suppressed ccRCC cell proliferation (F), colony formation (G), EdU uptake (H), wound healing
activity (I), and Transwell invasion (J) in vitro. (K) Knocking down ALOX5 suppressed in vivo ccRCC tumor growth, with tumor volume having been
measured every third day for 5 weeks post-implantation. *P<0.05; **P<0.01.
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patients was better than that of low-risk patients. Higher immune

scores and a more robust immune status thus appear to be

correlated with poor prognostic outcomes in ccRCC.

Next, functional analyses were performed with the goal of

clarifying the biological mechanisms underlying the results evident

for these two risk groups. Identified DEG-based GO, KEGG, and PPI

analyses revealed that dysregulated lipid and fatty acid metabolism

may be related to ccRCC tumor development and progression.

ssGSEA analyses were thus used to explore these mechanisms in

greater detail (46). This approach revealed that high-risk ccRCC

patient samples exhibited enrichment for a stable internal

environment, peroxisomes, and fatty acid metabolism relative to

low-risk patients (19). Dysregulated fatty acid metabolism and lipid

catabolism were thus closely tied to higher immune status and worse

prognostic outcomes for these patients. Consistently, a growing body

of work has focused on the intratumoral dysregulation of lipid

metabolism, suggesting that efforts to target lipid-related pathways

may enable novel antitumor interventions. Lipid accumulation may

also modulate TIME composition in a manner that contributes to

worse patient outcomes owing to the storage of lipids in surrounding

cells. Malignant tumors and Tregs have widely been shown to

promote T cell senescence in various cancers (47). Tumor cells are

also equipped to persist in challenging microenvironments such as

under conditions of hypoxia or nutrient depletion, or in distant tissues

following metastatic dissemination. Complex interactive associations

between the TIME, tumor cells, and the stroma ultimately shape lipid

use by these transformed cells (48). The present data highlight a

mechanistic association between T cell senescence and regulation of

lipid metabolism in the TIME, highlighting this avenue as a viable

target for immunotherapeutic intervention.

To further confirm the impact of dysregulated lipid metabolism

on the TIME in ccRCC and to assess the prognostic relevance of

DEGs in affected patients, DEGs associated with survival and lipid

metabolism were identified and employed to construct a prognostic

risk scoring model. This model incorporated eight genes closely tied

to tumor progression. For example, ALOX5 is an enzyme that

facilitates the biosynthesis of the arachidonic acid-derived

inflammatory mediators known as leukotrienes. Elevated ALOX5

expression is associated with diminished survival in RCC (49). In

breast cancer, ALOX5 expression within neutrophils reportedly

promotes metastasis to the lungs (50). PLIN2 is a protein

associated with adipose differentiation through its ability to

regulate lipid storage and metabolism within cells. PLIN2 can

facilitate lipid droplet mobilization and thereby regulate a range

of processes including the homeostasis of phospholipids,

mitochondrial activity, and the lipid remodeling-mediated

deacetylation of histones (51). SLC44A4 (solute carrier family 44

member 4) is a membrane transporter that is primarily expressed in

the pancreas, liver, and small intestines and that has been linked to

lung, prostate, and colorectal cancers (52). Meanwhile, SLC44A4

was found to be significantly associated with OS and disease-free

survival (DFS) in ccRCC patients (53). UGT8 (UDP

glycosyltransferase 8) encodes an enzyme involved in the phase II

metabolic reaction known as glucuronidation. High UGT8

expression has been observed in triple-negative breast cancer to
Frontiers in Immunology 17
promote greater tumor progression (54). But, UGT8 needs further

study inRCC. DPEP1 (dipeptidase 1) codes for a cytoplasmic

membrane enzyme responsible for regulating proliferative,

metabolic, and differentiation activity. Shi et al. discovered that

DPEP1, along with six other genes from the classifier, could be

valuable for molecular subtyping and guiding therapy in ccRCC

(55). DPEP1 expression has significant increases in B-cell acute

lymphoblastic leukemia that are related to progressive and relapsing

disease (56). HADH (hydroxyacyl-coenzyme A dehydrogenase)

codes for a protein involved in glucose and fat metabolism.

HADH dysregulation is also reportedly related to oncogenic

processes (57). SCD5 (stearoyl-CoA desaturase 5) encodes a

regulator of fatty acid metabolism. The regulation of SCD5 by

von Hippel-Lindau impacts the proliferation and lipid homeostasis

of ccRCC cells, suggesting a novel mechanism in the formation and

progression of ccRCC tumors (58). SCD5 downregulation is evident

in advanced melanoma, and restoring its expression can suppress

malignancy via decreasing protease and ECM-related protein

secretion (59). TRIB3 (tribbles pseudokinase 3) reportedly plays

important roles in processes such as growth, differentiation, and

metabolism. TRIB3 expression was notably higher in RCC tissues in

comparison to paracancerous tissues, and elevated TRIB3

expression correlated with advanced tumor stage and an

unfavorable prognosis. Furthermore, TRIB3 knockdown

significantly impeded RCC cell proliferation, migration, and

invasion (60). In colorectal cancer, TRIB3 plays an inhibitory role

while also suppressing CD8 T cell infiltration and promoting

glioblastoma cell stem-like properties through interactions with

beta-catenin that facilitate tumor growth (61). Here, these 8 genes

differed significantly in terms of expression and distribution

between ccRCC patients and healthy controls, as well as between

high-risk and low-risk groups. Consequently, the resultant risk

model was robustly predicted the survival of ccRCC patients and

accurately stratified them into high-risk or low-risk categories in

both the training and validation cohorts. Subgroup analyses also

demonstrated the ability of this model to predict ccRCC patient risk

independent of age or gender. The resultant risk scores were

combined with clinical characteristics and used to establish a

nomogram. Together, these analyses effectively demonstrate the

prognostic relevance of these DEGs in ccRCC while emphasizing

the close relationship between dysregulated lipid metabolism and

TIME composition. These 8 genes may thus be invaluable

biomarkers for the diagnosis or prognostic assessment of ccRCC.

The eight risk-related genes identified above were also found to

be closely associated with TIME composition in ccRCC patients.

These tumor-associated immune cells serve as important regulators

of tumorigenic processes. High-risk ccRCC patients exhibited an

increase in tumor sample infiltration by plasma cells, activated

memory CD4 T cells, Tfh cells, Tregs, and M0 macrophages,

whereas low-risk patient samples exhibited infiltration by higher

levels of resting memory CD4 T cells, resting NK cells, M2

macrophages, resting DCs, activated DCs, and resting mast cells.

This suggests that the cells enriched in high-risk patient samples

may promote tumor development, whereas those enriched in low-

risk patients may suppress tumorigenesis. These data are consistent
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with recent research evidence (17, 62). The above results strongly

suggest that ALOX5 may be capable of modulating the ccRCC-

associated immune microenvironment by influencing immune cell

populations capable of promoting tumor growth including plasma

cells, activated memory T cells, Tfh cells, Tregs, and M0

macrophages, resulting in the impairment of normal lipid

metabolism and poor prognostic outcomes. TRIB3 may similarly

contribute to worse outcomes. In contrast, DPEP1, HADH, PLIN2,

SCD5, SLC44A4, and UGT8 may function to suppress tumor

growth via the regulation of immune cells with antitumor activity

such as resting memory CD4 T cells, resting NK cells, M2

macrophages, resting and activated DCs, and resting mast cells.

Of these 8 genes, 3 have been reported in prior studies including

ALOX5, TRIB3, and PLIN2. Weiger et al. explored possible

pathways whereby COX-2/mPGES-1 and ALOX5/-15 expressed

in macrophages may contribute to oncogenic progression (63).

Moreover, Matareed et al. demonstrated that in uveal melanoma,

PLIN2 expression levels were associated with patient survival (64).

Further research will be essential to further clarify the link between

PEP1, HADH, SCD5, SLC44A4, and UGT8 and the progression or

development of ccRCC.

The research (65) showed that ALOX5, one of extracellular

vesicle derived mRNA transcripts, was found specific to urine and

tumor tissue samples and defined disease-specific extracellular

vesicle biomarkers in liquid biopsy patient samples. Also, Wang

(66) et al. found higher expression of ALOX5 predicts reduced

survival in tumours correlates with worse prognosis in RCC

patients. Their integrated analysis illustrated the four hub genes,

including ALOX5, involved in RCC tumorigenesis, shedding light

on the development of prognostic markers and further

understanding of the function of the identifed RCC hub genes

could provide deep insights into the molecular mechanisms. These

were consistent with our bioinformatics results. Furthermore, we

were used to select ALOX5 as a target for subsequent validation in a

series of molecular biology assays in vitro and in vivo. Significant

increases in ALOX5 expression were evident in analyzed ccRCC cell

lines relative to the control HK-2 cell line corresponding to human

proximal tubule epithelial cells. In a loss-of-function assay, silencing

ALOX5 in the 786-O and A498 ccRCC cell lines impaired their

ability to proliferate, migrate, and engage in invasive activity in vitro

and in vivo.

This analysis has several strengths over prior ccRCC-focused

research efforts. For one, this study focused specifically on OS- and

lipid metabolism-related DEGs when constructing a ccRCC-specific

risk model using LASSO analyses and loop grouping

simultaneously, ultimately revealing 8 characteristic risk-related

genes significantly associated with TIME composition and

prognostic outcomes in these cancer patients. Moreover,

differences in biological activity associated with risk scores were

comprehensively assessed through a variety of functional

enrichment and immune infiltration analyses methods, and the

impact of lipid metabolism on TIME composition and patient

prognosis was validated. These findings offer an evidence-based

foundation for additional research exploring the mechanisms
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driving ccRCC development and progression, potentially aiding

the individualized diagnosis and treatment of this devastating

disease. Importantly, these findings were also validated in vitro

and in vivo using ccRCC tumor cells, providing support for these

bioinformatics results.

There are certain limitations to this study that warrant further

experimental follow-up. For one, more external validation was

available for the established risk model owing to the

incompleteness of most mRNA and clinical datasets. In addition,

only relatively simplistic analyses of ccRCC cells and xenograft

tumors were performed herein, underscoring an opportunity for

more detailed investigations in the future. While the goal of these

analyses was to establish the biological landscape of ccRCC and to

identify means of predicting patient risk, the number of samples

included herein was still limited. In the future, large-scale and

single-cell-based validation will thus be vital. Further multi-omics

analytical approaches such as lipidomics, metabolomics, and

glycomics, together with corresponding analyses, may also better

aid efforts to understand and control the pathogenesis of ccRCC.
Conclusions

In summary, a risk model was herein established based on 8

genes found to be significantly associated with TIME composition

and prognostic outcomes in ccRCC patients, providing a rational

basis for the targeted treatment of this disease on an individualized

basis while enabling more effective patient risk stratification.

Functional analyses performed based on the risk groups

established using this model demonstrated that dysregulated lipid

metabolism contributes to impaired immunological activity and

fatty acid metabolism reprogramming, resulting in poorer

prognostic outcomes.
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SUPPLEMENTARY FIGURE 1

Risk model prediction. (A) Survival curves demonstrating low- and high-risk

patient outcomes for the prediction cohort. (B) Risk model ROC curve for the
prediction cohort.

SUPPLEMENTARY FIGURE 2

ALOX5 is over-expressed in human ccRCC specimens. (A) The mRNA level

expression of ALOX5 in human ccRCC specimens and adjacent normal
tissues. (B) Representative images of IHC staining of ALOX5 in ccRCC

tumor tissues and normal tissues. (C) IHC score of ALOX5 in ccRCC tumor
tissues and normal tissues. **P<0.01.
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