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The roles of preexisting auto-reactive antibodies in immune-related adverse

events (irAEs) associated with immune checkpoint inhibitor therapy are not well

defined. Here, we analyzed plasma samples longitudinally collected at

predefined time points and at the time of irAEs from 58 patients with

immunotherapy naïve metastatic non-small cell lung cancer treated on clinical

protocol with ipilimumab and nivolumab. We used a proteomic microarray

system capable of assaying antibody reactivity for IgG and IgM fractions

against 120 antigens for systemically evaluating the correlations between auto-

reactive antibodies and certain organ-specific irAEs. We found that distinct

patterns of auto-reactive antibodies at baseline were associated with the

subsequent development of organ-specific irAEs. Notably, ACHRG IgM was

associated with pneumonitis, anti-cytokeratin 19 IgM with dermatitis, and anti-

thyroglobulin IgG with hepatitis. These antibodies merit further investigation as

potential biomarkers for identifying high-risk populations for irAEs and/or

monitoring irAEs during immunotherapy treatment.

Trial registration: ClinicalTrials.gov identifier: NCT03391869.

KEYWORDS

NSCLC, auto-reactive antibodies, immune related adverse events, immune checkpoint
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1 Introduction

Immune checkpoint inhibitors (ICIs), such as cytotoxic T-

lymphocyte–associated protein 4 (CTLA-4) and programmed cell

death protein-1 (PD-1)/programmed cell death ligand-1 (PD-L1)

inhibitors, produce durable clinical responses in various solid

tumors, including non-small cell lung cancer (1, 2). The immune

toxicity of ICIs, termed immune-related AEs (irAEs), result from

organ inflammation outside of the cancer. In contrast to the well-

characterized temporal patterns of toxicities arising from

chemotherapy or targeted therapy, the onset and duration of

irAEs are unpredictable, and predisposing factors for the

development of irAEs not well defined (3).

Immune self-tolerance in humans is partly maintained by the

inhibition of auto-reactive T cells through CTLA-4 and the PD-1/

PD-L1 pathway (4, 5), and PD-1 and CTLA-4 polymorphisms are

associated with various autoimmune conditions (6–8). Therefore, it

is not surprising that irAEs of ICIs share clinical features with

autoimmune conditions. Current evidence suggests that irAEs

occur through a variety of mechanisms that involve cellular and

humoral immunity, including the disruption of hemostasis by the

peripheral negative selection of lymphocytes with anti-CTLA-4

therapy, which promotes the expansion of self-reactive T cells;

alteration of the epigenome of exhausted T cells by inhibition of the

PD-1/PD-L1 pathway; and hampering peripheral tolerance by the

depletion of regulatory cells, molecular mimicry, epitope spread,

and auto-reactive antibodies (8–12).

Previous studies show that approximately 8-9% of the US

population has an autoimmune disease and that a quarter of

healthy individuals have strong IgG humoral responses to a

variety of self-antigens that may be relevant to irAEs (13, 14).

Seropositivity in patients with irAEs has been demonstrated in case

reports and observational cohorts (8, 15, 16). However, conclusions

to date have been limited by cohort size, lack of longitudinal sample

collection, and heterogeneity of ICI treatments. A previous work

shed light on the impact of auto-reactive antibodies that exist prior

to ICI therapy on the risk for developing irAEs, including

hypophysitis and pneumonitis (8). In this study, we systematically
Frontiers in Immunology 02
analyzed a larger set of longitudinally collected patient plasma

samples to identify pre-existing auto-reactive antibodies,

determine their temporal dynamics with ICI treatment, and

correlate them with the development of a wider spectrum of irAEs.
2 Patients and methods

2.1 Clinical data and sample collection

Longitudinal patient plasma samples were collected from the

ongoing LONESTAR clinical study (ClinicalTrials.gov identifier:

NCT03391869) conducted at the University of Texas MD Anderson

Cancer. This open-label, single-center, randomized clinical study

enrolled patients with histologically or cytologically confirmed

metastatic NSCLC. Key exclusion criteria included prior

immunotherapy or more than one prior line of chemotherapy,

tumors harboring EGFR-sensitizing mutations or ALK fusions

eligible for standard-of-care targeted therapies, and active, known,

or suspected autoimmune disease. The protocol and all

amendments were approved by the Institutional Review Board

(#2017-0311). All patients provided written informed consent to

participate in the study, including blood collection for auto-reactive

antibody profile analysis. In the parent trial, eligible patients

received ipilimumab 1 mg/kg every six weeks and nivolumab

3mg/kg every two weeks (I+N) for 12 weeks (induction); those

patients who did not experience disease progression were then

randomly assigned to local consolidative therapy (LCT) with

radiation and surgery for residual disease vs. no LCT. A synopsis

of the study protocol is available in the Supplementary File, and the

study schema is provided in Supplementary Figure 1.

Plasma samples were collected at 1) baseline (prior to I+N

therapy, on the same day as cycle 1 of therapy) (time point A), 2)

after I+N induction (12 weeks after cycle 1) (time point B), and 3) at

the time of grade ≥ 2 irAEs in patients who developed toxicities

(time point C) (Figure 1). IrAEs were prospectively collected and

graded using the Common Terminology Criteria for Adverse

Events v5.0. IrAE samples were obtained within 14 days of
FIGURE 1

Time points for blood collection. Time point A baseline (prior to ICI therapy). Time point B After 12 weeks of ICI therapy 12-week samples (this time
point also used as control for treated patients with no irAEs. Time point C At the time of irAE (if applicable).
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symptom onset during the clinic visit. The attribution of adverse

events were made by available clinical, laboratory, and histologic

data and reported per the NCI adverse reporting guidelines (17). In

this study, only four organ-specific irAEs were included in the

analysis due to availability of number of samples (pneumonitis,

dermatitis, diarrhea/colitis, and hepatitis). Samples from patients

who were exposed to 12-weeks of ICI induction therapy and did not

experience any irAEs within at least 6 months of follow-up were

used as “controls” for comparative analyses. Patients with

overlapping toxicities (simultaneous irAEs > 1) were excluded

from this analysis.

We analyzed the IgG and IgM auto-reactive antibody panel for

each irAE (pneumonitis, dermatitis, hepatitis, colitis) and 1)

compared auto-reactive antibody panels at baseline in patients

who had organ-specific irAEs vs. no irAE (time point A for irAE

vs. no irAE), 2) compared auto-reactive antibody panels at the time

of irAE onset with 12-week samples from treated patients with no

irAEs (control) (time point B vs. time point C), and 3) analyzed the

longitudinal auto-reactive antibody changes in patients with an

organ-specific toxicity by comparing their baseline sample with

toxicity samples (time point A vs. C) (Figure 1).
2.2 Microarray protein profiling

Human serum samples from all subjects were collected,

aliquoted, and stored at -80°C. Autoantigen microarrays were

manufactured at the Microarray Core Facility of The University

of Texas Southwestern Medical Center (Dallas, Texas, USA). One

hundred twenty autoantigens, including nuclear antigens, cytosolic

antigens, and tissue-specific antigens, were selected from previously

known autoantibodies in various immune-related diseases (e.g.,

cancer and allergic disease) (18) on the basis of the published

literature (a full list of the auto-reactive antibodies used in this panel

is shown in Supplementary Table 1) and as previously described

(19, 20). Four internal control proteins (human IgG, human IgM,

anti–human IgG, and anti-human IgM), each at four different

concentrations (0.1 mg/mL, 0.05 mg/mL, 0.025, and 0.0125 mg/

mL) , were imprinted on the arrays as pos i t ive and

normalization controls.

Serum samples were pretreated with DNAse-I and diluted 1:50

in PBST buffer for autoantibody profiling. The samples were

incubated with autoantigen arrays, and autoantibodies bound to

arrayed proteins were measured with cy3-conjugated anti-human

IgG (1:1000, Jackson ImmunoResearch, West Grove, Pennsylvania,

USA) and cy5-conjugated anti-human IgM (1:2000, Jackson

ImmunoResearch) using a Genepix 4400A scanner (Molecular

Devices, Sunnyvale, California, USA) with laser wavelengths of

532 nm and 635 nm. The resulting images were analyzed using

Genepix Pro 7.0 software (Molecular Devices).

The median signal intensity for each spot was calculated and

subtracted from the local background around the spot, and the data

obtained from the duplicate spots were averaged. The background-

subtracted signal intensity of each antigen was normalized to the

average intensity of human IgG or IgM, which were spotted on the

array as an internal control. Finally, the net fluorescence intensity
Frontiers in Immunology 03
(NFI) was generated as a quantitative measurement of the binding

capacity of each antibody with the corresponding autoantigen,

normalized with a robust linear model using a built-in Ig control

with various dilutions (21). A signal-to-noise ratio (SNR) was

generated for each antigen. The SNR was used as a quantitative

measure of the ability to resolve the true signal from background

noise. To avoid outliers in the NFI or SNR, the autoantibody score,

defined by log2((NFI × SNR) + 1), was used for all

downstream analyses. Autoantibody scores were used in the

downstream analysis.
2.3 Statistical analysis

A paired t-test was used to compare the means of longitudinally

collected baseline and toxicity samples. Post-induction (minimum

12-week exposure to combination ICI therapy) samples from

patients who had no irAEs during the study period were used as

a control compared with the toxicity samples. An unpaired t-test

was used to compare differences between groups. The resulting p-

values were adjusted using the Benjamini and Hochberg method to

control for the type I error rate of multiple comparisons (22). P

values were two-tailed for all analyses, p ≤ 0.05 was considered

statistically significant. P values and corresponding false discovery

rates (FDR) were defined for each marker and are provided in the

Supplementary File.

To remove the batch effect, a modified mean centering batch

correction was applied, where the baseline samples in each batch

served as control samples during the mean centering batch

correction process (Supplementary Table 2) (23).
3 Results

3.1 Baseline characteristics

One hundred and eighty-nine patients were enrolled in the trial

at the time of data lock in January 2021, and samples from 58

patients who had prospective follow-up for a minimum of 6 months

and had more than one timepoint of blood collection were included

in the analysis. All patients had a baseline sample (pretreatment,

immunotherapy-naïve), and 54 patients had a sample at 12-weeks

of ipilimumab and nivolumab therapy (post induction); 43 grade ≥

2 irAE events from 41 patients had corresponding blood

collection:10 patients with pneumonitis, 12 with dermatitis, 15

with diarrhea/colitis, and 6 with hepatitis. Two patients had more

than one grade ≥ 2 organ-specific toxicity (separate time points).

The organ-specific involvement, grading, and timing of these

toxicities are included in Supplementary Table 3. Baseline and

post induction serum samples from 17 patients who received at

least 12 weeks of ipilimumab and nivolumab and had no irAEs

within 6 months of follow-up were used as “control” samples.

The final analysis included 10 pneumonitis events, seven were

grade 2 and three were grade 3. Twelve grade 2 irAEs were grouped

dermatitis, which included eczematous, morbilliform, acneiform,

and psoriasiform rashes, pruritis, and vitiligo. Fifteen diarrhea/
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colitis irAEs were captured, including eight grade 2 and seven grade

3 irAEs. The events grouped in the hepatitis analysis included

samples from patients with transaminitis with and without changes

in liver synthetic capacity. There were six events in this category,

including four grade 2 and two grade 3.
3.2 Auto reactive antibodies at baseline

Baseline samples from patients with pneumonitis, dermatitis,

diarrhea/colitis, and hepatitis were compared with baseline samples

from patients who did not experience irAEs. The full list of auto-

reactive antibodies that showed higher titers in toxicity groups at

baseline is provided in the Supplementary Table 4-6, whereas the

top three statistically most significantly increased auto-reactive

antibodies for IgG and IgM fractions for each organ-specific

toxicity of interest (p ≤0.05), and their corresponding p and FDR

values are provided in Table 1.
3.3 Longitudinal changes at
toxicity: pneumonitis

When samples obtained at the time of pneumonitis were

compared with 12-week samples from controls, we observed

higher titers of multiple IgG and IgM auto-reactive antibodies,

with the strongest associations observed for IgG antibodies to

CA125 (p= 0.001; FDR=0.03), CMV EXT (P= 0.01, FDR=0.13),

and Angiotensin II type 1 receptor (p=0.01, FDR=0.16), and IgM

fraction for ACHRG (p=0.00018, FDR=0.12), NSE (p=0.004,

FDR=0.12), and BAFF (p=0.004, FDR=0.12) Figure 2A (full list

provided in Supplementary Tables 4, 5).

Only the IgM antibody against ACHRG showed an increase

from baseline to time of toxicity among pneumonitis cases (p=0.03,

FDR= 0.48) and was also elevated during pneumonitis event as
Frontiers in Immunology 04
compared to 12-week “control” samples (p=0.00018, FDR=

0.012) (Figure 3).
3.4 Dermatitis

When samples obtained at the time of dermatitis were

compared with 12-week samples from controls, IgM antibody

against cytokeratin 19 antigen was higher in patients

with dermatitis.

Only the IgM antibody against cytokeratin 19 showed an

increase from baseline to the time of toxicity among dermatitis

cases (p=0.014, FDR=0.93) and was elevated during dermatitis

events compared with the 12-week control samples (p=0.016,

FDR=0.85) (Figure 4).
3.5 Diarrhea/colitis

None of the 120 auto-reactive antibodies in the IgG and IgM

fractions were elevated at the time of toxicity compared to the 12-

week control samples (Figure 2B).
3.6 Hepatitis

When samples obtained at the time of hepatitis were compared

with 12-week samples from controls, IgG antibodies against

thyroglobulin were higher at the time of toxicity compared to

baseline samples among those who developed hepatitis. When

samples at baseline were compared to samples at the time of toxicity

IgG antibodies against TGF beta1, lactoferrin, and thyroglobulin were

elevated compared to the 12-week control samples.

Only the IgG antibody against thyroglobulin was elevated

during hepatitis events compared with the 12-week control
TABLE 1 Top 3 auto reactive antibodies for Ig G and Ig M fractions for each organ specific toxicity of interest with statistical significance, and their
corresponding p and FDR values provided in table 1 (p ≤ 0.05 used for statistical cutoff).

Ig G P value FDR Ig M P value FDR

Pneumonitis Cytokeratin 19 Ag 0.004843 0.619958 OmpC (E coli outer membrane porin) 0.00047 0.057215

IL-17A 0.019349 0.98776 HSV-1 and HSV-2 Ag 0.002661 0.057215

CA242 0.034922 0.98776 IL-2 0.002973 0.057215

Dermatitis dsDNA 0.038594 0.997145 IFN alpha and beta 0.018835 0.456247

IL-2 0.024212 0.456247

Calreticulin 0.041953 0.456247

Diarrhea/Colitis None Hepatitis A antigen 0.008004 0.261828

Thrombopoietin 0.008191 0.261828

VEGF-165 0.012916 0.261828

Hepatitis None CDK2 0.007867 0.351345

IL-2 0.017962 0.351345

Troponin I-T-C ternary complex mixture 0.018433 0.351345
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samples (p=0.008, FDR=0.43) and showed an increase from

baseline to the time of toxicity among hepatitis cases (p=0.036,

FDR=0.84) (Supplementary Figure 2). IgM antibody against

thyroglobulin did not show any statistically significant difference

at the baseline among those who developed hepatitis, compared

with baseline samples from patients who did not experience irAEs

(p=0.16, FC (fold change): -1.5, FDR: 0.39); and at the time of

hepatitis when compared with controls (p=0.354, FC: 1.4,

FDR: 0.99).

IgG and IgM auto reactive antibodies for pneumonitis

(Supplementary Tables 4–6.1B), dermatitis (Supplementary

Tables 6.2A, B), diarrhea/colitis (Supplementary Tables 6.3A, B),
Frontiers in Immunology 05
hepatitis at baseline, at the time of toxicity (time of toxicity vs 12 week

in normal controls and at the time of toxicity vs 12 week time point

from patients with irAE) (pneumonitis: Supplementary Table 7.1 A,

B; dermatitis Supplementary Tables 7.2A, B; diarrhea/colitis

Supplementary Tables 7.3A, B, hepatitis Supplementary

Tables 7.4A, B) with corresponding p values, fold change and false

discovery rates and longitudinal changes for these toxicities

(Supplementary Tables 8.1A-8.8B) provided in the supplement.

Subsequent sample collections following systemic steroid

therapy were only available for four patients with dermatitis,

where 3 out of 4 patients had a drop in Cytokeratin 19 auto

reactive antibody titer with treatment (Supplementary Figure 3).
A B

FIGURE 3

Box plots of IgM antibody for ACHRG. (A) Longitudinal serum samples from patients with pneumonitis. Baseline: pre-I+N therapy (time point A),
toxicity (time point C): at the time of pneumonitis. (B) NoirAE: Samples at 12 weeks of I+N therapy from patients with no irAEs (time point B).
Pneumonitis: at the time of grade ≥2 pneumonitis (time point C). Same pneumonitis cases are represented in (A, B), one patient with pneumonitis
did not have baseline blood and, therefore, could not included in the longitudinal antibody titer figure in (A).
A B

FIGURE 2

EnhancedVolcano plots for longitudinal analysis of baseline and time of toxicity auto reactive antibodies (A) IgM antibodies for pneumonitis, (B) IgM
antibodies for Diarrhea/colitis, Dashed line at y axis is representing p ≤ 0.05 cut off, red color coding is representing increased autoreactive
antibodies after a log transformation that are statistically significany per p value cut-off (ACHRG highlighted in A).
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4 Discussion

In this study, we systematically evaluated the correlation

between auto-reactive antibodies and irAEs in patients who had

organ-specific toxicities. We observed that distinct auto-reactive

antibodies were elevated at the time of toxicity in pneumonitis,

dermatitis, and hepatitis.

Notably, IgM antibodies against ACHRG in pneumonitis,

cytokeratin 19 during dermatitis, and IgG antibody against

thyroglobulin during hepatitis were significantly elevated during

toxicity events compared with 12-week control samples. These

auto-reactive antibodies also showed an increase from baseline to

the time of toxicity in patients with pneumonitis, dermatitis, and

hepatitis respectively. Neither IgG nor IgM auto-reactive antibodies

were elevated in diarrhea/colitis at the time of toxicity compared to

the 12-week control samples.

Pneumonitis was associated with a unique auto-reactive antibody

profile with elevations in multiple IgG and IgM auto-reactive

antibodies, perhaps representing a marked increase in humoral

autoimmunity. Some of these auto-reactive antibodies are

particularly notable because they have been associated with lung

injury outside of NSCLC. For example, antibodies that 1) have been

implicated in lung allograft injury following a lung transplant

(ACHRG); 2) are against soluble factors that play a role in lung

inflammation (BAFF) (24, 25); 3) are against the cytoskeletal

structure of the alveolar epithelium (cytokeratin 19); and 4) are

elevated during tissue damage (NSE, SCCA, and Beta-glucuronidase)

(26–31) have been noted to have higher titers in patients with

pneumonitis than in patients without irAEs at the time of toxicity.

ACHRG, the cholinergic receptor nicotinic gamma subunit,

plays a role in neuromuscular development (32). The antibodies

targeting AChR (Acetylcholine receptors) are heterogenous in their

reactivity with different subunits of the AChR. Previous studies
Frontiers in Immunology 06
reported that antibodies to adult or fetal Acetylcholine receptors

(AChR) are negative in the healthy subjects but are sometimes

positive in patients with myasthenia gravis (MG). One study

reported among the 200 patients with MG, antibodies specific to

ACHRG were detected in only 14 (7%) (33–35), indicating that the

presence of these antibodies is not an incidental finding. Antibodies

against ACHRG, have been previously reported (as AChR3) to be

elevated in primary graft dysfunction (PGD) after lung transplant

and was reported to be ≥ 2-fold higher in patients with PGD (36,

37). Nicotinic AChR is activated by nicotine and expressed in

numerous non-neuronal cell types as well, including distinct

populations of astrocytes, epithelial cells, adipocytes, lymphocytes,

macrophages, keratinocytes, and stimulation of this receptor has

well described anti-inflammatory effects (38–41). Other studies

have associated multiple single-nucleotide nicotinic acetylcholine

receptor polymorphisms with the risk of lung cancer and chronic

obstructive pulmonary disease, highlighting their potential

implications in respiratory diseases (42–44).

Cytokeratin 19 is a filament protein that is abundant in epithelial

cells and has been overexpressed in non-small cell lung cancer, and its

overexpression is correlated with a poor prognosis (45–47). In

healthy individuals, while its level is low in circulation, it rises

significantly in patients with epithelial cell-associated carcinomas

(48). Similarly, antibodies against Cytokeratin 19 and its fragments

can be observed in the majority of human serum samples (49–51). Its

titers were reported to increase in epithelioid tumors such as lung

cancer and patients with tissue injury such as alcoholic hepatitis and

lung injury-related diseases such as pulmonary fibrosis and COPD

compared to healthy controls (52–54).

Auto-reactive antibodies to thyroglobulin can be seen in healthy

adults. In a population study of 17353 people, thyroglobulin

antibody was detected in 11.5% of the study cohort (55). The

positive antibodies were reported in up to 70-80% of patients
A B

FIGURE 4

Box Plots of IgM antibody for Cytokeratin 19 Ag. (A) Longitudinal serum samples from patients with dermatitis. Baseline: pre-I+N therapy, toxicity: at
the time of dermatitis. (B) NoirAE: Samples at 12 weeks of I+N therapy from patients with no irAEs. Dermatitis: at the time of grade ≥2
Dermatitis irAE.
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with autoimmune thyroiditis, 30-40% with Graves disease, and 10-

15% with non-thyroid autoimmune disease (56). Higher

thyroglobulin antibody titers were reported in non-alcoholic liver

disease and cirrhosis (57–59). In our study cohort, none of the

patients who had elevated thyroglobulin IgG antibody levels during

hepatitis had thyroid dysfunction at the time of the toxicity event or

at the time of their subsequent follow-up.

Risk prediction and early diagnosis of irAEs are critical but also

challenging for several reasons (60, 61). Many of the symptoms or

irAEs can be difficult to distinguish from the disease process itself.

For example, for immune-related pneumonitis, nonspecific clinical

presentation with dyspnea, cough, and radiologic findings can

mimic lung infection or lymphangitic spread, which may delay

the diagnosis. Early detection and effective management of irAEs

are critical to halt the progression to high-grade toxicities that are

potentially life-threatening, but this generally entails constant

clinical vigilance without effective diagnostic biomarkers. Auto-

reactive antibody panels may be a practical adjunct tool for

identifying at-risk patients, early diagnosis during treatment,

and monitoring.

In our study, neither the IgG nor IgM auto-reactive antibodies

analyzed in our panel were elevated in diarrhea/colitis; in fact, most

of these auto-reactive antibodies had lower titers during toxicity

events than the 12-week control samples. These findings highlight

the potential risk of pooling multi-organ toxicities or analyzing

overlapping toxicities when developing and validating novel

biomarkers, since different aspects of the immune system may be

driving the organ-specific toxicity. For example, during the course

of colitis/diarrhea, the innate immune system may be playing a

greater role in the development of organ-specific toxicity, similar to

Crohn’s disease. But notably, pathology that underpins immune-

related intestinal toxicities is driven by CD8 cytotoxic T

lymphocytes, as has been shown in colonic biopsies (62–64). On

the other hand, malabsorption and protein-losing enteropathy,

severe anorexia, nausea, and vomiting may further exacerbate low

antibody levels.

It is important to mention that a recent study suggested the role

of baseline serum autoantibody signature in predicting toxicity in

melanoma patients by using proteome microarray; this study

focused on auto-reactive antibodies to the human proteome (65).

In addition, previous work from our group using serological

analysis of recombinant tumor cDNA expression libraries

(SEREX) technology identified a number of autoimmune

antibodies associated with pneumonitis and hypophysitis in

patients with various types of cancer who received ICI therapy.

Our current study used a larger cohort of longitudinal samples,

and a novel platform independently identified a larger number of

auto-reactive antibodies that are associated with a wider spectrum

of irAEs. Collectively, our data highlight the promising role of auto-

reactive antibodies as predictive markers of immunotherapy-

related toxicities.

This is a hypothesis-generating study with multiple strengths.

In this study, samples were collected from a prospective clinical

trial, all patients receiving same immunotherapy and toxicity

attributions were made prospectively. Baseline samples were

collected from immunotherapy-nave patients. Serial samples were
Frontiers in Immunology 07
available for comparative analysis and 12-week “control” samples

were selected from patients who were observed for 6 subsequent

months without the development of irAEs. Our auto-reactive

antibody panel had a similar range of reportable results, reference

intervals, reproducibility, and quality controls as other panels used

in prior scientific studies (20, 66, 67). Finally, we used the false

discovery rate to control the type I error rate associated with

multiple comparisons and provided the FDR for each marker in

the supplementary file.

There are gaps in knowledge on the pathogenesis of irAEs.

Several mechanisms have been identified, including but not limited

to cross-presentation of antigens, epitope spreading, autoantibody

production, inflammatory monocyte activation, complement-

mediated inflammation, inflammatory cytokines, host-specific

factors including microbiome and genetics, and the type of ICI

immunotherapy administered (68–70) (Ibis, Aliazis), and this study

is only focusing in humoral immune systemic and autoantibody

production. Therefore, it does not provide a comprehensive

assessment of the immune system. This study has some

additional limitations. First, it had a relatively limited sample size

and lacked an independent validation cohort. Second, we could not

confirm the cutoffs that would indicate a clinically significant

elevation in auto-reactive antibody titers. Third, our auto-reactive

antibody panel may not have included all relevant targets. For

example, anti-CD74 antibodies were associated with pneumonitis

in our previous study, but this was not present in our panel (8).

Finally, we cannot determine whether auto-reactive antibodies are

the result of tissue damage or responsible for tissue damage, i.e.

whether they have a causal role in the development of irAEs.

Further studies are needed to investigate the mechanism whereby

auto-reactive antibodies result in irAEs.

In summary, we report that several auto-reactive antibodies are

elevated at baseline and during toxicities, such as pneumonitis,

dermatitis, and hepatitis. In particular, the IgM fraction of auto-

reactive antibodies against ACHRG in pneumonitis, cytokeratin 19

in dermatitis, and IgG antibody against thyroglobulin during

hepatitis were elevated during the time of toxicity compared with

12-week control samples and showed an increase from baseline to

the time of toxicity among pneumonitis, dermatitis, and hepatitis

cases, respectively, and should be investigated further. Future

studies are warranted to validate these findings and explore the

mechanistic relationships of these antibodies and their potential

roles in the toxicity and early recognition of irAEs.
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