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Sepsis currently remains amajor contributor tomortality in the intensive care unit

(ICU), with 48.9 million cases reported globally and a mortality rate of 22.5% in

2017, accounting for almost 20% of all-cause mortality worldwide. This

highlights the urgent need to improve the understanding and treatment of this

condition. Sepsis is now recognized as a dysregulation of the host immune

response to infection, characterized by an excessive inflammatory response and

immune paralysis. This dysregulation leads to secondary infections, multiple

organ dysfunction syndrome (MODS), and ultimately death. PD-L1, a co-

inhibitory molecule expressed in immune cells, has emerged as a critical factor

in sepsis. Numerous studies have found a significant association between the

expression of PD-1/PD-L1 and sepsis, with a particular focus on PD-L1 expressed

on neutrophils recently. This review explores the role of PD-1/PD-L1 in

immunostimulatory and anti-inflammatory pathways, illustrates the intricate

link between PD-1/PD-L1 and sepsis, and summarizes current therapeutic

approaches against PD-1/PD-L1 in the treatment and prognosis of sepsis in

preclinical and clinical studies.
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1 Introduction

Sepsis is one of the leading causes of death in intensive care units (ICU) (1). In 2017,

there were approximately 48.9 million globally reported cases of sepsis, resulting in a

mortality rate of 22.5% and accounting for nearly 20% of all-cause mortality worldwide (2).

While advancements in sepsis treatments such as antibiotics and fluid resuscitation have

led to a reduction in mortality rates over the past few decades, there is still ample room for
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improvement (3). Furthermore, even sepsis survivors face a notable

mortality risk after discharge, with rates as high as 15% within the

first year (4). These statistics underscore the insufficiency of current

treatments and emphasize the need to enhance our understanding

of sepsis’s etiology and progression (5).

Sepsis is recognized as an immune dysregulation to various

infections (6). This dysregulation manifests as a simultaneous

presence of excessive inflammatory response and persistent

immune paralysis (7–9). Although the patient’s immune status

fluctuates, immune paralysis emerges from the onset of sepsis and

serves as a critical factor contributing to multiple organ dysfunction

syndrome (MODS). The programmed cell death 1 (PD-1) and its

ligand PD-L1 pathway play a pivotal role in sepsis occurrence,

development, and prognosis from various perspectives and levels. A

considerable number of researches have demonstrated the

correlation between PD-1/PD-L1 expression level and sepsis

mortality, but the range of cells covered in previous articles was

not comprehensive, and some were not sufficiently in-depth

because the topic was not so focused (5, 10–13).

Different from those studies mentioned above, this review

explores the role of PD-L1 in immunostimulatory and anti-

inflammatory pathways, elucidates the intricate relationship

between PD-L1 and the pathogenesis, development, and

prognosis of sepsis, and summarizes current therapeutic

approaches to PD-L1 in the treatment and prognosis of sepsis in

preclinical and clinical studies, especially with a particular focus on

PD-L1 expressed on neutrophils.
2 The significance of the PD-1/PD-L1
pathway in immune homeostasis

PD-1 (CD279) is a co-inhibitory receptor expressed in various

locations, including the spleen, lymph nodes, bone marrow cells,

and immature immune cells like CD4+CD8+T cells (11, 14–16). As

a ligand for PD-1, PD-L1 (CD274) is widely expressed in

hematopoietic cells and non-hematopoietic healthy tissue cells

such as vascular endothelial cells and astrocytes (10). Another

ligand of PD-1 is PD-L2 (CD273), which is mainly expressed in

DCs and macrophages, but this review will not cover it in detail

(17). Both PD-1 and PD-L1 belong to the type I transmembrane

immunoglobulin (Ig) superfamily and interact via their extracellular

domains, leading to a conformational change in PD-1. This

prompts Src-family kinases to phosphorylate the inhibitory motif

(ITIM) and switching motif (ITSM), attracting Src homology-2

containing protein tyrosine phosphatase 2 (SHP-2) and SHP-1

protein tyrosine phosphatases (9). SHP-2 dephosphorylates

phosphatidylinositol 3 kinase (PI3K), thereby inhibiting Akt and

ERK/MAPK signaling pathways. In the absence of SHP-2, SHP-1

acts as a compensator. Simultaneously, CD28 co-stimulatory

receptors are also dephosphorylated, resulting in the inhibition of

T lymphocyte activation (18–22).

The expression of PD-1 on different cells is regulated by a

variety of factors. In T cells, PD-1 is increasingly expressed after

antigen activation (16, 23). If the antigen is promptly eliminated,
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the PD-1 expression level on responding T cells decreases;

otherwise, it remains elevated (24, 25). The expression of PD-1

on T cells is regulated by various factors, including activated T

nuclear factor (NFAT), cytoplasm 1, Recombinant Forkhead Box

Protein O1(FOXO1), T-bet, B lymphocyte-induced Maturation

protein 1 (BLIMP-1), and serine-threonine kinase glycogen

synthetase kinase 3 (GSK3) (26, 27). T cell receptor (TCR)

activation is the primary controlling factor for PD-1 expression in

T cells. Similarly, PD-L1, which is generally expressed in a variety of

cells in an inflammatory environment, is regulated by multiple

factors. Pro-inflammatory signals promote PD-L1 expression, in

which interferon g (IFN-g) is considered the most effective soluble

inducer (28). Also, noncoding RNAs are responsible for post-

transcriptional regulation (28, 29). Additionally, protein cycling,

ubiquitination, and glycosylation all influence PD-L1 expression

levels (27, 30).

PD-1/PD-L1 plays a critical role in maintaining physiological

health by downregulating inflammatory responses and restoring

immune system balance. The interaction of PD-1 and PD-L1

facilitates autoimmune tolerance (31, 32). Reduction or deficiency

of PD-L1 and PD-1 may result in species-specific autoimmunity

(33, 34). Nishimura et al. found that IgG3 deposition in C57BL/6-

PD-1(-/-) mice caused characteristic lupus-like proliferative arthritis

and glomerulonephritis, and dilated cardiomyopathy occurred in

BALB/c mice with PD-1 gene destruction (35, 36). Severe impaired

myocardial contraction eventually leads to congestive heart failure

and even sudden death. Wang et al. also found that PD-1 deficiency

significantly increased the frequency of type 1 diabetes in mice (37).

Moreover, the PD-1/PD-L1 pathway also regulates atherosclerotic

inflammatory responses, as demonstrated by increased

atherosclerotic lesions in animals with deficiency in low-density

lipoprotein receptors and PD-L1 (38).

The interaction between PD-1 and PD-L1 is closely associated

with the main mechanisms of sepsis, such as inhibiting T cells

function, impairing myeloid cell function, and triggering non-

immune cell death (11, 39, 40). The expression of their genes

significantly increases during sepsis, and PD-L1 gene deficiency

improves survival in septic patients (41). Even in sepsis survivors

who develop chronic critical illness (CCI), serum sPD-L1 remains

elevated (42). The role of PD-L2 in sepsis is unknown, and PD-L2

gene deletion has no significant effect on the mortality of sepsis

mice (41).
3 The role of PD-1/PD-L1 in sepsis-
induced immunosuppression

The definition of sepsis has been revised to refer to life-

threatening organ dysfunction caused by the host’s dysfunctional

immune response to various microbial infections, rather than solely

excessive inflammation (43). Numerous clinical studies over the past

few decades have attempted to target various mediators, such as

pattern recognition receptors (PRRs), pathogen-associated molecular

patterns (PAMPs), and cytokines, to suppress excessive inflammation

in sepsis (44–46). However, none of these studies have yielded
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clinically valid results, leading to a shift in research focus. For

instance, administering a single dose of tumor necrosis factor

receptor-FC (TNFR-Fc) fusion protein to 141 patients with septic

shock not only failed to improve patient outcomes but also increased

mortality in a dose-dependent manner (47). Additionally, patients

with sepsis are more prone to nosocomial infections, indicating the

possible presence of persistent immunosuppression (48–52). While

the clinical manifestations of immune response disorders may vary,

immune paralysis occurs early in sepsis and persists due to innate and

acquired immune dysfunction (Figure 1) (9, 53).

Studies have found that the expression of both PD-1 and PD-L1

is upregulated on T cells and monocytes respectively (54–57).

During early sepsis, activation of the PD-1/PD-L1 pathway leads

to innate immune cell dysfunction, and treatment with anti-PD-L1

antibodies can reverse monocyte dysfunction and inhibit T-cell

apoptosis (56). Studies have demonstrated that mice deficient in

PD-1 or PD-L1 exhibit improved survival during early sepsis (54).

Moreover, elevated PD-L1 expression in neutrophils is associated

with a higher risk of sepsis-related mortality due to increased

expression of inflammatory cytokines (57). In advanced sepsis,

therapy with anti-PD-1 antibodies reactivates antigen-presenting

cells and T cells, thereby mitigating secondary infections (58, 59).
3.1 T cells

Multiple studies have shown that the PD-1/PD-L1 pathway

plays a significant role in the immunosuppression seen in sepsis
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(60). The expressions of PD-1 on T cells and PD-L1 on

macrophages and endothelial cells increase during advanced

sepsis (60). Interfering with this pathway can restore T-cell

activity (61, 62). In a mouse model of Candida auris infection, it

was found that the positive rate of PD-1 on T cells and the

frequency of PD-L1 positive macrophages were significantly

higher in infected mice compared to uninfected mice (63).

Additionally, the PD-L1 expression level was strongly positively

correlated with the fungal tissue load. In patients with severe corona

virus disease 2019 (COVID-19), progressive lymphocytopenia and

depletion of lymphocyte subsets were observed, and PD-1

expression on CD4+ and CD8+ T cells was significantly increased

in patients with poor prognosis (64).

In addition to the aforementioned T cell activation disorders,

the depletion of T lymphocytes by the PD-1/PD-L1 pathway is also

a possible internal mechanism (65–68). In sepsis, T cells are

constantly exposed to antigens and inflammatory signals, leading

to gradual depletion and loss of effector function, and the long non-

coding RNA HOTAIRM1 may be the culprit (69). Initially, T cells

experience a reduction in their proliferative capacity and

production of interleukin 2 (IL-2) (70), which is followed by

decreased production of IFN-g, TNF, and chemokines, ultimately

resulting in immune paralysis (70). Lymphocyte activation gene 3

(LAG3) and PD-1 have a potential synergistic effect in regulating

the progressive depletion of T cells in sepsis (71). Furthermore,

Zinselmeyer et al. discovered that during persistent viral infection,

immune paralysis is anatomically localized in the limbic region of

the spleen/red marrow and characterized by drawn-out motor
FIGURE 1

Cellular network diagram of immunoparalysis in sepsis. (I) The expression of PD-1 on T cells and PD-L1 on other immune cells are upregulated
during sepsis. (II) Phagocytosis of monocytes/macrophages is compromised, and cytokine production is reduced. (III) The differentiation,
proliferation, and activation of DCs are impaired, with inhibitory effect on T cell function. The endotoxin-tolerant DCs express immunosuppressive
genes and have direct inhibitory effects on other immune cells. (IV) The apoptosis of B cells increases and the number of Bregs increases. (V)
Increased MDSCs inhibit T cells, decrease IL-6 production, and increase the number of Tregs. (VI) Exosomal PD-L1 and PD-L1 increase and induce T
cell dysfunction. (VII) The phagocytosis and migration ability of neutrophils were weakened, and TNF-a production was reduced. Neutrophils
promote T cell apoptosis, inhibit T cell activation, and increase the amount of Tregs through direct contact, while IFN-g secreted by T cells in turn
increases the number of PD-L1+ neutrophils. PD-1, programmed cell death- 1; PD-L1, programmed cell death-ligand 1; MHC, major history
complex; TCR, T cell receptor; CTLA-4, cytotoxic T-lymphocyte associated protein 4; TGF, transforming growth factor; IL-6, interleukin 6; TNF-a,
tumor necrosis factor a; IFN-g, interferon g; IRAK, interleukin receptor-associated kinase; ITSM, immunoreceptor tyrosine-based switching motif;
ITIM, immunoreceptor tyrosine-based inhibitory motif; SHP1/2, Src homology-2 containing protein tyrosine phosphatase 1/2; PI3K,
phosphatidylinositol 3 kinase; AKT (PKB), protein kinase B; ERK, extracellular regulated protein kinases; MAPK, mitogenactivated protein kinase; APC,
antigen-presenting cell; DCs, dendritic cells; Bcl-2, B lymphoblastoma-2 gene.
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paralysis of virus-specific T cells (72). Planar bilayer data indicated

that localized PD-L1 within the central supramolecular activation

cluster (cSMAC) can hinder the movement of CD8+ T cells and

promote stable p-ZAP-70 immune synapse formation (73).

Moreover, soluble PD-L1 was negatively correlated with TCRb,
CD4, and CD8 mRNA (74). Moreover, phosphatidylcholine (PC),

2-ethyl-2-hydroxybutyric acid, and glyceraldehyde can also be used

to modulate the PD-1 expression on CD4+ T cells with the help of

related environmental factors such as IL-2 or Lac, thus affecting the

7-day prognosis of septic patients (75).

Under physiological conditions, regulatory T cells (Tregs)

maintain self-tolerance by inhibiting the activation of autoreactive

T cells. And Tregs also generate pathologic immunosuppression in

sepsis by suppressing the functionality of specific immune cells (76).

Previous research showed that, during sepsis, there was an increase

in the number of Tregs, resulting in immune paralysis by inhibiting

the function of effector T cells, monocytes, and neutrophils (76).
3.2 B cells

Umakoshi et al. observed a significant increase in bone marrow

cells of mice and a decrease in circulating B cells 6 hours after cecal

ligation and puncture (CLP) (77). Additionally, CD5-expressing

regulatory B cells (B regs) were found to emerge and secrete IL-10,

with increased levels of IL-10 and PD-L1 mRNA detected in the

spleen. In the later stages of sepsis, the expression of the B

lymphoblastoma-2 gene (Bcl-2) in the spleen gradually declined,

while the pro-apoptotic protein Bim showed an obvious increase.

These findings suggest that B-lymphocytopenia accompanied by the

increase of B regs occurs early in sepsis and may contribute to

immune paralysis during septic conditions. In addition, PD-1/PD-

L1 may be involved with CD72/CD100 in the formation of immune

disorders during human immunodeficiency virus (HIV)-1
Frontiers in Immunology 04
infection. In addition to HIV-1-specific T-cell dysfunction, it

was also observed that PD-1/PD-L1 and CD72/CD100 markers

on B cells were significantly enhanced during active HIV-1

infection (78).
3.3 Neutrophils

It is well-established that neutrophils undergo phenotypic,

functional, and morphological changes in the circulatory system

several hours after sepsis onset, and the upregulation of PD-L1

expression may play a key role in this process (Figure 2) (74, 79–82).

Under physiological conditions, neutrophils eliminate pathogenic

microorganisms through adhesion, migration, phagocytosis, and

respiratory eruption (83). However, in sepsis, neutrophils have

abnormal mobilization, delayed apoptosis, migration dysfunction,

phagocytosis dysfunction, and other abnormal manifestation (84–

88). At the same time, neutrophils also inhibited the function of

lymphocytes through contact and non-contact inhibition (89, 90).

Research has confirmed that PD-L1 expression on neutrophils

increases during sepsis through the p38a−MSK1/−MK−2 pathway,

and neutrophils migrate from the bone marrow to the blood and

peritoneal cavity (81, 90). Patera et al. found that during sepsis,

while the expression of PD-L1 was up-regulated, the ability of

neutrophils to phagocytose bacteria was decreased, and the

production of TNF-a was reduced, which may be related to

immune paralysis (91). The impaired migration ability of PD-L1

positive neutrophils might also be associated with sepsis-induced

immune paralysis, and septic neutrophils can induce lymphocyte

apoptosis through direct contact, which can be reversed by anti-PD-

L1 antibodies (81, 90). In addition, neutrophils can also inhibit T

cell activation, promote T cell differentiation, and increase Tregs

through direct contact (81). Yu et al. also found that during fungal

sepsis of Candida albicans infection, PD-L1 expression is
FIGURE 2

Dysfunction of PD-L1+ neutrophils. (I) The mobilization of PD-L1+ neutrophils is impaired. During fungal infection, b-glucans activate Dectin-1 and
regulate the production of CXCL1/2, resulting in the accumulation of neutrophils in the bone marrow and further weakening the host immunity. (II)
The migration dysfunction of PD-L1+ neutrophils and delayed apoptosis mediated by PKM2/STAT1 lead to excessive accumulation of neutrophils in
non-targeted organs, resulting in organ damage. (III) Phagocytosis of PD-L1+ neutrophils is impaired, and the release of TNF-a is reduced. PD-L1,
programmed cell death-ligand 1; JAK2, janus kinase 2; STAT3, recombinant signal transducer and activator of transcription 3; PKM2, recombinant
pyruvate kinase M2; CXCL1/2, chemokine (C-X-C motif) ligand 1/2; TNF-a, tumor necrosis factor a.
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upregulated on mouse and human neutrophils. PD-L1 translocates

into the nucleus under b-glucan-induction, modulates the

production of chemokine (C-X-C motif) ligand 1/2 (CXCL1/2),

and eventually leads to the accumulation of bone marrow

neutrophils, weakening the host’s anti-infection ability (92). At

the same time, IFN-g secreted by T lymphocytes induces the

production of polymorphonuclear leukocytes (PMN) with high

PD-L1 expression via the JAK2/STAT1 pathway, and the Jak2

inhibitor fedratinib has been shown to significantly reduce PD-L1

expression levels in neutrophils (93). This suggests that the

upregulation of PD-L1 expression on neutrophils, interacting with

T cells, plays a critical role in immune paralysis. Both the

p38a−MSK1/−MK−2 pathway and the JAK2/STAT1 pathway

mentioned above have an impact on the expression of PD-L1 in

neutrophils, but it is difficult to say which one is more important

because the regulation of intracellular signal transduction often has

a complex interactive network and many life activities are not

controlled by a single signaling pathway. However, it has been

found that the signal transduction of JAK-STAT1 may also depend

on the activity of p38, and there may be a p38-JAK-STAT1 axis, so

more studies need to be carried out to further explore the

underlying mechanism (94). In addition, PD-L1-positive

neutrophils have the potential to predict and diagnose sepsis (95).
3.4 Monocytes/Macrophages

Studies have shown that PD-1 and PD-L1 expression on

mononuclear/macrophage increases at 24 hours of CLP treatment

in mice (56). Macrophage phagocytosis and stimulus-induced

cytokine production (TNF-a, IL-6, IL-1b, IFN-g, and IL-12) were

significantly decreased after CLP treatment, but random migration

and cell diffusion were enhanced (54, 96). PD-1 on T cells and PD-

L1 on macrophages are significantly up-regulated in mice infected

with Candida auris AR-0384 (63). Shikonin can reduce PD-L1

expression on macrophages through phosphorylation of

recombinant pyruvate kinase M2 (PKM2) and downregulation of

nuclear input, and PKM2 can bind to the hormone receptor

enzyme-1(HRE-1) and HRE-4 sites of the PD-L1 promoter (97).

In addition, blood oxygen saturation at admission can be used as an

effective predictor of monocyte PD-L1 expression level and immune

response impairment (98). The ratio between the total level of

activated CD86+ macrophages and the PD-1+ population in CLP

mice was also associated with susceptibility to secondary fungal

infection (99).
3.5 Dendritic cells

Previous studies have shown that in the early stage after CLP

treatment, spleen DCs are mainly activated, and in the late stage,

negative co-stimulatory molecules PD-L1 and PD-1 expression are

up-regulated (100, 101). Their upregulation inhibits the activation

and proliferation of DCs and affects the activation of T cells, thereby

inducing immunosuppression (102). Tumor necrosis factor a-
induced protein-8-like 1 (TIPE1) may play a negative regulatory
Frontiers in Immunology 05
role in sepsis by inhibiting DCs maturation and T cells functionality

through PD-L1/PD-1 (103). In addition, endotoxin-tolerant DCs

express negative regulatory genes of inflammation and have direct

regulatory effects on other immune cells, which may be mediated by

Interleukin-1 Receptor Associated Kinase (IRAK)-M and PD-

L1 (104).
3.6 MDSCs

One important mechanism contributing to immune paralysis in

sepsis is the expansion of myeloid-derived suppressor cells

(MDSCs) (105–107). MDSCs are a heterogeneous population of

immature bone marrow cells that inhibit antigen-specific activation

of CD4+ and CD8+ T cells (108). Although typically undetected,

elevated levels of MDSCs are observed in both cancer and sepsis,

often accompanied by an increase in regulatory T cells (109–111).

Hess et al. found that the increase of Tregs is mediated by

transforming growth factor b (TGF-b) and IL-10 secreted by

MDSCs (112). In addition, MDSCs may play a key inhibitory role

on T cells through the PD-1/PD-L1 axis (53). Active Toll-like

receptor 4 (TLR4) can induce monocyte MDSC expansion,

thereby impacting antigen-specific T-cell initiation and IgG

production (113). Clinical data analysis indicates a correlation

between increased blood MDSC levels and a higher prevalence of

nosocomial infections in septic patients (114). Ao et al.

demonstrated that the Gr-1hi cells mediated by PD-1/PD-L1 is

crucial for the development of immune paralysis in later stages of

sepsis (115). The Gr-1hi cells were identified as MDSCs and

exhibited a polymorphonuclear phenotype expressing CD11b and

Ly6G markers (116). Following the injection of lipopolysaccharide

(LPS) into mice treated with zymosan (ZM) on day 21, serum IL-6

production was reduced, while CD11b+ Gr-1hi cells accumulated in

the peripheral blood (115). Additionally, transferring Gr-1hi cells to

control mice decreased IL-6 production, but this inhibitory effect

was not observed in PD-1/PD-L1-deficient d21-ZM mice.

Conversely, treatment with anti-GR-1 monoclonal antibody

(mAb) or anti-PD-1 and anti-PD-L1 mAb improved ZM-induced

immune paralysis during sepsis induction. These findings suggest

that the accumulation of Gr-1hi cells mediated by PD-1/PD-L1 is

another critical contributor to immune paralysis in sepsis.
3.7 Exosomes

Studies have revealed that exosomes (EVs) play a crucial role in

tumor-associated immune paralysis by acting as carriers for PD-L1

on PD-1 and inducing potent inhibitory signals (117–119).

Recently, the involvement of EVs in the pathogenesis of sepsis

has also attracted attention (120). EVs are lipid bilayer

nanoparticles containing RNA, DNA, and proteins (121). Studies

have shown that normal cells or tumor cells release exosomes

through exocytosis, which are multivesicular body (MVB) formed

by inward budding of vesicles in the late endosome, and PD-L1 on

the cell surface enters MVB during endocytosis (122). Huang et al.

found that the expression level of circulating EVs in septic patients
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1323797
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Chen et al. 10.3389/fimmu.2023.1323797
was higher than that in healthy controls, and it inhibited T cell

function in a concentration-dependent manner, which was

represented by significantly reduced expression of CD69, up-

regulated expression of PD-1 and increased proportion of Treg,

wh i ch may be one o f t he mechan i sms l e ad ing to

immunosuppression of sepsis (119). Kawamoto et al. reported the

presence of PD-L1 and PD-L2 on circulating exosomes in the

plasma of septic patients and found elevated levels of b2 integrin

and PD-L2 on exosomes in these patients (123). Although there was

no significant difference in PD-L1 levels on exosomes, the overall

concentration of sPD-L1 increased. Furthermore, the expression

levels of sPD-L1 and leukocyte b2 integrin were strongly associated

with organ dysfunction. Further investigation is warranted to

explore the role of exosomal PD-L1 and PD-L2 in sepsis-induced

immune paralysis.
4 Role of PD-L1-mediated intracellular
signaling in sepsis-induced
inflammatory organ injury

Sepsis is a condition that can result in multiple organ failure,

leading to fatal outcomes, and the interaction of PD-1/PD-L1 with

CD80, PI3K/Akt pathway, or STAT1 molecules plays an important

role in the mechanism of sepsis-induced organ dysfunction as

described below (124, 125).
4.1 Lung

The lung is so vulnerable to sepsis that respiratory dysfunction

has been reported to almost 70% (126). And sepsis-induced lung

damage is a leading cause of mortality in patients (127, 128). In a

study investigating lung injury in neonatal sepsis, Fallon et al.

observed significant increases in pulmonary edema (PE),

neutrophil infiltration, myeloperoxidase (MPO) levels, and

cytokine expression in wild-type (WT) mice 24 hours after

treatment with cecal serous fluid (CS) (129). Neonatal mice

lacking PD-1 (PD-1−/−) showed improved survival rates

compared to WT mice, particularly with noticeable differences in

lung damage. However, the survival rate of neonatal mice lacking

PD-L1 (PD-L1−/−) did not show significant improvement.

Additionally, the number of PD-1+ cells in the lungs of human

newborns with intrauterine infection was prominently higher than

those who died from non-infectious causes (129). Therefore, PD-1

plays a pivotal role in the mechanism of sepsis-induced lung injury,

and PD-1/PD-L1 inhibitors may be potential therapeutic targets

(130). Alfred Ayala et al. constructed a mouse model of sepsis-

induced lung injury using septic aggression-induced sepsis after

hemorrhagic shock (Hem-CLP) and found that PD-L1 expression

was significantly upregulated on vascular endothelial cells (ECs) or

lung epithelial cells (EpiCs) in mice with indirect acute lung injury

(iALI) 24 hours after sepsis injury (131). Moreover, inhibiting PD-

L1 expression on ECs using PD-L1 siRNA encapsulated by

liposomes inhibited the iALI-induced increase in cytokine/
Frontiers in Immunology 06
chemokine levels, as well as pulmonary myeloperoxidase and

caspase 3 activities. This treatment also preserved normal tissue

structure, alleviated pulmonary edema, and reduced neutrophil

influx caused by iALI. However, inhibiting PD-L1 expression on

EpiCs through endotracheal administration did not yield the same

effects. Thus, it can be concluded that ECs, but not EpiCs, play a

significant role in sepsis-induced lung injury and are closely

associated with PD-L1 expression. Zona occludens-1 (ZO-1), a

protein found within ECs in the lungs of WT mice, is known to

shift from membranous to perinuclear position 24 hours after

treatment, while PD1−/− mice retain the membranous position

(129). In summary, both the presence or absence of the PD-1

gene and the level of PD-L1 expression on ECs have a profound

impact on lung injury induced by sepsis.

Although the precise mechanisms have not yet been fully

elucidated, they generally involve the following aspects. Firstly,

the upregulation of PD-1 expression on immune cells and PD-L1

expression on ECs can impair the barrier function of ECs and

increase monolayer permeability (132). Moreover, under TNF-a
stimulation, the expression of EC connexin on EC monolayer of

PD-L1− mice was increased in vitro and EC activation was

decreased through the angiopoietin/Tie2 pathway (132).

Additionally, PD-L1 plays a key role in regulating the suppression

of iALI by Treg cells, which may be related to the activation of SHP-

1 of lung tissue (133, 134). The activation of SHP-1 is associated

with the loss of the protective effect of Tregs in vivo (135). Equally

important, PD-L1 binds to the p85 subunit of PI3K on the

endoplasmic reticulum (ER) of neutrophils, inhibiting autophagy

through the PI3K/Akt/mTOR pathway and promoting the release

of neutrophil extracellular traps (NETs) (136). This process leads to

severe acute inflammatory lung injury, including acute respiratory

distress syndrome (ARDS) (136). Li et al. found that PKM2/STAT1

mediates the up-regulation of PD-L1 expression on neutrophils and

its anti-apoptotic effect, which may lead to the increase of

pulmonary neutrophils accumulation and promote the occurrence

of lung injury (137). Additionally, Gao et al. found through in vitro

studies that PD-L1 regulates LPS-induced inflammation in EpiCs

and vascular ECs by interacting with the hypoxia-inducible factor

1a (HIF-1a) signaling pathway. Downregulation of HIF-1a can

reduce PD-L1 expression, which further inhibits HIF-1a protein

expression and related pathways. The exact mechanism underlying

this relationship has yet to be clarified (138). In addition, Group 2

innate lymphoid cells (ILC2s) may also mediate pulmonary

immune homeostasis through PD-1 (139).
4.2 Liver

Previous studies have demonstrated that PD-L1 expression in

the liver is significantly increased at mRNA transcription and

immunohistochemical levels following CLP treatment compared

to sham-operated controls (140–142). When hepatitis B virus

(HBV)-associated cirrhosis is complicated with severe sepsis (SS),

HBV-related acute-on-chronic liver failure (HBV-ACLF) can be

caused by the superposition of monocyte PD-L1 up-regulation, and

monocyte PD-L1 expression can also predict the 28-day mortality
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of HBV-ACLF (142). Anti-PD-L1 antibodies have shown

significant improvement in liver injury morphology in CLP mice

by reducing glutamic pyruvic transaminase (ALT) and glutamic

oxaloacetic transaminase (AST) release, as well as decreasing TNF-

a, interleukin (IL)-6, and IL-10 mRNA levels in the liver after

sepsis (143).

Hutchins et al. found that intrahepatic Kupffer cells can

exacerbate hepatic sinusoid endothelial cell damage during sepsis

by binding to PD-L1 (140). It is PKM2/STAT1 that mediates the

up-regulation of PD-L1 expression of neutrophils and promotes the

intrahepatic accumulation of neutrophils (137). However, recent

studies have challenged the conventional hypothesis by suggesting

that high expression of PD-L1 on liver cells can ameliorate liver

damage and improve survival in mice with sepsis (144). Liver

damage during sepsis is associated with the activation of cytotoxic

T lymphocytes (CTLs), and PD-L1 serves as a co-receptor that

negatively regulates T cell function (144). Downregulation of PD-L1

in hepatocytes has been observed in mouse sepsis models, and

restoration of PD-L1 expression through adenovirus- and

transposon-based gene transfer significantly improved survival

and reduced liver injury. Therefore, administration of

recombinant PD-L1 or inhibition of NADPH oxidase type 2

(NOX2) activity may offer new treatment options for sepsis (144).

In conclusion, further studies are needed to elucidate the role of PD-

1/PD-L1 in the pathogenesis of sepsis-induced liver injury.
4.3 Brain

Regarding the brain, sepsis-associated encephalopathy (SAE) is

characterized by acute and long-term cognitive impairment (145–

147). While enhanced PD-L1 expression following surgical brain

injury (SBI) can regulate neuroimmune and inflammatory

responses through PD-L1+ astrocytes for self-protection and

promote nerve repair, the opposite effect occurs in brain injury

caused by sepsis (148). Our previous data showed that during sepsis,

PD-L1 binds to P-Y705-Stat3, promoting nuclear translocation of

PD-L1 and enhancing the transcription of GSDMD, resulting in

increased release of neutrophil extracellular traps (NETs) (149).

Neutrophils and NETs contribute to blood-brain barrier breakdown

in the hippocampus, neuronal apoptosis, microglia activation, and

hippocampal-dependent memory impairment (150–153).

Treatment with anti-Gr-1 antibodies or DNase I has been shown

to attenuate these sepsis-induced changes (149).
4.4 Kidney

Sepsis is one of the leading causes of acute kidney injury (AKI)

in the ICU, and its occurrence correlates positively with patient

mortality (154–157). The pathogenesis of septic AKI is not yet fully

understood. Serum sPD-L1 levels were significantly elevated in

sepsis patients with impaired renal function (158). Xu et al.

established a septic AKI model induced by CLP and found

increased expressions of PD-1 and PD-L1 in septic AKI mice,
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leading to T cell apoptosis (159). Compared to the sham group, the

number of lymphocytes was reduced by 64% in sepsis mice,

including a 27% decrease in CD3+ T cells. The results also suggest

that lactate upregulates PD-L1 expression in the kidney, and

blocking the lactate receptor or PD-1/PD-L1 signaling may

provide a novel treatment approach for septic AKI.
4.5 Spleen

PD-1 upregulation in the spleen is observed early in sepsis, and

spleen cell apoptosis increases over time (53, 100, 160). As evident

from the aforementioned studies, the persistent expansion of

myeloid-derived suppressor cells (MDSCs) during sepsis is closely

associated with immune paralysis, characterized by splenocyte

apoptosis, decreased T cell numbers, and upregulated PD-1

expression (114). Moreover, when human ghrelin and human

growth hormone (GH) are used to correct immune paralysis, a

decrease in PD-1 expression is observed in the spleens of elderly

rats with sepsis (161). Additionally, the administration of anti-human

PD-L1 nanobody KN035 alleviates splenocyte apoptosis, as well as

lung and liver damage induced by septicemia in humanized mice,

ultimately improving survival (162). These findings illustrate the close

association between PD-1/PD-L1 and spleen injury caused by sepsis,

although the specific mechanisms require further exploration.
4.6 Intestines

Increased permeability of intestinal epithelia plays a vital role in

the pathophysiology of numbers of gastrointestinal diseases, and its

mucosal immune system plays a key role in the development and

regulation of the immune system (163). Intestinal barrier

dysfunction or increased intestinal permeability is a key

component in the development of MODS during sepsis (164).

PD-L1 is constitutively expressed in epithelial cells of the colon

and stomach, contributing to the interaction between epithelial cells

and lymphocytes in specific cases, participating in intestinal

mucosal inflammation, and regulating intestinal immune

tolerance (19). However, during sepsis, PD-L1 expression in

mouse intestinal epithelial cells (IECs) is significantly increased,

ileum permeability is increased, and tight junction (TJ) proteins

(claudin-1, occludin, and ZO-1 proteins) are lost, resulting in severe

intestinal injury (57, 165). Moreover, PD-L1 antibodies prevented

the development of colitis in mice (166).
5 Preclinical and clinical studies
targeting PD-L1 against sepsis

PD-1/PD-L1 has emerged as a critical player in the pathogenesis

of sepsis, and numerous treatment approaches targeting immune

checkpoints have shown a promising role of targeting PD-L1

against sepsis in preclinical and clinical studies (167–169).
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5.1 Effectiveness of PD-L1-targeted
treatments against sepsis

5.1.1 Preclinical studies
Several anti-PD-L1 antibodies have been used in tumor therapy

and achieved certain efficacy, including atezolizumab, avelumab,

and durvalumab (55, 91, 170–173). Meanwhile, a large number of

studies have shown that specific antibodies can also reverse the

negative effects of high PD-1/PD-L1 expression in sepsis, both in

terms of immunoparalysis and organ damage (66, 115, 136). Zhao

et al. demonstrated that the anti-human PD-L1 nanobody KN035

alleviated sepsis-induced spleen cell apoptosis, as well as lung and

liver injury in humanized mouse models. This led to an

improvement in the overall survival rate (162).

Additionally, regulation of the expression level of PD-L1 has

shown promising therapeutic potential. miR-142 can reduce CLP-

induced inflammation by targeting PD-L1 in macrophages, thereby

reducing sepsis (174). Shikonin, a PKM2 inhibitor extracted from a

herbal medicine, also significantly decreases the PD-L1 expression

on macrophages and alleviates various immune paralyzing factors

through PKM2 phosphorylation and the downregulation of nuclear

input (97). Farnesyl transferase inhibitor (FTI)-277, in a dose-

dependent manner, downregulated PD-L1 in spleen lymphocytes

of septic mice and mitigated sepsis-induced apoptosis of spleen

lymphocytes with nuclear factor-kB (NF-kB) (175). The nuclear

factor erythroid 2-related factor 2 (Nrf2) can interfere with the

induction of PD-L1 and inhibit the expression of PD-L1 in the later

stage of sepsis, to reduce the occurrence of immunosuppression in

sepsis (176). Ascorbic acid prevents sepsis-induced organ

dysfunction through the p-STAT1/PD-L1 signaling pathway

(177). Zusanli (ST36), Guanyuan (CV4), and Qihai (CV6)

acupoint electroacupuncture modulated the immune function of

sepsis patients through the PD-1/PD-L1 pathway and improved

clinical symptoms (169). Furthermore, adoptive transfer of bone

marrow-derived dendritic cells (BMDCs), niacinamide nucleoside

supplementation, fibronectin FN C-terminal heparin-binding

domain polypeptide (rhFNHC-36), glutamine (GLN),

recombinant enhancer of zeste homolog 2 (EZH2) inhibitor

GSK343, mitogen-activated protein kinase phosphatase 1 (Mkp-

1), mycophenolate mofetil (MMF), anti-ICAM (intercellular

adhesion molecule)-1 antibody and other methods have shown

improved survival rates in septic mice (178–184). Notably,

downregulation of PD-L1 expression has been observed in

these approaches.

The involvement of neutrophils in sepsis is notable, and more

and more studies showed that PD-L1 positive neutrophils were

crucial for the development of inflammatory and immunological

disturbance (173). The reduction in immunosuppression

subsequently decreased the apoptosis rate of T lymphocytes,

thereby improving the survival rate in septic mice (173). In

addition, b-glucan induces an increase in the production of the

chemokine CXCL1/2 by PD-L1, which leads to the accumulation of

bone marrow neutrophils, weakening the host’s ability to resist

fungal infection, and therefore can be used as a potential target for

the treatment of fungal sepsis (92). Treatment with anti-PD-L1
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antibodies or DNase I has been shown to attenuate the sepsis-

induced changes in the lungs and brains caused by neutrophils (136,

149, 185).

Sepsis is more prevalent in the elderly population (186–189).

The percentage of PD-1+ T cells and Tregs increased in elderly

patients with sepsis (190). Wang et al. found that combined

treatment with human growth hormone (Ghr) and human

growth hormone (GH) prevented the loss of spleen T cells in

elderly septic rats, thereby reducing lymphocyte apoptosis. This

treatment also inhibited an increase in Treg cell number and PD-1

expression (191). They further revealed that human Ghrelin and

GH can inhibit TGF-b production in a vagal-dependent manner,

thus correcting immunosuppression in elderly septic rats.

Treatment reduced PD-1 expression in the spleen of elderly septic

rats, increased human leukocyte antigen-DR (HLA-DR) expression,

alleviated lymphocyte reduction, and decreased caspase-3 levels

(161, 192, 193).

5.1.2 Clinical research
The area under ROC curve (AUC) of serum soluble PD-L1

(sPD-L1) combined with Sequential Organ Failure Assessment

(SOFA) score is known to be of considerable value in the

diagnosis of sepsis, and during the first week of ICU treatment,

sPD-L1 was a valuable predictor of severe sepsis and septic shock

severity and 28-day mortality (194–196). sPD-1 levels and CRP and

PCT levels were positively correlated, so the correlation between

sPD-1 and inflammatory markers may also serve as a potential

biomarker for the diagnosis of sepsis (197).

In the therapy aspect, A Phase 1b randomized study evaluated

the relevant aspects of Nivolumab (198). Nivolumab is a

monoclonal antibody targeting PD-1 and it is approved for the

treatment of various cancers (199–202). The study found that the

pharmacokinetic profile of Nivolumab (480 mg or 960 mg) resulted

in a receptor occupancy greater than >90% for at least 28 days, with

no evidence of worsening symptoms such as fever, shock, or

cytokine storms. Watanabe et al. found that when treated with

Nivolumab, there was an observed increase in absolute lymphocyte

counts and monocyte HLA-DR subtype expression levels over time

(203). The incidence of adverse events in the 480 mg and 960 mg

groups was reported as 80% and 50%, respectively. Notably, only

one drug-related adverse event was observed in the 480 mg group,

and no Nivolumab-related deaths occurred. In conclusion, a single

dose of 960 mg of Nivolumab demonstrated good tolerability and

maintained adequate blood concentration of the drug. Furthermore,

both the 480 mg and 960 mg doses of Nivolumab appeared to

improve immune system markers for the study (203). Moreover,

Zusanli (ST36), Guanyuan (CV4) and Qihai (CV6) acupoint

electroacupuncture can also regulate the immune function of

septic patients through PD-1 pathway and improve clinical

symptoms (169).

However, van den Haak et al. found that PD-1 suppression at a

single high dose of 480mg or 960mg of Nivolumab lasted for more

than 90 days in most cases, while the duration of sepsis was 7-10

days, so it may induce long-term immune-related side effects (204).

In contrast, a single dose of 20mg of Nivolumab (median 23 days
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and effective) may be more appropriate as a therapeutic dose for

sepsis. In addition, Hong et al. found that using selective beta-

blockers (especially atenolol) improved sepsis incidence and course,

significantly reduced serum sPD-L1 levels, and facilitated ROS-

induced NF-kB and STAT3 activation, thus down-regulating PD-

L1 expression on monocytes/macrophages (205). In addition, since

PD-1 inhibitors often require modification to improve stability,

poor modification may result in a higher incidence of irAEs than

PD-L1 inhibitors (206). And PD-1 inhibitors block both PD-1/PD-

L1 and PD-1/PD-L2 pathway simultaneously, thus reducing local

homeostasis of macrophages, which may also increase the incidence

of irAEs (207). But other studies have shown no significant

difference, and there is currently no comparison between the two

in the field of sepsis treatment (208, 209).
5.1.3 COVID-19
Coronavirus disease 19 (COVID-19) is a viral sepsis

characterized by lymphocytopenia, which is particularly

prominent in severe cases of COVID-19. One of the main

changes in these patients was the increased counts of neutrophils

and decreased counts of lymphocyte, thus the neutrophil-

lymphocyte-ratio is a potential marker of severity of COVID-19

(210–212). Additionally, co-inhibitory molecules such as PD-1, PD-

L1, cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), and T

cell immunoglobulin domain and mucin domain-3 (TIM-3) are

found to be overexpressed in CD4+ and CD8+ T cells, and high

levels of PD-L1 expression are associated with lymphocytopenia

and increased mortality in COVID-19 patients (211, 213).

Vitamin D is a potentially effective treatment for COVID-19

(214–217). It was reported that vitamin D reduced PD-L1 levels

when serum PD-L1 was very high, and vice versa (218). At the same

time, vitamin D can also reduce PD-L1 expression by reducing pro-

inflammatory cytokines such as IL-6, TNF-g, etc (219, 220). But

vitamin D supplementation also increased the expression of PD-L1

on Tregs, increased the depletion of T cells, and worsen the

immunoparalysis (221). Therefore, the use of vitamin D might be

a choice in treating COVID-19.

These findings suggested the potential use of anti-PD-1/PD-L1

antibodies in COVID-19 patients with or without cancer. Currently,

there are five clinical trials registered on clinicaltrials.gov aiming to

investigate the efficacy of anti-PD-1 antibodies in treating COVID-

19 (NCT04333914, NCT04268537, NCT04356508, NCT04343144,

NCT04413838). These studies include patients with metastatic and

advanced cancer who have also been affected by COVID-19, as well

as obese patients with COVID-19 infection. The trials aim to assess

the effectiveness of various anti-PD-1 antibodies, such as

nivolumab, either in combination with standard treatment

regimens (NCT04333914) or as standalone treatments (222).
5.2 Emerging approaches to address
current treatment challenges

Despite the accumulation of preclinical evidence demonstrating

the efficacy of various treatments, there is still a lack of robust
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clinical studies supporting their use. Immune checkpoint inhibitors

(ICIs) used in cancer treatment research have been associated with

immune-related adverse events (irAEs), such as rashes, colitis,

thyroiditis, and pneumonia (223–225). Additionally, ICIs can also

lead to systemic hyperinflammatory syndrome, although it is less

common (226). Therefore, it is evident that PD-1/PD-L1-related

treatments in sepsis may have similar side effects (227). The

therapeutic effect was related to the immune status and initial

pathogen load before treatment (228, 229). Studies have shown

that anti-PD-L1 treatment failed to improve survival rates in a fatal

Staphylococcus aureus pneumonia mouse model, but the exact

reason is unclear (230).

To improve the positive rate of clinical trials and reduce side

effects, many new ideas and attempts have been produced. For

example, the above-mentioned KN035 is derived from a single-

domain antibody with a lower molecular weight than normal

monoclonal antibodies, which may give it more favorable physical

and chemical properties, but the exact mechanism and effects are

still unknown (162).

Peptide immune checkpoint antagonists present a potential

alternative drug model. Unlike sustained blocking of the PD-1

pathway by antibodies, peptide-based therapies offer a rapid

pharmacokinetic profile that reduces the likelihood of irAEs. In a

mouse model of Candida albicans sepsis, Hotchkiss et al. evaluated

the efficacy of a novel short-acting anti-PD-L1 peptide called

compound 8, which demonstrated a twofold increase in survival

compared to the control group (231). Gutierrez et al. also reported

an effective peptide-based PD-1 checkpoint antagonist (LD01) that

significantly improved survival by enhancing macrophage

phagocytosis activity and T-cell production of IFN-g (232).
The lack of success in clinical trials may be attributed to the use

of animal models established using relatively uniform “inducers” in

genetically homogenous strains of laboratory animals, which do not

fully capture the pathophysiology of human sepsis and the

heterogeneity of patient populations. Heterogeneity in patient

factors such as genetic and social backgrounds, cause of sepsis,

personal medical history, and disease course (233). Accurate sepsis

diagnosis and clinical classification can help improve treatment

efficacy to some extent. For example, early administration of

Nivolumab 6mg/kg in combination with the antibiotic

meropenem fully alleviated bacterial sepsis when the initial

pathogen load was below 3,000 CFU/mL, but not when the initial

load was above 5,000 CFU/mL (229). Artificial intelligence (AI) may

also be valuable in this area. AI has shown a promising ability to

predict early-stage organ dysfunction, such as acute kidney injury

and ARDS, leading to improved outcomes (234). Furthermore, AI

has facilitated the unprecedented classification of four sepsis

subgroups based on big data analysis, which might guide a more

precision clinical treatment (12).
5.3 Role of PD-1/PD-L1 in
prognostic prediction

Besides its therapeutic effects, PD-1/PD-L1 pathway is also

promising in prognostic prediction both in terms of acquired
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immune cells and innate immune cells (235, 236). Li et al.

conducted a two-phase cohort study to assess the predictive effect

of PD-1 on 28-day mortality in sepsis patients (237). The analysis

included a total of 120 patients, with 58 patients in phase I (test set)

and 62 patients in phase II (validation set). The findings revealed

that the expression of PD-1 in Tregs and the Sequential Organ

Failure Assessment (SOFA) score were independent risk factors for

28-day mortality. Moreover, the expression of PD-1 on CD4+ and

memory CD8+ T cells and the PD-1/CD28 ratio in CD8+ T cells are

also significantly correlated with the severity and prognosis of sepsis

patients (238–241). Furthermore, Zeng et al. conducted a cohort

study involving 114 patients, demonstrating that the percentage of

PD-L1+ NK cell and the SOFA score were independent risk factors

for 28-day mortality (242). PD-L1 expression levels on monocytes,

DCs, and neutrophils combined with SOFA or APACHE II scores

have also been used to predict sepsis mortality (90, 142, 243–245).
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Overall, the evaluation of PD-1 and PD-L1 expression in immune

cells is promising in prognostic prediction for sepsis patients. These

markers, along with traditional factors such as SOFA score, provide

valuable insights into patient outcomes, allowing for tailored

treatment strategies and improved clinical decision-making.
6 Conclusions

PD-1/PD-L1 is known to play a crucial role in the occurrence

and development of sepsis, affecting the functionality of various

immune cells and the release of immune factors, which leads to dual

functional abnormalities in innate and acquired immunity (241,

246, 247). During sepsis, the expression levels of PD-1/PD-L1 on T

lymphocytes, B lymphocytes, neutrophils, macrophages, myeloid

suppressor cells, and exosomes show significant differences
TABLE 1 Existing sepsis clinical studies (PD-1/PD-L1 related).

NO.
Study
type

Research
objective

Intervention mode
Registration
number

Phase
Sample
size*

Reference

1
Intervention
study

treatment Nivolumab JapicCTI-173600 1/2 15
(203)

2
Intervention
study

treatment Nivolumab NCT02960854 1b 31
(198)

3
Intervention
study

treatment GNS561, monalizumab, avdoralimab NCT04333914 II 19
/

4
Intervention
study

treatment
PD-1 blocking antibody+ standard treatment,
Thymosin+ standard treatment

NCT04268537 II 120
/

5
Intervention
study

treatment Nivolumab NCT04356508 II 15
/

6
Intervention
study

treatment Nivolumab NCT04343144 II 92
/

7
Intervention
study

treatment Nivolumab NCT04413838 II 120
/

8
Observational
study

Prediction / / / 91 + 29
(236)

9
Observational
study

Prediction / / / 120
(237)

10
Observational
study

Prediction /
2020ZDSYLL041-
Y01

/ 30
(240)

11
Observational
study

Prediction / 2021583 / 48 + 20
(241)

12
Observational
study

Prediction / NCT02188992 / 406
(252)

13
Observational
study

Prediction / / / 210
(253)

14
Observational
study

Prediction / / / 70 + 17
(142)

15
Observational
study

Prediction / / / 177
(244)

16
Observational
study

Prediction / / / 114
(242)

(Continued)
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compared to the control group, resulting in immunoparalysis (248–

250). PD-1/PD-L1 may mediate the damage and dysfunction of

organs such as the lung, liver, brain, kidney, spleen, and intestines in

sepsis, although the specific mechanism requires further

investigation (141, 251). While many preclinical and preliminary

studies (Table 1) on PD-1/PD-L1 have shown promising results,

large-scale clinical studies are warranted to confirm its therapeutic

effect against sepsis (257).
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