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Growth differentiation factor 11 (GDF11) is one of the important factors in the

pathophysiological process of animals. It is widely expressed in many tissues and

organs of animals, showing its wide biological activity and potential application

value. Previous research has demonstrated that GDF11 has a therapeutic effect

on various diseases, such as anti-myocardial aging and anti-tumor. This has not

only sparked intense interest and enthusiasm among academics but also spurred

some for-profit businesses to attempt to develop GDF11 as a medication for

regenerative medicine or anti-aging application. Currently, Sotatercept, a GDF11

antibody drug, is in the marketing application stage, and HS-235 and rGDF11 are

in the preclinical research stage. Therefore, we believe that figuring out which

cells GDF11 acts on and its current problems should be an important issue in the

scientific and commercial communities. Only through extensive, comprehensive

research and discussion can we better understand the role and potential of

GDF11, while avoiding unnecessary risks and misinformation. In this review, we

aimed to summarize the role of GDF11 in different cells and its current

controversies and challenges, providing an important reference for us to

deeply understand the function of GDF11 and formulate more effective

treatment strategies in the future.
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1 Introduction

Growth differentiation factor 11 (GDF11) is a secreted protein cloned from dental pulp.

In 1956, Clive McCay fused the blood circulation systems of young mice with those of old

mice by establishing a “parabiosis” system. The results showed that the old mice began to

“reverse growth”, whereas the young mice began to age before they were old. The news

immediately caused an uproar in the scientific community; however, at this time the

underlying mechanism of the phenomenon was not elucidated. In 2013, Wagers team

offered a possible explanation for this “reverse growth” phenomenon. They reported that

the systemic levels of GDF11 decreased significantly in older mice compared with those in
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younger mice. When GDF11 was injected into old mice, heart

failure, cerebrovascular depletion, and skeletal muscle dysfunction

due to aging were significantly improved (1–3). Since then, GDF11

has become a known growth factor. However, these results were

later challenged by studies showing that blood GDF11 levels in

aging animals were on the rise. Restoring GDF11 levels exhibited no

significant effect on cardiac functions and structures, and skeletal

muscle function in aging animals was impaired (4–6). Subsequently,

both positive and negative effects of GDF11 were reported one

after another.

GDF11 was first reported in 1999 and is considered to be a

crucial signaling molecule in embryonic development (7). Since

then, its different functions have been gradually discovered. Studies

have shown that GDF11 is associated with physiological and

pathological processes, such as tumor growth (8–10), organ

development (11–13), aging (14–16), and nervous system (17–

19). GDF11 has powerful physiological functions. However, with

the advancement of research, the controversial information on

GDF11 has increased. Therefore, to better investigate the role of

GDF11 and increase its applicability, we summarized the role

of GDF11 in different cells and the development of drugs

targeting GDF11, hoping to provide an important reference for us

to deeply understand the function of GDF11 and formulate more

effective treatment strategies in the future.
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2 Discovery and formation of GDF11

GDF11 was first amplified from the pulp of a mouse incisor

using a reverse transcriptase chain reaction by Nakashima et al. (7).

The peptide segment in the mature region shared 90% homology

with growth differentiation factor 8 (20). The formation of GDF11

is mainly divided into the following two steps: First, the mRNA of

GDF11 is initially translated to form a precursor protein, which is

hydrolyzed by the proteolytic enzyme proprotein convertase

subtilisin/kexin 5 (PCSK5) to form a non-covalently bonded

latent complex. The complex is then activated by the metal-

proteinases of the development-related BMP1/Tolloid family to

form mature GDF11 after being cleaved at specific sites (Figure 1)

(21, 22).
3 The role and controversy of GDF11
in different cells

3.1 Cancer cells

GDF11 can inhibit the growth of some tumors; however, it has

the opposite role in other tumors (Figure 2A). For instance, GDF11

levels are increased in colon cancer (23), breast cancer (24), oral
FIGURE 1

The formation process of growth differentiation factor 11 (GDF11). The precursor protein of GDF11 is hydrolyzed by proprotein convertase subtilisin/
kexin 5/(PCSK5), which removes the preregion sequence of the precursor protein and forms a non-covalently linked latent complex. It is then
sheared by BMP1/Tolloid family astacin metalloproteases to form mature GDF11 (21, 22).
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squamous cell carcinoma (25), and melanoma (26, 27). The

upregulation of GDF11 can promote the occurrence and

development of related tumors. In liver cancer (28, 29),

pancrea t i c cancer (8) , esophagea l cancer (30) , and

cholangiocarcinoma (31), the expression of GDF11 is

downregulated. However, when GDF11 is overexpressed, the

progression of the above tumors is inhibited. Furthermore, lung

cancer is the most common cancer, and only two studies have

shown whether GDF11 exerts a therapeutic effect on it. Among

them, Marini et al. showed that GDF11 plays an important role in

the development of congenital platinum resistance in lung

adenocarcinoma. They reported that inhibiting GDF11 expression

can effectively overcome the development of intrinsic platinum

resistance in lung adenocarcinoma (32). Contrastingly, a study by

Lim et al. reported that GDF11 is not a reliable biomarker for

predicting the effectiveness of platinum-based chemotherapy for

advanced non-small cell lung cancer because no significant

correlation was found between its overexpression and the overall

survival of patients (33). Therefore, it can be concluded that the role

of GDF11 in different types of cancer is different.
3.2 Cardiomyocytes

Recently, the most controversial issue of GDF11 has been its age-

related expression and anti-aging role. Wagers team reported that

GDF11 expression was downregulated with age, and exogenous

administration of GDF11 can reverse age-related cardiac

hypertrophy (1). Subsequently, the team reported that GDF11 can

repair damaged skeletal muscle and reverse age-related cognitive

dysfunction (2, 3). However, based on western blotting, RNA

expression, and GDF11-specific immunoassay, Egerman et al.

reported that GDF11 expression in the blood may actually increase
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with age (6). Meanwhile, when they regularly injected GDF11 into

mice with bone injuries, and found that GDF11 did not induce

muscle regeneration (34). Similarly, Hinken et al. reached the same

conclusion as that by Egerman et al. and they unanimously overruled

the argument by theWagers team that GDF11 can reverse age-related

skeletal muscle and stem cells dysfunction (35). These findings

contradict the report by the Wagers team that the expression of

GDF11 in the blood decreases with age and promotes muscle stem

cells regeneration. Furthermore, Smith et al. reported that GDF11 did

not save the pathologic myocardial hypertrophy associated with aging

but accelerated the aging process (4). Harper et al. reported that

GDF11 decreases pathological hypertrophy during stress overload

(36). These findings are contrary to those of the Wagers team. In

response, the Wagers team consistently explained that Egerman et al.

mistakenly identified the immunoglobulin bands as GDF11 bands,

and the immunoglobulin increases with age (37). Moreover, the

inconsistency with the results obtained by Smith et al. may be due to

the large batch variation in the concentration of recombinant GDF11

protein. Significantly, GDF11 can alleviate cardiomyocyte damage

caused by pathological conditions such as hypoxia (38, 39), hypoxia/

reoxygenation (40–42), high glucose (43, 44), and radiation

(45) (Figure 2B).
3.3 Fibroblasts

Several studies have shown that GDF11 is associated with the

specific fibrosis of the heart, kidney, liver, skin, and other organs.

GDF11 exhibits an anti-myocardial fibrosis effect in transverse

aortic constriction (TAC) surgery (36), diabetic cardiomyopathy

(DCM) (44), and myocardial ischemia-reperfusion (MI/R) injury

(Figure 2B) (41). However, the role of GDF11 in liver fibrosis is

controversial. Dai et al. reported that GDF11 exhibited an inhibitory
FIGURE 2

The function of GDF11 in various cells. (A). GDF11 is involved in the occurrence and development of liver cancer, pancreatic cancer, esophageal
cancer, breast cancer, colon cancer, and melanoma. (B). The regulatory effect of GDF11 on cardiomyocytes. (C). The regulatory effects of GDF11 on
stem cells, chondrocytes, erythrocytes, and macrophages. (D). The regulatory effect of GDF11 on endothelial cells. Created with BioRender.com.
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effect on liver fibrosis, while Frohlich et al. found that GDF11 could

induce mild hepatic fibrosis (46, 47). We believe that the opposite

conclusions drawn by the two articles may be due to the differences

between the two models. Dai et al. discussed metabolism-related

liver fibrosis, while Frohlich et al. simply used CCl4 to induce mouse

liver fibrosis model, so the two models are essentially different.

Additionally, GDF11 exhibits a pro-fibrotic effect on kidney

fibroblasts (48, 49) and skin fibroblasts (50, 51). Therefore, the

role of GDF11 depends on the studied organs and diseases and

should be studied and analyzed in detail in a specific setting.
3.4 Macrophages

The significance of GDF11 in the immune system, particularly

in macrophages, has been discovered in recent years (Figure 2C).

Research studies have shown that GDF11 can facilitate the

conversion of M1 macrophages into M2, which can ultimately

decrease inflammatory responses (52, 53). Furthermore, GDF11 can

promote the metabolic regulatory function of macrophages. For

instance, GDF11 is capable of facilitating the removal of cholesterol

from macrophages by suppressing peroxisome proliferator-

activated receptor (PPAR)-g expression (54).
3.5 Stem cells

Stem cells therapy has broad application prospects for

numerous diseases. Previous studies have shown that GDF11 can

improve the effectiveness of stem cells transplantation (55, 56). For

instance, GDF11 plays a therapeutic role in cardiovascular system

diseases and nervous system diseases via the regulation of MSCs

and neural stem cells (NSCs). MSCs can be used for treating

ischemic diseases to promote angiogenesis has been extensively

carried out (Figure 2C) (57–59). However, the regulatory function

of GDF11 on NSCs are controversial. Katsimpardi et al. reported

that circulating GDF11 in the blood can increase the proliferation

and differentiation of NSCs (60). However, Wang and Williams

et al. reported that GDF11 can inhibit the proliferation and

migration of NSCs while facilitating apoptosis and differentiation

(61, 62). Owing to the contradiction between these two views, Wang

et al. reported that the effect of circulating GDF11 on NSCs was

indirect when they added GDF11 directly to NSCs. Thus, GDF11

appears to be a “pro-aging factor” when it acts directly on NSCs,

whereas a “rejuvenating factor” when it acts indirectly on NSCs.
3.6 Red blood cells

GDF11 is a regulator of erythropoiesis (Figure 2C). Previous

studies have shown that GDF11 can lead to mild anemia (63), and

downregulating GDF11 expression can help treat thalassemia (64).

Furthermore, the overexpression of GDF11 in the blood of patients

with myelodysplastic syndrome can inhibit the production of red

blood cells and exacerbate the condition of the patients (65).
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3.7 Bone-related cells

GDF11 could repair age-induced skeletal muscle dysfunction

(2). However, the function of GDF11 was questioned soon, and

several studies confirmed that GDF11 could not restore the function

of damaged skeletal muscle in aged mice but significantly inhibited

the regeneration of skeletal muscle cells in mice (66–68). Along with

its effects on skeletal muscle cells, GDF11 is also considered to

exhibit a certain regulatory effect on the growth and differentiation

of osteoblasts, osteoclasts, and chondrocytes. In 2015, Zhang et al.

reported that GDF11 is a promoter of osteoblasts formation (69).

However, Lu, Liu, and Shen et al. reported that GDF11 can inhibit

the differentiation of bone marrow mesenchymal stem cells

(BMSCs) into osteoblasts (70–72). Although Lu and Liu et al.

agreed that GDF11 can inhibit the differentiation of BMSCs into

osteoblasts, they reported inconsistent conclusions on the

regulation of osteoclasts. The experimental results by Lu et al.

showed that GDF11 did not have a significant effect on

osteoclasts differentiation, whereas Liu et al. showed that GDF11

could promote osteoclasts formation. Furthermore, a recent study

reported that GDF11 can exacerbate hip dysplasia via the inhibition

of chondrocytes proliferation and hypertrophy (Figure 2C) (73).

Thus, it can be concluded that the regulatory role of GDF11 on

osteoblasts and osteoclasts is intricate.
3.8 Adipocytes

Previous studies have shown that GDF11 may be a core factor

regulating the balance of osteoblasts–adipocytes differentiation.

However, in elderly patients with osteoporosis, whether GDF11

promotes or inhibits the differentiation of BMSCs into adipocytes is

not known. Shen et al. reported that GDF11 expression in the serum

of elderly patients with osteoporosis was upregulated, which

promoted the adipogenic differentiation of BMSCs (71).

However, Zhang et al. reported that the expression of GDF11 in

the serum of elderly patients with osteoporosis was decreased,

which could inhibit the adipogenic differentiation of BMSCs

(69). Similarly, Luo et al. reported that GDF11 inhibited the

adipogenic differentiation of human mesenchymal stem

cells (hMSCs) and 3T3-L1 pre-adipocytes via the activation

of Smad2/3 pathway (Figure 2C) (74). Frohlich et al.

a lso confirmed that GDF11 inhibited the adipogenic

differentiation of 3T3-L1 pre-adipocytes (75). Furthermore,

GDF11 also exerts a regulatory role in the function of human

adipose-derived stromal cells (HADSCs). GDF11 inhibits the

adipogenic differentiation of HADSCs (76). GDF11 decreases

the content of triglycerides in adipocytes by inhibiting

adipocytes anabolism and promoting fat catabolism (77). To

summarize, although the role of GDF11 in the differentiation of

BMSCs into adipocytes in elderly patients with osteoporosis is

controversial, the abovementioned findings indicate that GDF11

may be a potential target for inhibiting adipogenic differentiation

and treating obesity.
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3.9 Endothelial cells

GDF11 can alleviate the pathological progression of

atherosclerosis, diabetic wounds, and diabetic retinopathy by

improving endothelial cells dysfunction (Figure 2D). For instance,

GDF11 can decrease the area of atherosclerotic plaques by decreasing

palmitic acid-induced apoptosis of endothelial cells (54). GDF11 can

promote the enrichment of endothelial progenitor cells (EPCs) in the

wounds of diabetic mice, thus accelerating wound healing (78, 79).

GDF11 can alleviate the dysfunction of glucotoxicity-induced retinal

microvascular endothelial cells in mice, thereby decreasing the

progression of diabetic retinopathy (80). Furthermore, the effect of

GDF11 on endothelial cells treated with/without serum was different.

Zhang et al. reported that GDF11 exhibited no significant effect on

the proliferation, migration, and death of human umbilical vein

endothelial cells (HUVECs) under serum-rich conditions but

increased the viability of HUVECs under serum-free conditions

(81). The purpose of using serum-free is to remove the interference

of cytokines in serum. Finkenzeller et al. examined the effect of

GDF11 on the migration and tube formation of peripheral blood

endothelial progenitor cells under serum-free conditions. The

experimental results indicated that GDF11 has a promoting effect

on this (82). Thus, GDF11 can improve the dysfunction of HUVECs;

however, the degree of influence on HUVECs was different in culture

conditions with/without serum.

To summarize, GDF11 is an important growth factor that can be

regulated in different types of cells (Figure 2). Therefore, GDF11 has

garnered increasing attention in many research fields, and its research

is expected to help us better understand and treat several diseases.
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4 GDF11-based therapeutic strategies

GDF11 is a crucial growth factor and exerts therapeutic effects

on a variety of diseases (Table 1). Through our comprehensive

summary of GDF11, we know that current studies on the treatment

of GDF11 mainly focus on the following aspects:1) increase the

expression of GDF11 or adjuvant therapy of GDF11. This may

include increasing GDF11 expression through gene therapy or

pharmacological intervention. The goal of these approaches is to

treat specific diseases by increasing the activity of GDF11 to

promote tissue repair and regeneration. 2) GDF11 was used as a

marker to evaluate the risk and prognosis of diseases. By detecting

the level of GDF11, the severity of diseases can be assessed and the

progression of diseases can be predicted, which provides a

theoretical basis for individualized treatment plans. For example,

for some diseases, high levels of GDF11 may indicate a more severe

condition, while low levels of GDF11 may be associated with a

better prognosis. 3) Research and development of new drugs with

GDF11 as the target. As for the research on drugs targeting GDF11,

there are currently some drugs under development, such as

rGDF11, sotatercept, and HS-235, which are all new drugs

developed targeting GDF11 (Table 2). These drugs affect related

cellular and physiological processes mainly by regulating GDF11

expression. In summary, research on GDF11 treatment mainly

focuses on changing the expression of GDF11, evaluating its value

as a marker, and developing new drugs targeting GDF11. These

studies are of great significance for revealing the mechanism of

action of GDF11 in disease treatment and developing new

treatment strategies.
TABLE 1 Positive effects of GDF11.

Cell
type

Disease
model

GDF11
expression

Main
function

References

Cancer cells Liver cancer ↓ GDF11 can inhibit liver cancer progression (28, 29)

Pancreatic cancer ↓ GDF11 can inhibit pancreatic cancer progression (8)

Esophageal cancer ↓ GDF11 can inhibit esophageal cancer progression (30)

Cholangiocarcinoma ↓ GDF11 can inhibit cholangiocarcinoma progression (31)

Cardiomyocytes
Cardiomyocytes

Aging mouse ↓ GDF11 can reverse age-related cardiac hypertrophy (1)

Myocardial infarction (MI) ↓ GDF11 can improve heart function in MI mice (38, 39)

Diabetic
cardiomyopathy (DCM)

↓ GDF11 can alleviate pathological myocardial remodeling in DCM (44)

Myocardial ischaemia/
reperfusion (MI/R) injury

↓ GDF11 can attenuate MI/R injury (40–42)

Mice received Gray whole-
heart irradiation

↓ GDF11 can significantly mitigate cardiac radiotoxicity (42)

Fibroblasts Transverse aortic
constriction (TAC)

↓ GDF11 can inhibit myocardial fibrosis induced by TAC (36)

DCM ↓ GDF11 can inhibit myocardial fibrosis induced by DCM (44)

MI/R injury ↓ GDF11 can inhibit myocardial fibrosis induced by MI/R injury (41)

(Continued)
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5 Conclusions and prospects

GDF11 has a wide range of biological activities and has

therapeutic effect on many diseases. It can inhibit the progression of

liver cancer, pancreatic cancer, esophageal cancer, and

cholangiocarcinoma; can protect against myocardial damage caused

by MI, MI/R, DCM, TAC and radiation; can reduce inflammatory

responses and improve endothelial cells dysfunction. However, there

is currently some controversy surrounding GDF11, which hinders the

research and application of GDF11. Therefore, a broad and

comprehensive discussion will contribute to a better understanding

of the role and potential of GDF11. In this review, we provide an in-

depth exploration of the GDF11 function and its controversy, which

may inform future studies on the biological role of GDF11 and its
Frontiers in Immunology 06
potential limitations in disease treatment and prevention. Based on the

abovementioned summary, the current controversy over GDF11 is as

follows (Figure 3): 1. Whether GDF11 has anti-aging effects? 2. Is the

serum expression of GDF11 low or high in elderly patients with

osteoporosis? 3. What role does GDF11 play in the differentiation of

bone marrow mesenchymal stem cells into osteoblasts, osteoclasts,

and adipocytes? We believe that the reason for the controversy may be

due to the complex biological regulation mechanism of GDF11 and

the different responses of different types of cells and tissues to GDF11.

The dose, route, and interval of administration used by different

research teams are inconsistent, which also causes different effects of

GDF11 in vivo. The signaling pathwaymediated by GDF11 is complex

and changeable, and its complex cross-action in vivo can lead to

inconsistency in results. Additionally, the inconsistent results may be
TABLE 1 Continued

Cell
type

Disease
model

GDF11
expression

Main
function

References

Macrophages
Macrophages

Severe acute pancreatitis ↑ GDF11 facilitates the conversion of M1 macrophages into M2, thereby
improving severe acute pancreatitis

(52)

Atherosclerosis − GDF11 can reduce inflammatory cytokines expression in macrophages (54)

Acute kidney injury (AKI) ↑ GDF11 alleviates AKI injury through regulating the polarization of
M1/M2 macrophages

(53)

Mesenchymal stem
cells (MSCs)

Hypoxic-induced MSCs ↓ GDF11 protects cardiac MSCs from apoptosis under hypoxic condition (55)

Satellite cells Age-related dysfunction in
mouse skeletal muscle

− GDF11 can improve muscle physiology and physical function in
aged mice

(2)

Osteoblasts Osteoporosis ↓ GDF11 can induce osteoblastogenesis and related gene expression (69)

3T3-L1 white and
HIB1B
brown adipocytes

Obesity ↑ GDF11 can enhance the thermogenesis of white adipocytes and
weaken adipogenesis

(77)

Endothelial cells Atherosclerosis − GDF11 decreases the area of atherosclerotic plaques by decreasing
palmitic acid-induced apoptosis of endothelial cells

(54)

Non-healing
diabetic wounds

↓ GDF11 promotes the enrichment of endothelial progenitor cells in the
wounds of diabetic mice, thus accelerating wound healing

(78, 79)

Diabetic
retinopathy disease

− GDF11 alleviates the dysfunction of glucotoxicity-induced retinal
microvascular endothelial cells in mice

(80)
MSCs, Mesenchymal stem cells; MI, Myocardial infarction; DCM, Diabetic cardiomyopathy; MI/R, Myocardial ischaemia/reperfusion; AKI, Acute kidney injury. ↑: GDF11 expression increased;
↓: GDF11 expression decreased; -: No detection were added.
TABLE 2 Drug development targeting GDF11.

Drug
names

First R&D
enterprise

Targets Indications Development
Phase

Drug
types

Sotatercept Acceleron Pharma Inc ACVR2
ACVR2A
GDF11

Beta thalassaemia
Myelofibrosis
Pulmonary arterial hypertension

Apply for going public Fragment antibody
Immunoglobulin G homologous antibody
Chimeric protein
Soluble receptor

HS-235 35Pharma Inc ACVR2A
GDF11
GDF8

Obesity Preclinical Fusion protein

rGDF11 Harvard University GDF11 Alzheimer disease
Diseases of coronary artery
Type 2 diabetes mellitus
Cerebral ischaemic stroke

Preclinical Recombinant protein
Information source: https://pharma.bcpmdata.com/.
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related to factors such as sample selection, research methods, and

experimental techniques. To resolve these controversies, we suggest

that future studies should adopt more accurate and consistent

experimental methods to obtain more reliable conclusions.

Meanwhile, we believe that researchers need to further explore the

optimal therapeutic dose, route and time window of GDF11 to

maximize its therapeutic potential and gain insight into the

mechanism of action of GDF11, which can help us determine how

GDF11 acts in different tissues and disease states, and provide a basis

for optimizing treatment strategies. In addition, researchers can also

try to develop GDF11 activators with better selectivity to reduce the

impact on other related molecules, thereby improving the specificity

and safety of the treatment. Although the above points of GDF11 are

still uncertain, it is undeniable that the emergence of GDF11 brings

unlimited hope to humans for delaying aging, resisting diseases and

even tumors.

In general, GDF11 is a powerful biomolecule that has immense

research significance. Just because of different research methods,

GDF11 often shows an elusive double-edged sword effect, which

also puts a mysterious veil on its research. Therefore, further studies

are required in the future to verify and optimize its therapeutic

effect and safety and to overcome its potential double-edged sword

effect to achieve its complete clinical application. But we firmly

believe that with the continuous updating of current experimental

technology, the secrets hidden by GDF11 will gradually be revealed,

and its powerful functions will ultimately bring benefits to mankind.
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