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Tolerogenic dendritic cells in
radiation-induced lung injury
Benbo Liu, Yilong Wang*, Gencheng Han and Maoxiang Zhu*

Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
Radiation-induced lung injury is a common complication associated with

radiotherapy. It is characterized by early-stage radiation pneumonia and

subsequent radiation pulmonary fibrosis. However, there is currently a lack of

effective therapeutic strategies for radiation-induced lung injury. Recent studies

have shown that tolerogenic dendritic cells interact with regulatory T cells and/or

regulatory B cells to stimulate the production of immunosuppressive molecules,

control inflammation, and prevent overimmunity. This highlights a potential new

therapeutic activity of tolerogenic dendritic cells in managing radiation-induced

lung injury. In this review, we aim to provide a comprehensive overview of

tolerogenic dendritic cells in the context of radiation-induced lung injury, which

will be valuable for researchers in this field.
KEYWORDS

radiation-induced lung injury(RILI), tolerogenic dendritic cells(tolDCs), regulatory T
cells(Tregs), regulatory B cells(Bregs), inflammation
1 Introduction

Radiation-induced lung injury (RILI) refers to any damage to the lungs caused by

exposure to ionizing radiation (1, 2). The recent Fukushima nuclear sewage incident has

raised significant concerns regarding its impact on human health (3, 4). Since the lung is a

radiation-sensitive organ, nuclear pollution can potentially lead to radioactive damage in

the lungs (5, 6). Clinical manifestations of RILI are typically divided into two stages:

pneumonia in the early stages and pulmonary fibrosis in the late stages (7–9). However, the

pathological process of RILI is complex, and the molecular mechanism underlying its

development remains poorly understood. Currently, there are no specific therapeutic drugs

available for this condition.

Recently, numerous studies have demonstrated the potential of dendritic cell (DC)-

based therapy as a promising treatment for diseases associated with lung injury (10–13).

DCs, which are strategically located between the airway epithelial cells and the matrix, are

known for their strong antigen-presenting abilities and immune monitoring of the lungs

(14, 15). DCs are a heterogeneous group of myeloid-derived cells that can be found in

almost all tissues (16, 17). When there is an invasion of pathogens or tissue inflammation,
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DCs quickly migrate to the damaged tissue site, process antigens,

and present them to T lymphocytes, thereby bridging the innate

immune response and adaptive immunity (18). Indeed, DCs have

diverse functions and plasticities within the immune system. They

have been extensively studied in various fields such as autoimmune

diseases, inflammation, cancer, and fibrosis in different organs

including the lungs, liver, kidneys, and heart (19–21).

Recent studies have also highlighted the role of tolerogenic DCs

(tolDCs) in negatively regulating the immune response and

maintaining immune tolerance. They promote the elimination of

autoreactive immature T-cells in the thymus and induce immune

tolerance in the periphery by interacting with T-cells, leading to T-

cell deletion, T-cell incompetence, and differentiation of regulatory

T-cells (Treg) subgroups (22–24). Based on the available evidence,

there has been an increasing interest in exploring the therapeutic

potential of tolDCs for the management of radiation-related

diseases. Here, we review the latest developments in the potential

application and treatment mechanisms of tolDCs in RILI.

Specifically, we focused on the immunosuppressive effects of

tolDCs, which may represent an important therapeutic advantage

in the treatment of RILI and pave the way for clinical trials.
Frontiers in Immunology 02
2 Pathogenesis of RILI

RILI is a complex pathological process that involves multiple

cells. Following radiation exposure, acute exudation occurs in the

lungs, which is characterized by inflammatory cell infiltration,

varying degrees of transparency in small arteries, fibrous

thickening, alveolar edema filled with exudate, and collagen

fibrous hyperplasia. It is important to note that this process is

irreversible (25, 26). However, the precise molecular mechanism of

RILI remains unclear. So far, the existing research, both domestic

and foreign, has mainly focused on a few key areas. These areas

include the generation of reactive oxygen species (ROS), direct

damage to target cells, and activation of the immune system, as

shown in Figure 1.

When ionizing radiation is applied to lung tissue, it ionizes

water molecules and generates a significant amount of ROS (27–29).

These ROS can damage the DNA, proteins, and lipid membranes of

target cells. If the damage is not promptly repaired, it can lead to

oxidative stress damage. Research has shown that oxidative stress

damage can still be detected weeks or even months after the

completion of radiotherapy (30). Moreover, these persistent ROS
FIGURE 1

Pulmonary tissue undergoes changes following irradiation. When ionizing radiation is applied to lung tissue, it ionizes water molecules and generates a
significant amount of ROS. These persistent ROS can exacerbate damage to target cells such as alveolar epithelial cells and vascular endothelial cells.
The damaged target cells then release inflammatory cytokines and chemokines. Additionally, imDCs located between the pulmonary epithelium and
interstitium promptly migrate to the site of injury. They not only enhance T-cell activity, but also activate and mobilize other immune cells. As a result,
the immune system becomes abnormally activated. Inflammatory cells and fibrosis-associated cells are activated and infiltrate the interstitium.
Eventually, the epithelium undergoes the EMT process, and fibroblasts differentiate into myofibroblasts, leading to excessive collagen deposition.
Ultimately, this excessive collagen deposition contributes to the development of pulmonary fibrosis. IR, ionizing radiation;ROS, reactive oxygen species;
imDCs, immature dendritic cells; AT1 cells, alveolar type 1 cells; AT2 cells, alveolar type 2 cells; EMT, epithelial-mesenchymal transition.
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can worsen the damage to target cells and perpetuate lung lesions

(31–33).

According to extensive research, vascular endothelial cells and

alveolar epithelial cells have been identified as the main target cells for

RILI (34, 35). In the early stages after radiation exposure, vascular

endothelial cells exhibit increased vascular permeability and

inflammatory exudation (33). As the duration of irradiation and

the dose of radiation increase, vascular endothelial cells undergo

rupture and detachment, leading to platelet attachment and resulting

in capillary embolism and fibrosis (36–38). Type I alveolar epithelial

cells, which lack the ability to proliferate, undergo direct necrosis or

apoptosis following irradiation. Damage to type II alveolar epithelial

cells can trigger excessive proliferation of fibroblasts, leading to

fibrosis (39–41). Moreover, the abnormal proliferation of type II

alveolar epithelial cells reduces the secretion of alveolar surface-active

substances, resulting in decreased alveolar surface tension and

causing pulmonary tissue edema and atelectasis (42, 43).

Of note, damaged alveolar epithelial cells and vascular

endothelial cells also secrete various cytokines, including tumor

necrosis factors (TNF-a) involved in local injury and inflammatory

response, transforming growth factor b-1 (TGF-b1) that promotes

tissue repair and organ fibrosis, platelet-derived growth factor

(PDGF), interleukins (IL-1b, IL-6, IL-8, IL-10), and monocyte

chemotactic peptides (32, 44, 45). Among them, some studies

have shown that TGF-b1-based CRISPR/Cas9 gene therapy

improves lung tissue pathological damage, reduces the secretion

and expression of inflammatory factors, and ultimately inhibits the

progression of radiation fibrosis (46).

More importantly, the immune system, which serves as the

body’s primary defense against external damage, has been

extensively studied and found to play a crucial role in the onset

and progression of RILI (47). Among the various components of the

immune system, DCs are the most potential professional antigen

presenting cells and play a dominate role in immune system as

commanders during RILI. In the early stages of RILI, immature DCs

(imDCs) situated between the pulmonary epithelium and

interstitium promptly detect endogenous damage-associated

molecular patterns (DAMPs) released from damaged or dying

cells through their surface pattern recognition receptors (PRRs)

(48–53). They swiftly migrate to the site of injury and initiate an

initial immune response by efficiently capturing, processing, and

presenting antigens to T-cells in nearby lymph nodes (54). T-cells

play a crucial role in the immune system as communication experts.

They activate B-cells, which release a large number of antibodies

and contribute to the ultimate defense (55–57). Furthermore, DCs

secrete cytokines and growth factors to enhance and regulate

various immune responses, including those of macrophages, mast

cells, NK cells, and cytokine-induced killer (CIK) cells (58–60).

Simultaneously, these activated immune cells release high levels of

pro-inflammatory cytokines, including IL-1b and TNF-a, as well as
chemokines like chemokine C-C-motif ligand 1 (CCL1). These

cytokines further stimulate fibroblasts to differentiate into

myofibroblasts, leading to excessive collagen deposition (61–63).

Ultimately, this excessive collagen deposition contributes to the

development of radiation-induced pulmonary fibrosis (64–66).
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However, several subsets of DCs have been discovered with the

development of DC studies on lung tissue. It is crucial to note that

these different subgroups of pulmonary DCs exhibit a division of

labor. Therefore, it is necessary to gain a deeper understanding of

the biological and functional characteristics of pulmonary DCs to

identify a specific subset of DCs that plays a pivotal regulatory role

in RILI.
3 The phenotype of heterogeneous
DC subsets of the lung

DCs are the primary antigen-presenting cells in the lung tissue

and are crucial for the immune response to RILI (67–69). Within

the lung tissue, DCs are categorized into three main types:

conventional DCs, plasmacytoid DCs, and monocyte-derived

DCs, as shown in Table 1.

Notably, it has been reported that many conventional DCs

(cDCs) are located in the mucous membranes of the airway ducts

(107–109). These cells extend pseudopods between epithelial cells to

capture antigens present within the airway cavity (102, 110, 111).

Based on their functional differences, cDCs are further categorized

into two subsets: cDC1 and cDC2. Among them, mice and humans

cDC1 have been observed to exhibit a high degree of cross-

presentation ability, effectively stimulating CD8+ T-cells in

response to extracellular antigens like those found in bacteria and

viruses (70, 71). These cells are known to secrete IL-12, type I, and

III interferons (IFNs), and are believed to facilitate Th1-assisted T-

cells and natural killer responses (72, 73). Some well-known

markers for cDC1 include CD8a, CLEC9A,CD103, CD11c,

CD141, and XCR1. Additionally, cDC2, which is the primary

subset of DC found in the blood, tissues, and lymphatic organs,

has been demonstrated to stimulate Th2 and Th17 auxiliary T-cell

responses (74, 75). Moreover, cDC2 has been found to have several

regulatory effects, such as the induction of Tregs in lung tissue and

the maintenance of tolerance in the same tissue (76). Common

markers used to identify cDC2 include CD1c, CD207, CD11b,

NOTCH2, and SIRPa . However , recent evidence has

accumulated, indicating that cDC2 is not a homogeneous

population, but rather consists of two distinct subsets: cDC2A

and cDC2B (77). These subsets are differentiated based on the

expression levels of two key transcription regulators, T-bet and

ROR-ƴt (77). The cDC2A subset demonstrates an anti-

inflammatory function (78), while the cDC2B subset exhibits pro-

inflammatory properties (78–80). Consequently, the cDC2 subsets

have significant implications in maintaining lung tissue

homeostasis and regulating immune responses. Of note,

AXL+Siglec6+ DCs (AS DC), the precursor to mature cDC2, can

potentially transition to this subset through the influence of two key

regulators, AXL and Siglec6 (CD327) (81). It has been reported that

this subset strongly stimulates T-cell response in lung tissue (82).

Plasmacytoid DCs (pDCs) undergo direct maturation from

common DC progenitors (CDPs) in the bone marrow and

subsequently migrate to the blood and surrounding lymphoid

tissue (83). These round plasmacytoid cells are present in lower
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numbers compared to regular cells. pDCs are known for their ability

to rapidly produce cytokines such as type I and type III IFNs (84–

88), which makes them a crucial subset for managing RILI. pDCs

also express major histocompatibility complex II (MHC II) and

may function as antigen-presenting cells (89–92). There are

different subsets of pDCs, including one population characterized

by high expression of CD2, which has been observed to specifically

induce CD4+ T-cell proliferation (93–95). Additionally, upon

stimulation, pDCs have been reported to activate CD8+ T-cells

(96–98). Currently, the primary markers used to identify pDCs

include CLEC4C, LILRB4, NRP1, CCR7, B220 (in mice), and

SiglecH (in mice).

Monocyte-derived DCs (moDCs) are a DC subset that has been

gaining attention due to their strong impact on adaptive immune

function and their rapid accumulation in response to an

inflammatory stimulus (99–101). Initial studies have primarily

focused on the infection aspect of moDCs. However, their

significance in RILI is now being increasingly acknowledged.

Indeed, moDCs have been observed in human lung mucosal

tissue as well as in inflammatory settings (102). In such settings,

they are often referred to as ‘pneumonic DCs’ and are generated

from monocytes that are recruited from the blood to the lung tissue

during inflammation. Although this particular subpopulation

exhibits dendrite morphology, it also possesses the genetic

signature of moDCs in vitro. Hence, it is generally accepted that

moDCs are produced as part of the inflammatory response, and this

subgroup plays a role in promoting CD4+ T-cells to generate a Th17

immune response (105, 106). Currently, reported moDC markers

include CD14, CD206, CD209, SIRPa, CD11b, and CD1a.
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Taken together, DCs are heterogeneous populations. Therefore,

future research should focus on linking the phenotypic features of

different DC subsets to the known functions of their biology,

especially when considering clinical applications based on DCs.
4 Balancing immunity and tolerance
by pulmonary DCs in RILI

DCs play a crucial role in maintaining a balance between

immunity and tolerance (112–114). They act as messengers in the

occurrence and development of respiratory diseases (115–117).

Additionally, they serve as sensors and tolerant gatekeepers for

airway mucosa pathogens (118–120). This multifunctional cell type

combines innate signaling mechanisms such as pattern recognition

and early inflammatory mediators with adaptive immune

responses, including T-cell priming and Treg induction (121,

122). Ionizing radiation disrupts the balance between effector

immunity and regulatory immunity in lung tissue, leading to

alterations in the behavior of DCs in response to these

changes (Figure 2).

Ionizing radiation induces a cascade of cellular and molecular

changes in lung tissue, leading to the release of numerous cytokines,

chemokines, and growth factors (123–125). These substances

attract immune cells, resulting in the formation of a

microenvironment within the lung tissue. Within this

microenvironment, immature DCs (imDCs) and their precursors

can be activated by various factors, including those from intrinsic

immune cells, to differentiate into mature cells with distinct
TABLE 1 Subsets and functions of pulmonary DC populations.

Subsets General functions
in lung tissue

Transcription
factor

Key markers
(human)

Ref.

cDC1 Effectively stimulates CD8+ T-cells in response;facilitates Th1-assisted
T-cells and natural killer responses

BATF3, ZEB2, IRF8,
PU.1, FIT3L,
ZBTB46, ID2

CD8a, CLEC9A, CD103, CD11c,
CD141, XCR1

(70–73)

cDC2 Regulates Th2 and Th17 auxiliary T-cell responses IRF4, NOTCH2, KLF4,
ZEB2, PU.1, FIT3L,
ZBTB46, ID2

CD1c, CD207, CD11b,
NOTCH2, SIRPa

(74–76)

cDC2A Exerts anti-inflammatory potential T-bet, Runx3, SREBF2 CD5 (77, 78)

cDC2B Exerts pro-inflammatory potential RORƴt, CEPBA CD14,CD163 (78–80)

AS DC stimulates T-cells response ZEB2, IRF4, IRF8, KLF4,
PU.1, FIT3L

AXL,Siglec6 (CD327) (81, 82)

pDC Rapidly produce cytokines such as type I and type III interferons;
activates CD8+ T-cells

IRF4, IRF8, ZEB2,
PU.1, FIT3L, TCF4

CLEC4C, LILRB4, NRP1, CCR7,
B220 (in mice), SiglecH
(in mice)

(83–98)

moDC Promotes CD4+ T-cells to generate a Th17 immune response MAFB, KLF4 CD14, CD206, CD209, SIRPa,
CD11b, CD1a

(99–106)
cDC1, conventional type 1 dendritic cell; BATF3, basic leucine zipper transcriptional factor ATF-like 3; ZEB2, zinc finger E-box binding homeobox 2; IRF8, interferon regulatory factor 8; PU.1,
Spi-1 proto-oncogene; FIT3L, Fms-related tyrosine kinase 3 ligand; ZBTB46, zinc finger and BTB domain containing 46; ID2, inhibitor of DNA binding 2; CLEC9A, C-type lectin domain
family 9 member A; XCR1,chemokine (C motif) receptor 1; NOTCH2, Notch homolog 2; KLF4, kruppel like factor 4; SIRPa, signal regulatory protein alpha; T-bet, T-box transcription factor,
TBX21; Runx3, runt-related transcription factor 3; SREBF2, sterol regulatory element binding transcription factor 2; RORƴt, retinoic acid-related orphan receptor gamma t; CEBPA, CCAAT/
enhancer binding protein (C/EBP), alpha; AXL, receptor tyrosine kinase; CLEC4C, C-type lectin domain family 4 member C; LILRB4,Leukocyte immunoglobulin-like receptor
subfamily B member 4; NRP1-1, Neuropilin-1; CCR7, C-C chemokine receptor type 7; TCF4, transcription factor 4; MAFB, transcription factor MafB; pDC, plasmacytoid DC.
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phenotypes and functions (50, 126). Therefore, TNF-a, IFN-g,
thymic stromal lymphopoietin(TSLP), IL-15, IL-10, chemokine C-

C-motif ligand 19 (CCL19) and chemokine CXC-motif ligand 4

(CXCL4) differentiated DCs into TNF-DCs, IFN-DCs, TSLP-DCs,

IL-15-DCs, IL-10-DCs, CCL19-DCs or CXCL4-DCs, respectively.

These distinct phenotypes and functions of DCs play a crucial role

in shaping different types of T-cell immunity. For example, TSLP-

DCs develop T-cells into inflammatory type 2 cells, secreting large
Frontiers in Immunology 05
amounts of TNF and type 2 cytokines (127). IL-10-DCs promote

the development of IL-10-secreted Treg (128). IFN-g-DCs promote

effective T-cell response by upregulating IL-12 secretion (129).

CXCL4-DCs enhance the proliferation of autologous CD4+ T-

cells and CD8+ T-cells and the production of IFN-g and IL-4

(130, 131).

In light of the available evidence, we suggest that imDCs and

their precursors possess remarkable functional plasticity, enabling
FIGURE 2

DC phenotypes and functions undergo alterations in response to the microenvironment of lung tissue induced by ionizing radiation. The intrinsic
immune cells are stimulated by ionizing radiation to release various soluble factors including TNF-a, IFN-ƴ, TSLP, IL-15, IL-10, CCL19, and CXCL4.
These factors subsequently promote the differentiation of imDCs and their precursors into infDCs and tolDCs. This cascade of events further
impacts other immune cells, ultimately disrupting the delicate balance between immunity and tolerance. DC, dendritic cell; IR, ionizing radiation;
TNF-a, tumor necrosis factors; IFN-ƴ, interferons gama; TSLP, thymic stromal lymphopoietin(TSLP); IL-10, interleukin 10; CCL19, chemokine C-C-
motif ligand 19; CXCL4, chemokine CXC-motif ligand 4; imDCs, immature DCs; infDCs, inflammatory DCs; tolDCs, tolerogenic DCs.
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the intrinsic immune system to modulate the specific immune

system. Additionally, this process gives rise to two types of DCs:

inflammatory DCs (infDCs) that initiate positive immune cell

responses (132, 133), and tolDCs, which elicit negative regulatory

immune responses and contribute to the maintenance of immune

tolerance (134). As a result, the outcome of various inflammatory

diseases is determined by the conflict between the exaggerated

immune response activated by infDCs and the immune response

negatively regulated by tolDCs. Collectively, conducting

comprehensive research on the potential application mechanisms

of tolDCs could offer a promising and innovative approach to

treating RILI.
5 Potential mechanisms of tolDC-
based therapy for RILI

Accumulating clinical studies have demonstrated that breast

cancer patients who receive unilateral chest wall radiotherapy

exhibit a notable presence of activated lymphocytes in bilateral

alveolar lavage (135). This finding suggests that the observed

inflammatory change in RILI is not solely caused by tissue injury,

but rather involves an exaggerated immune response of T and B-

cells. Specifically, infDCs activate multiple immune cell

inflammatory response processes in various diseases. Initially, the

focus of understanding DCs in RILI was on this group. However,

recent evidence indicates that tolDCs also play a crucial role in

regulating inflammation and preventing excessive immune
Frontiers in Immunology 06
response-induced damage to lung tissue. Therefore, there is

potential for utilizing tolDCs to address immune disorders in

RILI through the following aspects (Figure 3):

TolDCs play a significant role in suppressing immune responses

through various mechanisms, including the production of cytokines

and cell-cell contact. Several studies have demonstrated that certain

anti-inflammatory cytokines, including TGF-b and IL-27, secreted

by various tolDCs, play a role in promoting the production of Tregs

and stimulating the secretion of IL-10 (136). Besides, tolDC also

promotes the Bregs to produce IL-10, TGF-b, and to some extent,

IL-35, and further inhibit antigen-specific CD8+ T-cells in

inflammation and autoimmune diseases (137–139). On the other

hand, growing evidence has demonstrated that tolDCs exhibit

limited capacity for cross-expression and low co-stimulation

molecular phenotypes (140–142). In the absence of these co-

stimulation signals, T-cells are unable to produce IL-2 and

undergo further proliferation when they interact with tolDCs

through the recognition of antigens presented by MHC via T-cell

receptors (TCR) (143). As a result, the overreaction of T-cells in

RILI is eventually blocked.

Of note, tolDCs express programmed cell death 1 ligand 1(PD-

L1) and PD-L2, which bind with programmed cell death protein 1

(PD-1) in T-cells (144, 145). This interaction leads to the

recruitment of SH2-containing inositol phosphatase 1(SHP-1)

and SHP-2, instead of activating the TCR and CD28 signaling

pathway. As a result, tolDCs induce clonal incompetence and

promote the differentiation of Tregs, ultimately leading to

tolerance in RILI. Furthermore, the study revealed that the
FIGURE 3

Some mechanisms about tolDCs for RILI in current research. The main methods to apply tolDCs in RILI are shown in the picture. TolDCs can
regulate multiple signaling molecules, which protect pulmonary cells. TolDCs inhibit leukocyte infiltration and regulate leukocyte function. TRAIL,
TNF-related apoptosis-inducing ligand; FasL, fas ligand; TGF-b, transforming growth factor beta; Treg, regulatory T-cells; Breg, regulatory B cell;
Teff, effector cells;PD-L1, programmed cell death 1 ligand 1; PD-1, programmed cell death protein 1;CTLA4, cytotoxic T-lymphocyte-associated
protein 4.
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interaction between TNF-related apoptosis-inducing ligand

(TRAIL) in human DCs and T-cell death receptors can induce T-

cell apoptosis by activating caspase. Likewise, the fas ligand (FasL)

present on the surface of tolDCs binds to the upregulated Fas during

T-cell activation, thereby promoting T-cell apoptosis (146).

In general, these findings demonstrate that tolDCs are capable

of interacting with Tregs and Bregs, thus forming a feedback loop of

tolerance. This means that once a regulating group initiates a

tolerance signal, it can be sustained and enhanced through the

aggregation of other cell groups. Therefore, tolDCs can be

considered as a potential treatment option for radioactive lung

injury, particularly during the initial stages of pneumonia. However,

limited information is available regarding the origin of tolDCs.
6 In vivo and in vitro generated tolDCs

In 1998, Steinman made a discovery that highlighted the dual

role of DCs. While primarily involved in T-cell immune responses,

DCs also have the paradoxical effect of inducing tolerance to

autoantigens (147, 148). Subsequent research has revealed that a

specific subset of DCs, known as tolDCs, possess functions that can

inhibit T-cell profiles or induce Treg (149). According to domestic

and foreign reports, the acquisition of tolDCs primarily involves the

following aspects:

First, the stromal environment, particularly in the bone

marrow, spleen, lung, kidney, and liver, contributes to the

induction of tolDCs. The study revealed that co-culturing DCs

with spleen stromal cells resulted in a negative immune function

(150). Furthermore, co-culturing mesenchymal stem cells (MSCs)

with imDCs or mature DCs (mDCs) resulted in the generation of a

distinct subset of tolDCs (150). These tolDCs exhibited reduced

expression of costimulatory molecules, decreased levels of IL-12,

and increased levels of TGF-b and IL-10. Importantly, these

changes were not reversed when the tolDCs were stimulated with

lipopolysaccharides (LPS), indicating sustained immune toleration

(151, 152).

Second, some drugs or chemical agents have been found to

induce tolDCs. These drugs including immunosuppressants like

sirolimus, tacrolimus, cyclosporin, and motidimethylphenol, have

been shown to affect the expression of molecules such as CD40,

CD80, and CD86 on the surface of DCs, with sirolimus having the

most significant impact (144, 153, 154). In addition, numerous

studies have shown that the immunomodulatory effect of vitamin

D3 is achieved by binding to the vitamin D receptor expressed by

DCs, whose immunosuppressive effect manifested as down-

regulation of CD80, CD86, CD40, lower IL-12, and higher IL-10,

thus inhibiting differentiation and maturation of DCs (155–158).

Third, genetic engineering technology was employed to modify

the genes of DCs, preventing their transformation into mDCs and

inducing them to secrete inhibitory cytokines, thereby functioning

as tolDCs. The previous study has found that in vitro, adenovirus

vectors are used to modify imDCs, which expressed cytotoxic T

lymphocyte-associated antigen-4 (CTLA-4) and low levels of CD86,

eventually differentiated into tolDCs (140, 159–163).
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Fourth, it has been observed that anti-inflammatory cytokines

or chemokines have the ability to stimulate imDCs or DC precursor

cells to differentiate into tolDCs. The study has shown that the

induction of anti-inflammatory cytokines, such as IL-37, TGF-b,
prostaglandin E2 (PGE2), and TNF-a, can stimulate the enzyme

activity of indoleamine 2,3-dioxygenase (IDO) in DCs, resulting in

the generation of tolDCs (164–168). In addition, recent studies have

shown that anti-inflammatory chemokines can transform into

tolDCs by binding to their receptors. Azzaoui et al. (169)

discovered that the chemokine CCL18, through an IL-10-

mediated mechanism, is dependent on the production of IDO to

differentiate DCs into tolerogenic cells capable of activating Tregs.

Taken together, with the recognition of tolDCs, there is an

increasing focus on finding a quick and efficient acquisition method.

This method will play a crucial role as a therapeutic tool in the

future. The successful application of tolDCs in the clinical treatment

of RILI will depend on the rational use and selection of

appropriate access.
7 Conclusion

RILI is a serious and complex lung disease characterized by the

infiltration of cytokines secreted by various inflammatory cells.

However, tolDCs have the potential to regulate immune cell

response and promote the production of anti-inflammatory factors,

thereby maintaining immune balance. While tolDC-based therapy

has shown promise in treating RILI in recent studies, further research

is required to determine its safety, optimal dosage, and treatment

timing. At present, genetically modified organism (GMO) tolDCs

have garnered significant interest from experts in the field and could

potentially serve as the next advancement in the development of

novel therapeutic strategies. In essence, tolDC therapy holds immense

promise for the treatment of RILI.
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