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Development of a prognostic
Neutrophil Extracellular Traps
related lncRNA signature for
soft tissue sarcoma using
machine learning
Binfeng Liu1,2†, Shasha He3†, Chenbei Li1,2, Zhaoqi Li1,2,
Chengyao Feng1,2, Hua Wang1,2, Chao Tu 1,2,4*

and Zhihong Li1,2,4*

1Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha,
Hunan, China, 2Hunan Key Laboratory of Tumor Models and Individualized Medicine of The Second
Xiangya Hospital of Central South University, Changsha, Hunan, China, 3Department of Oncology,
The Second Xiangya Hospital of Central South University, Changsha, Hunan, China, 4Shenzhen
Research Institute of Central South University, Guangdong, China
Background: Soft tissue sarcoma (STS) is a highly heterogeneous

musculoskeletal tumor with a significant impact on human health due to its

high incidence and malignancy. Long non-coding RNA (lncRNA) and Neutrophil

Extracellular Traps (NETs) have crucial roles in tumors. Herein, we aimed to

develop a novel NETsLnc-related signature using machine learning algorithms

for clinical decision-making in STS.

Methods: We applied 96 combined frameworks based on 10 different machine

learning algorithms to develop a consensus signature for prognosis and therapy

response prediction. Clinical characteristics, univariate and multivariate analysis,

and receiver operating characteristic curve (ROC) analysis were used to evaluate

the predictive performance of our models. Additionally, we explored the

biological behavior, genomic patterns, and immune landscape of distinct

NETsLnc groups. For patients with different NETsLnc scores, we provided

information on immunotherapy responses, chemotherapy, and potential

therapeutic agents to enhance the precision medicine of STS. Finally, the gene

expression was validated through real-time quantitative PCR (RT-qPCR).

Results: Using the weighted gene co-expression network analysis (WGCNA)

algorithm, we identified NETsLncs. Subsequently, we constructed a prognostic

NETsLnc signature with the highest mean c-index by combining machine

learning algorithms. The NETsLnc-related features showed excellent and stable

performance for survival prediction in STS. Patients in the low NETsLnc group,

associated with improved prognosis, exhibited enhanced immune activity,

immune infiltration, and tended toward an immunothermal phenotype with a

potential immunotherapy response. Conversely, patients with a high NETsLnc

score showed more frequent genomic alterations and demonstrated a better

response to vincristine treatment. Furthermore, RT-qPCR confirmed abnormal

expression of several signature lncRNAs in STS.
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Conclusion: In conclusion, the NETsLnc signature shows promise as a

powerful approach for predicting the prognosis of STS. which not only

deepens our understanding of STS but also opens avenues for more

targeted and effective treatment strategies.
KEYWORDS
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1 Introduction

Soft tissue sarcomas (STS) present a significant clinical

challenge due to their rare occurrence, aggressive nature, and

diverse subtypes derived from embryonic mesoderm (1, 2). These

malignancies account for approximately 1% to 2% of all new adult

cancer cases (3, 4). Given the diversity and aggressive biological

behavior of STS, treating these tumors remains an immense clinical

challenge (5). Although complete surgical resection combined with

adjuvant or neoadjuvant radiotherapy continues to be the primary

conventional treatment for localized primary STS, many patients

still experience recurrence and metastasis, leading to poor prognosis

(6, 7). The emergence and rapid advancement of immunotherapy

have provided new insights into STS treatment (8–10). However,

tumor heterogeneity l imits the significant benefits of

immunotherapy to only a small fraction of patients (11).

Therefore, we try to addresses this challenge by introducing a

novel perspective that integrates machine learning algorithms to

establish a robust Neutrophil Extracellular Traps-related long non-

coding RNA (NETsLnc) signature. This innovative approach not

only contributes to prognosis prediction but also holds implications

for durable individualized clinical management of STS.
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Since soft tissue sarcoma (STS) is a highly complex disease with

inter- and intra-tumor heterogeneity, an ideal biomarker should

demonstrate stable performance across all tumor tissue samples.

Notably, polygenic signatures have emerged as a promising

approach to address this challenge, facilitated by advances in

bioinformatics techniques (12, 13). However, polygenic signatures

often face difficulty in clinical application due to underutilization of

data information, inappropriate machine learning methods, lack of

rigorous validation across different cohorts, and absence of clinical

testing (11). Neutrophil Extracellular Traps (NETs) are lattice-like

structures secreted by activated neutrophils, composed of

Deoxyribonucleic acid (DNA) fibers, histones, and antibacterial

proteins. They are responsible for entrapping and eliminating

extracellular pathogens, playing a protective role in antibacterial

defense (14). The process by which neutrophils secrete NETs is

termed NETosis, a form of inflammatory cell death that differs from

apoptosis and necrosis. Activation of neutrophils and NADPH

oxidase is typically required to generate reactive oxygen species

(ROS) for the formation of NETs. Increasing evidence has revealed

that NETs serve multiple functions in cancer-associated inflammation

(15). For example, NETs can directly or indirectly promote tumor

growth, progression, and the spread of tumors to distant sites.

Moreover, NETs can contribute to tumor angiogenesis and tumor-

associated thrombosis (16). Concomitantly, long non-coding RNAs

(lncRNAs) play a role in cancer development by affecting

proliferation, migration, invasion, and chemoresistance (17). The

lncRNA-related prognostic model holds potential significance in

predicting the prognosis of cancer. For instance, Zihan Ding reveal

that the m6A- and immune-related lncRNA signature have a robust

predictive value for prognosis and immune efficacy of lung squamous

cell carcinoma (18). Similarly, the NETs-related lncRNAs (NETsLnc)

signature has been established and shown remarkable performance in

predicting prognosis and immune infiltration in various tumors. Chen

Fang et al. developed an innovative prognostic signature comprising

NETsLnc that aids in predicting the prognosis of non-small-cell lung

cancer (19). Nonetheless, the role of NETsLnc in predicting clinical

outcomes, immunotherapy response, and the modulation of

interactions between tumor cells and immune cells in soft tissue

sarcomas (STS) remains largely unknown. Additionally, it is worth

exploring whether the NETsLnc-based signature stands out among

the numerous established STS signatures.
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In this unprecedented big data era, machine learning has

become increasingly important in digging rich information

hidden in massive data. Multigene panels could be a potential

solution to construct a roubst signature for cancer patients.

Previously, Zaoqu Liu et al. successfully integrated 96

combinations of 10 commonly used algorithms into an artificial

intelligence consensus program to develop a machine learning-

based prognostic feature for melanoma. However, the feasibility of

this integrated machine learning algorithm in constructing a

prognostic model for patients with soft tissue sarcoma remains

unclear (20). Therefore, we aim to identify a novel NETsLnc-related

signature for the clinical decision-making of STS through this

artificial intelligence consensus program consisting of 96

combinations based on ten common machine algorithms.

Meanwhile, we systematically and comprehensively explored the

predictive value of the NETsLnc signature in the prognosis and

immunotherapy response of patients with STS, which will help to

optimize the precise treatment and further improve the clinical

outcomes of patients with STS.
2 Materials and methods

2.1 Public data collection and processing

Figure 1 illustrates the flowchart of the research procedure. For

this study, transcriptome data, somatic mutation data, copy number

variation (CNV) data, and clinical information of sarcoma patients

were obtained from The Cancer Genome Atlas (TCGA, https://

portal.gdc.cancer.gov/) (21), The Therapeutically Applicable

Research to Generate Effective Treatments (TARGET, https://

ocg.cancer.gov/programs/target) (22) and Gene Expression

Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/) database (23).

After excluding samples without survival time and survival status

information, a total of 969 samples were collected from four datasets:

259 samples from the TCGA dataset, 88 samples from the TARGET

database, 310 samples from the GSE21050 dataset, and 312 samples

from the GSE71118 dataset. The R packages “GeoTcgaData” and

“AnnoProbe” were used for converting ensemble IDs to gene

symbols. For RNA-seq data, normalization was performed using

log2 transformation. Additionally, expression data from microarrays

were normalized using the Robust Multiarray Average (RMA)

method. Eligible datasets containing expression data and

immunotherapy information, namely the Imvigor210 cohort and

the Liu David dataset, were also screened to evaluate immunotherapy

response. Finally, the NET-related genes obtained from a previously

reported study were utilized for further analysis (24).
2.2 Identification of neutrophil extracellular
traps-related long non-coding RNAs

Before identifying NETlnc, we first screen the intersected

lncRNAs in all datasets. Subsequently, we utilized the R package

“weighted gene co-expression network analysis (WGCNA)” was

utilized to constructed a scale-free gene co-expression network
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based on previous research (25, 26). After ensuring that there

were no missing values in the expression matrix data, the samples

were clustered, and outlier samples that deviated significantly from

the others were removed. Next, the gene expression matrix was

transformed into an adjacency matrix to facilitate the development

of an unsupervised co-expression relationship module.

Furthermore, the dynamic tree-cutting method was employed to

identify gene modules in the phylogenetic tree. Finally, the most

correlated modules were utilized to identify significant NETlnc

modules for subsequent analysis.
2.3 Construct NETlnc signature using
machine learning-based
integrative approaches.

According to previously reported research, the Z-score

transformation was employed to enhance comparability among

different datasets (27). Subsequently, a univariate Cox analysis

based on NETlnc was conducted to identify potential survival-

related genes. Next, a consensus prediction model was developed

using a machine learning algorithm that combined 96 algorithms,

as described in previous studies (11, 20). The most valuable

signature with the highest c-index was selected through tenfold

cross-validation. In this process, the STS dataset with the largest

number of samples was designated as the training cohort for

implementing the aforementioned algorithm, while the remaining

three independent cohorts served as the test cohort, where the c-

index was calculated. The model with the highest average c-index

value was considered the optimal model (20).
2.4 Assess the prediction performance of
NETlnc signature

Everyone in all cohorts was assigned a score based on the

resulting model, and all datasets were stratified into low and high

NETsLnc groups based on the median risk score. The “survival”

package was used to draw Kaplan-Meier (K-M) survival curves to

compare the differences in survival time between the different risk

groups. The receiver operating characteristic (ROC) curve, C-index

value, and area under the ROC curve (AUC) were used for the

NETsLnc signature prediction accuracy evaluation. Meanwhile, the

univariate and multivariate Cox regression analyzes were

performed to confirm the independence of the novel NETlnc

signature. Additionally, a nomogram was developed to better

predict the prognosis of STS using the “regplot” and “rms”

packages. The calibration curves and AUC values were utilized to

evaluated the nomogram’s predictive value.
2.5 Background on the potential biological
functions of NETlnc signature

To investigate the biological characteristics associated with

different NETsLnc patterns, a series of analyzes were conducted.
frontiersin.org
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Initially, a comparison was made between the two risk groups in

terms of the cancer-immunity cycles signature, which consists of 7

steps guiding frameworks for cancer immunotherapy. Additionally,

the correlation between the NETsLnc score and hallmark signature,

as well as the relationship between canonical immune markers and

NETsLnc score, were explored. Furthermore, the correlation

between these two variables was graphically depicted using a

butterfly plot generated by the “corrplot” R package. Lastly, the R

package “GSVA” was utilized for Gene Set Enrichment Analysis

(GSEA) to identify significant functional pathways associated with

different NETsLnc groups (28). The hallmark gene set and

c2.cp.kegg.v7.4 were acquired from the Molecular Signatures
Frontiers in Immunology 04
Database (MSigDB, https://www.gsea-msigdb.org/gsea/

msigdb/index.jsp).
2.6 The genomic variation landscape

To explore and understand molecular heterogeneity at the

genomic level, we sought to map the landscape of genomic

variations. As frequently mutated genes (FMGs) with high

mutation frequencies are regarded as key driver genes, we initially

calculated the tumor mutational burden (TMB) for each STS

patient using the “maftools” package. We then identified the top
FIGURE 1

An overview of the study’s flowchart.
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20 genes with the highest mutation frequency and compared the

differences in mutation frequencies between the high and low

NETsLnc groups (29). Additionally, we examined the variation in

amplification and deletion burden among different NETsLnc

groups based on copy number variation (CNV) data derived from

GISTIC2.0 analysis. Moreover, we investigated the correlation

between the NETsLnc score and the level of amplification and

deletion burden based on the CNV data. In addition to TMB, we

also compared the differences in the mutation impact score (MIS)

and homologous recombination deficiency (HRD) between distinct

NETsLnc groups to identify potential genomic signatures.
2.7 Delineate the immune-related
characteristics of NETlnc signature

The ESTIMATE algorithm, which utilizes expression data, was

employed to calculate the StromalScore, immuneScore,

ESTIMATScore, and Tumor purity using the “ESTIMATE”

package (30). The CIBERSORT package in the R software was

utilized to assess the relative expression levels of 22 immune cells in

STS samples (31). Gene sets of immune checkpoints, extracted from

prior research, were used to comprehensively evaluate the immune

profile of the tumor microenvironment. Additionally, differences in

the Intratumor Heterogeneity, Proliferation, Leukocyte Fraction,

and Lymphocyte Infiltration Signature between distinct NETsLnc

groups were compared (25).
2.8 A comprehensive evaluation
of immunotherapy

The IMvigor210 (32) and Liu David (33) datasets were

employed to predict the response to immunotherapy. Initially, the

NETsLnc scores were calculated in these two datasets, and

subsequently, the differences in survival prognosis between

patients with different NETsLnc scores were compared.

Furthermore, the disparities in NETsLnc scores among patients

with varying immunotherapy effects were also evaluated.

Additionally, the Subnetwork Mappings in Alignment of

Pathways (Submap) approach was applied to forecast the

responses to anti-PD-1 and anti-CTLA-4 immunotherapy.

Concurrently, the immune dysfunction and exclusion (TIDE)

algorithm were implemented to predict immunotherapy

responses among distinct risk groups (34, 35).
2.9 Screening for potential
therapeutic drugs

To identify potential therapeutic agents for STS, we conducted

comprehensive analyzes using the Connectivity Map (CMap,

https://www.broadinstitute.org/connectivity-map-cmap) (36) and

Profiling Relative Inhibition Simultaneously in Mixtures (CTRP,

https://portals.broadinstitute.org/ctrp/) (37) and Profiling Relative

Inhibition Simultaneously in Mixtures (PRISM, https://
Frontiers in Immunology 05
www.theprismlab.org/) (38). CMap is a widely-used method for

searching potential therapeutic agents and targeting pathways based

on gene expression profile similarities (39). The “limma” package

was used to identify elevated NETsLnc subtype genes and compare

them with the database features for expression similarity. The

treatment sensitivity of the identified agents was then assessed

through quantitative enrichment scores. The CTRP dataset

contains sensitivity data for over 481 compounds, while the

PRISM dataset provides sensitivity data for 1448 compounds.

Both datasets include the Area Under the Curve (AUC) value of

the dose-response curve, which inversely correlates with compound

sensitivity (38). Our analysis focused on exploring drugs associated

with the NETsLnc score and comparing the differences in AUC

values between different patient groups.
2.10 Cell culture

The source of the soft tissue sarcoma cell line (hSS-005R, SYO-

1) and human skin fibroblast cell line (HSF) was the same as

described in previous studies (40). All cells were cultured in DMEM

containing 10% FBS and 1% penicillin-streptomycin solution at 37°

C, 95% oxygen, 5% carbon dioxide, and 95% relative humidity.
2.11 RNA extraction and real-time
quantitative PCR (RT-qPCR)

All the procedures, like RNA extraction, reverse transcription,

and RT-qPCR, were conducted as per the instructions of the kit.

Firstly, the total RNA of cells was extracted using SteadyPure Quick

RNA Extraction Kit (Accurate Biotechnology (Hunan) Co.,Ltd).

Then, the RNA reverse transcription was performed utilizing Hifair

III 1st Strand cDNA Synthesis SuperMix for RT-qPCR (Yeasen

Biotechnology (Shanghai) Co.,Ltd). Finally, the Hieff qPCR SYBR

Green Master Mix (High Rox Plus) (11203ES, YEASEN Biotech

Co., Ltd, China) was used for RT-qPCR and the 2^-DDCT method

was applied to calculate the relative gene expression level.

Supplementary Table 1 displays the sequences of primer used in

the present study.
2.12 Statistical analysis

All statistical analyzes in this study were conducted using R

software (version 4.0.1) and GraphPad Prism (version 9.0.0). The

differential analysis for identifying differentially expressed genes

was performed using the R package “limma”. The correlation

between two continuous variables was assessed using Spearman

and Pearson correlation analyzes. Group differences were assessed

using two-tailed t-tests or one-way analysis of variance (ANOVA).

Non-normally distributed variables were compared using the

Wilcoxon or Kruskal-Wallis tests. ROC and calibration curves

were generated using the “timeROC” and “rms” packages. A P-

va l u e l e s s than 0 . 05 (bo th s i d e s ) wa s con s i d e r ed

statistically significant.
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3 Results

3.1 The role of NETs in soft tissue sarcoma

The pivotal role of the tumor microenvironment (TME) in

tumor initiation and progression has been underscored by a

growing body of research. Therefore, it is important to investigate

the immune microenvironment landscape in STS to gain new

insights into the pathogenic mechanisms of this disease. In this

study, we employed the ssGSEA algorithm to calculate NETs scores

based on the expression of NETs-related genes, aiming to decode

the crosstalk within the TME. Our results demonstrated that STS

patients with higher NETs scores exhibited improved prognoses

(Figure 2A). Additionally, we observed a significant correlation

between NETs scores and immune cell infiltration, with higher

NETs scores being associated with increased infiltration of immune

cells such as Macrophage M2, T cell CD8, and Neutrophils

(Figure 2B). Interestingly, a positive correlation was identified

with prevalent immune checkpoints, including TIM3, PD-1, PD-
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L2, and CTLA4 (Figure 2C). Moreover, strong correlations were

found between NETs scores and both stromal and immune scores,

indicating a potential ability to modulate the TME (Figures 2D, E).

Collectively, these findings highlight the close relationship between

NETs and the TME, suggesting a significant impact on the

tumorigenesis of STS.
3.2 Identification of NETsLnc

The NETsLnc signature has demonstrated remarkable

predictive performance in prognosis and immune infiltration

across various tumor types. In the present study, we aimed to

develop a novel NETsLnc signature specific to STS by utilizing the

WGCNA approach. Initially, we visualized the sample dendrogram

and trait heatmap, followed by the removal of outlier samples to

ensure accurate clustering (Supplementary Figure 1A). Then, we

integrated transcriptional profiles and immune features, and using

an appropriate soft threshold (b=9), we constructed a scale-free
B

C

D E

A

FIGURE 2

Decoding neutrophil extracellular traps (NETs) in the tumor microenvironment (TME). (A) The Kaplan-Meier survival curves of STS with different NETs
scores. (B) The relationship between immune cell infiltration and NETs scores can be analyzed using Spearman’s correlation. (C) An association
between immune checkpoint molecules and NETs score. (D) A correlation between immune score and NETs scores. (E) A correlation between
stromal score and NETs scores.
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network. Subsequently, we identified 8 non-grey co-expressed

modules using the dynamic shear method (Supplementary

Figure 1B, C). Furthermore, we explored the association between

these modules and NETs scores, immune scores, and matrix scores.

Remarkably, the yellow and black modules demonstrated the

strongest correlation with NETs, as indicated by the highest R-

values (Supplementary Figure 1D). Consequently, the genes within

these modules were designated as NETsLnc and were employed for

subsequent analyzes. These findings solidify the successful

identification of NETsLnc, which will serve as the foundation for

constructing the prognostic signature.
3.3 Development of NETsLnc signature

Further construction of the NETsLnc signature will contribute

to the prognostic assessment of STS patients. Therefore, we

identified 87 genes significantly relevant to the overall survival of

STS from the most relevant modules through univariate regression

analysis. Subsequently, these 87 NETsLnc were incorporated into

the integrated algorithm program to construct the NETsLnc

signature based on machine learning. In the STS training set, we

constructed prediction signatures based on the consensus of 96

algorithmic frameworks and performed ten-fold cross-validation,

and computed the mean c-index of each model in all cohorts to

evaluate the predictive performance of all signatures. As shown in

Figure 3A, among the 96 signatures, the algorithm consisting of

Lasso and RSF maintained the highest average c-index when

constructing the final model. According to the expression data

and coefficients of the model’s signature genes, we calculated

everyone’s NETsLnc signature score (Figures 3B, C). To assess the

prognostic significance of the NETsLnc model, we classified the STS

individual into the high NETsLnc group and low NETsLnc group

according to the median NETsLnc signature score. The Kaplan-

Meier survival analysis further revealed a significantly higher risk of

death in the high NETsLnc group than in the low NETsLnc group

(Figure 3D). The same result was observed in the validation group

of the TARGET cohort. However, the same results were not

observed for the validation sets GSE21050 and GSE71118, which

may be because these two datasets only have survival data for DFS

and, thus, are less consistent with the predicted results for OS.

Meanwhile, the Figure 3E indicates the time-dependent ROC curve

of 1-year, 3-year, and 5-year OS of NETsLnc signature in TCGA

(AUC: 0.943/0.991/0.988), TARGET (AUC: 0.563/0.641/0.746),

GSE21050 (AUC: 0.482/0.493/0.471), and GSE71118 (AUC:

0.501/0.512/0.522).

In clinical practice, clinical characteristics such as age, gender,

and metastatic status are often used for prognostic assessment and

management. Therefore, we compared the predictive ability of the

NETsLnc score with typical clinical characteristics in STS. The

results exhibit that the NETsLnc signature was more accurate than

these variables in the TCGA and GEO cohorts (Figures 4A, B).

Moreover, the Cox regression analysis indicated the independent

prognostic significance of NETsLnc signature for STS (Figures 4C,

D). Finally, we also developed a nomogram (Figure 4E) based on the

NETsLnc signature and clinical characteristics. The survival
Frontiers in Immunology 07
probability predicted by this nomogram was better consistent

with the actual observation of STS (Figures 4F, G). Hence, these

results imply that our NETsLnc marker has been successfully

constructed and has strong accuracy and specificity for predicting

the prognosis of STS, which will contribute to the clinical

management of STS in the future.
3.4 The potential biological functions
of NETsLnc

Exploring the potential biological mechanisms underlying

NETsLnc can provide insights into the poorer prognosis observed

in STS patients with high NETsLnc scores. Our analysis of

representative steps in the immune cycle revealed that the high

NETsLnc group exhibited increased activity in multiple immune

cycle steps (Figure 5A). Furthermore, NETsLnc features were found

to be associated with various pathways, including myc target, Wnt

beta-catenin signaling, and TGF beta signaling (Figure 5B).

Additionally, analysis of the immune atlas radar map using the

TCGA dataset showed significant upregulation of typical immune

markers in the low NETsLnc group, such as cytolysis activity,

inflammation promotion, and APC co-inhibition (Figure 5C).

Through GSEA, we identified distinct enrichment patterns in the

low and high NETsLnc groups. The low NETsLnc group was

enriched in pathways such as aminoacyl tRNA biosynthesis,

cysteine and methionine metabolism, ribosome, RNA polymerase,

and spliceosome (Figure 5D). On the other hand, the STS cohort

with high NETsLnc scores exhibited enrichment in pathways such

as calcium signaling, complement and coagulation cascades,

hematopoietic cell lineage, nicotinate and nicotinamide

metabolism, and phenylalanine metabolism (Figure 5D). These

findings provide novel insights into the adverse prognosis

associated with high NETsLnc scores in STS patients.
3.5 Genomic mutation landscape

Understanding the somatic mutation landscape is crucial for

gaining in-depth insights into the disease biology, guiding treatment

decisions, and enhancing the accuracy of prognosis assessment of

STS. As presented in Figure 6A, we explored the somatic mutation

landscape and visualized the top 20 FMGs in STS patients via

waterfall. Notably, among these common FMGs, the mutation

frequencies of ATRX and DNAH14 were significantly elevated in

the high NETsLnc group than in the low NETsLnc group

(Figure 6B). To further dissect genomic variation, we further

compare and evaluate CNVs on chromosome arms between

different NETsLncs groups. Strikingly, the patient in the high

NETsLncs group had more pronounced delet ion and

amplification changes (Figure 6C). Meanwhile, the NETsLncs

scores were positively correlated with deletion and amplification

changes (Figures 6D, E). Although there was no difference in TMB

between the high and low NETsLnc group, the patient with a high

NETsLnc score exhibited an enhanced HRD burden and

diminished MSI score (Figures 6F–H). Collectively, the low
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1321616
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Liu et al. 10.3389/fimmu.2023.1321616
NETsLncs signature may represent a stable genomic subtype, while

the high NETsLncs signature has an augmented degree of

genomic instability.
3.6 Integrative assessment of tumor
immunity microenvironment

To further explore the immune status reflected by the NETsLnc

signature, we conducted a series of correlation analyzes. As
Frontiers in Immunology 08
presented in Figures 7A, B, the patient with high NETsLnc

exhibited a higher tumor purity score and positively correlated

NETsLnc score. In comparison, the stromal, immune, and

ESTIMATE scores were lower and negatively correlated with the

NETsLnc scores. Meanwhile, a high NETsLnc score was

significantly positively correlated with the degree of infiltration of

macrophages M0, while the degree of infiltration of macrophages

M1 and Mast cells resting and the level of immunomodulators were

closely related to low NETsLnc score. In addition, we display that

the intratumor heterogeneity of the high-risk group was higher than
B C

D

E

A

FIGURE 3

The NETsLnc signature is constructed using machine learning. (A) The C-index that compares 96 machine learning algorithms across four cohorts of
validations. (B) A Lasso coefficient of each of the most useful prognostic genes. (C) The 23 most valuable NETsLnc. (D) Kaplan-Meier survival analysis
between different NETsLnc groups. (E) A time-dependent ROC curve is presented for one year, three years and five years of OS.
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that of the low-risk group. At the same time, the low NETsLnc

presented a lower leukocyte fraction and lymphocyte infiltration

signature score, and there was no difference in proliferation score

between the two groups (Figures 7C–F). Hence, these results

indicated that the STS patients in low NETsLnc feature is

associated with a more active tumor immune response, implying

their potential as candidates for immunotherapy.
3.7 Immunotherapy response prediction

The potential predictive ability of the NETsLnc signature for

immunotherapy response was investigated by verifying its

predictiveness in the IMvigor and Liu David immunotherapy
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datasets. As shown in Figures 8A, B, the individuals in the low

NETsLnc group had significantly improved overall survival

compared to those in the high NETsLnc group. Moreover, the

NETsLnc scores of patients with stable disease (SD) and progressive

disease (PD) were significantly higher than those of patients with

complete response (CR) and partial response (PR) (Figures 8C, D).

Consistently, the contingency table generated by TIDE and submap

also supports these findings (Figures 8E–H). These results suggest

that patients with low NETsLnc scores exhibit a higher response

rate to immunotherapy and are more sensitive to PD1 inhibitors in

the TCGA and Target cohorts. Collectively, these results indicate

that patients with low NETsLnc scores exhibit a higher response

rate to immunotherapy, which has important implications for

future understanding of immunotherapy for STS.
B

C

D

E F

G

A

FIGURE 4

NETsLnc signature’s prognostic value. (A) The comparison of the prognosis prediction ability of the NETsLnc signature with the performance of
common clinical features and molecular variables in the TCGA and TARGET cohorts. (B) The AUC of NETsLnc signature and other clinical
characteristics. (C, D) Cox regression analysis of individual clinical variables, including the NETsLnc signature, in the TCGA and TARGET cohorts.
(E) The nomogram is composed of the NETsLnc and clinical features to predict 1-, 3-, and 5-year survival rates. (F) The calibration curves of the
Nomogram. (G) An AUC value for the Nomogram. *** < 0.001
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3.8 Screening of potential
therapeutic drugs

Screening of potential drugs offers multiple possibilities for

improving outcomes for patients with STS. For individualized

clinical treatment each individual, we identified potential

therapeutic agents through the CMap database. Through
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searching for opposing expression patterns among molecular

subtypes and disease phenotypes by combining the CMap

database, the potential compounds and elucidating the mode of

action (MoA) were identified. Ten drugs showed an individualized

therapeutic potential against NETsLnc (Figure 8I). Figure 8J

illustrates the 3D structures of the top three drugs, including

VEGF-receptor-2-kinase-inhibitor-IV, teniposide, and SIB-1893.
B

C D

A

FIGURE 5

Annotation of the NETsLnc signature in the STS cohort. (A) Differences in cancer immune cycles between two NETsLnc signature score groups.
(B) Correlation between NETsLnc signature scores and Hallmark terms. (C) Immunogram radar Chart. (D) The GSEA of KEGG results. * < 0.05, ** <
0.01, **** < 0.0001. ns, No significance.
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In addition, we also utilized data of hundreds of cell lines in the

CRPT and PRISM datasets to screen potentially sensitive agents for

the STS cohort with a high-NETsLnc score. The CTRP data set

results revealed that the AUC for BI2536, GSK461364, KX2-391,

paclitaxel, SB-74392, and vincristine was significantly lower in the

high NETsLnc score group, indicating better sensitivity to these

drugs (Figure 8K). Meanwhile, the results based on the CTRP

dataset displayed that the AUC values of echinomycin,

LY2606368, vincristine, and YM-155 were significantly lower in

the NETsLnc high-scoring group (Figure 8L). Collectively, these

different drugs and targeted pathways can guide individualized

treatment patterns and improve clinical efficacy.
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3.9 Verification of the NETsLnc in STS cells

To further confirm the effectiveness of the NETsLnc signature,

we selected the top 8 characteristic NETsLnc to detect their

expression in STS cells via RT-qPCR. As illustrated in Figure 9,

there was a significant abnormal expression in these eight NETsLnc

in the STS cell line. On the one hand, the LINC00703, ARRG1,

JARID2-AS1 LINC00491, DDC-AS1, and MCHR2-AS1 present an

improved level in SYO-1 compared to HSF, although there was no

significant elevation in 005R. On the other hand, the LINC00330

was diminished in 005R, and the TTTY13 was decreased in 005R

and SYO-1. Hence, these NETsLnc showed significant differences in
B

C D

E

F G H

A

FIGURE 6

Genomic alterations associated with the NETsLnc signature in the STS cohort. (A) Waterfall plotting of the top 20 commonly mutated genes. (B) The
top 20 FMGs between distinct risk groups. (C) The amplification and deletion frequency distributions between distinct risk groups. (D) Association of
NETsLnc signature score with amplification frequency. (E) Correlation of NETsLnc signature score with deletion frequency. (F) The difference in TMB
score between two NETsLnc signature score groups. (G) The difference in the MSI score between two NETsLnc signature score groups. (H) The
difference in the Homologous Recombination Defects score between two NETsLnc signature score groups. * < 0.05.
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STS cell lines, indirectly confirming the reliability and accuracy of

the NETsLnc signature in STS.
4 Discussion

STS poses a significant clinical challenge due to its rarity,

heterogeneity, and propensity for metastasis even with combined

treatment strategies such as surgical resection, adjuvant

radiotherapy, and chemotherapy (41). The emergence of

immunotherapy has brought new hope for the treatment of

tumors. Numerous clinical trials demonstrate the effectiveness of

immunotherapy in various solid tumors (42). With the increasing
Frontiers in Immunology 12
costs of cancer treatment, there is a growing need for better-

individualized assessment modalities to allocate resources more

accurately to high-risk patients (43). In this context, our study

aimed to bridge existing gaps by systematically investigating the

relationship between NETsLnc profiles and STS prognosis,

immunotherapy response, and drug efficacy using machine

learning systems. This work will not only deepens our

understanding of STS but also opens avenues for more targeted

and effective treatment strategies.

Using the expression data of intersecting genes, we identified a

consensus NETsLnc signature through an integrated pipeline

comprising 10 machine-learning algorithms. Further validation

on three independent datasets indicated that the model
B

C D E F

A

FIGURE 7

The immunity characteristics of the STS cohort relating to the NETsLnc signature. (A) The accsociation of the NETsLnc signature with immune score,
immune infiltrating cells, and immune checkpoint. (B) The accsociation of NETsLnc signature and immune score, immune infiltrating cells, and
immune checkpoint. (C) The intratumor heterogeneity level between two NETsLnc signature score groups. (D) The prolifferation level between two
NETsLnc signature score groups. (E) The leukocyte fraction level between two NETsLnc signature score groups. (F) The lymphocyte infiltration
signature score between two NETsLnc signature score groups. * < 0.05, ** < 0.01. ns, No significance.
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constructed by the RFS and LASSO algorithms exhibited the most

outstanding performance as a predictive signature. The integration

process offers several advantages: it generates a prognostic signature

for STS with consistent performance, reduces the dimensionality of

variables in combination with the algorithm, and simplifies and
Frontiers in Immunology 13
transforms the model. Additionally, a series of prognostic analyzes

demonstrated that the NETsLnc score served as an unfavorable

indicator and was further confirmed as an independent risk factor

in the multivariate regression analysis. Furthermore, ROC and c-

index analyzes revealed that the NETsLnc signature maintained
B C D

E F G H

I

J

K L

A

FIGURE 8

Immunotherapy response and drug sensitivity prediction. (A) Kaplan-Meier survival curve of OS between patients with distinct risk score in the
Imvigor210 dataset. (B) A comparison of NETsLnc signature scores between CR/PR and SD/PD patients in the Imvigor210 dataset. (C) Kaplan-Meier
survival curve of OS between patients with distinct risk score in the Liu David dataset. (D) A comparison of NETsLnc signature scores between CR/PR
and SD/PD patients in the Liu David dataset. (E) The difference in TIDE score between the TCGA cohort with distinct NETsLnc signature score.
(F) The submap analysis result in the TCGA cohort. (G) The difference in TIDE score between the TARGET cohort with distinct NETsLnc signature
score. (H) The submap analysis result in the TARGET cohort. (I) Potential agents’ descriptions and their corresponding descriptions. (J) The three-
dimensional structure of VEGF-receptor-2- inhibitor-IV, teniposide, and SIB-1893. (K) The potential pharmaceutical compound for STS cohort with
the high NETsLnc score based on CTRP. (L) The potential pharmaceutical compound for STS cohort with the high NETsLnc score based on PRISM
2.0. *** < 0.001, **** < 0.0001.
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high accuracy and stable performance compared to other clinical

features. These results highlight the effective prognostic capabilities

of the established NETsLnc signature for STS patients and its

potential for significant applications in future clinical decision-

making and management of STS.

Next, we investigated the underlying molecular mechanisms of

NETsLnc to elucidate their association with cancer-related

biological functions in different groups. We observed a positive

correlation between NETsLnc signatures and several classical

cancer-related pathways, which has been validated by previous

studies in the context of STS. For example, in liposarcoma,

leiomyosarcoma, synovial sarcoma, and fibrosarcoma, the Wnt/b-
catenin signaling pathway is known to be constitutively activated,

leading to enhanced proliferation and viability, with CDC25A

identified as a key target gene (44, 45). Additionally, we found a

significant association between high NETsLnc scores and cancer

immune cycle-associated features. Research has established the

importance of the cancer immune cycle as a framework for

guiding cancer immunotherapy. Moreover, the immune atlas

radar map demonstrated that immune features such as Cytolytic

activity, Inflammation promotion, and APC co-inhibition were

predominantly enriched in the low NETsLnc group, consistent

with prior evidence (5, 46). Collectively, these findings suggest

that the NETsLnc group exhibits notable tumor-related and
Frontiers in Immunology 14
immune characteristics, potentially indicating a relationship with

the tumor immune microenvironment and immunotherapy.

The tumor microenvironment (TME) plays a central role in

driving the initiation and progression of tumorigenesis, exerting

significant influence over these critical stages in the development of

cancer (47, 48). To further explore the relationship between the

NETsLnc and TME, we comprehensively analyzed the immune

socres and infiltration of distinct NETsLnc groups. Our study

revealed that the low NETsLnc group exhibit more enhanced

immune activity and several immune cells, including CD8 + T cells,

Macrophage M1, and Neutrophils are more enriched. Previous studies

have proven that improved CD8+ T cell infiltration may enhance

immunotherapy response and prognosis (49). In the meantime, many

studies have demonstrated that Macrophages can be activated with

different properties in the tumor microenvironment, among which

M1 macrophages have pro-inflammatory and anti-tumor effects, and

an elevated M1 Macrophage distribution is associated with a better

prognosis. These research are consistent with our findings, suggesting

that increased infiltration and activity of immune cells may be

associated with longer survival time of tumor patients. Meanwhile,

this also explains to a certain extent that the patients in the NETsLnc

low-risk group has a better survival prognosis.

In recent times, immunotherapy has emerged as a progressively

effective alternative in tumor treatment, complementing surgical,
FIGURE 9

Several signature NETsLnc expressions n HSF and STS cell lines were detected by RT-qPCR. ** < 0.01, *** < 0.001, **** < 0.0001. ns, No significance.
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chemotherapeutic, and radiotherapeutic approaches (50).

Interestingly, we observed elevated levels of several immune

checkpoint molecules, including PD-L2, PD-1, LAG-3, and TIM3,

in the low NETsLnc group. These molecules showed a negative

correlation with the NETsLnc score, suggesting a potential

hindrance in the ability of activated immune cells to exert anti-

tumor effects. However, this observation also provides an

opportunity for a breakthrough in immunotherapy for STS.

Supporting this, our further analysis demonstrated that patients

with low NETsLnc scores exhibited better prognosis among those

who received immunotherapy. Additionally, the population with

good immunotherapy response had lower NETsLnc scores,

highlighting the potential benefits of immunotherapy for the low

NETsLnc group. Building upon this hypothesis, it is predicted that

the low NETsLnc group may exhibit a favorable response to anti-

PD-1 drugs compared to the high NETsLnc group. Consequently,

this signature may open up new avenues for the development of

more targeted and effective immunotherapeutic strategies for STS.

To date, chemical drug-mediated chemotherapy is an

indispensable strategy for tumors (51). We mine representative

potential therapeutics using the Camp dataset and then display

their 3D structures. Additionally, we analyzed the drug

susceptibility data of multiple databases to further explore potential

drugs suitable for the high NETsLnc group for prognosis

improvement. By analyzing the data in CTRP, we observe that the

high NETsLnc group has more sensitivity to BI2536, GSK461364,

KX2-391, paclitaxel, SB-74392, and vincristine. Meanwhile, the

results based on the CTRP dataset displayed that the individual in

the NETsLnc score group was sensitive to echinomycin, LY2606368,

vincristine, and YM-155. Interestingly, both results demonstrated

that vincristine might have a better therapeutic effect on STS with

high NETsLnc scores. Vincristine, as a first-line antineoplastic drug,

plays an integral role in the chemotherapy of patients with soft tissue

sarcoma (52). Given the above, these potential therapeutic drugs may

provide novel hope for STS treatment and achieve clinical

precision treatment.

Moreover, we detected the expression of several signature

NETsLncs in STS cell lines. Some NETsLncs have been reported

to play important roles in the progression of different cancers.

LINC00491 is involved in the progression of multiple cancers

through miRNA sponges (53–55). For instance, Wei Wang et al.

reported that LINC00491 was overexpressed in liver cancer and can

promote live cancer cell growth and metastasis by sponging miR-

324-5p/ROCK1 (53). LINC00703 may be a tumor suppressor in

gastric and non-small cell lung cancer (56, 57). However, the

significance of these NETsLnc in the development of STS is

still lacking.

Although we have included as many prognostic and treatment

cohorts as possible for rigorous bioinformatics analysis, further

validation of these findings in a larger cohort or across different

subtypes of STS would provide more robust evidence supporting

the utility of this novel signature. While our study has promising

strengths, it is crucial to acknowledge certain limitations. initially,

the patients included in this study were from retrospective cohorts,
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and the prognostic signature constructed needs validation in

prospective cohorts to ensure its predictive feasibility. Secondly,

the roles and mechanisms of the relevant signature NETslnc in STS

require further in vitro and in vivo experimental exploration in

future studies. Thirdly, the impact of the signature as revealed in the

study for drug selection necessitates more rigorous exploration in

corresponding drug treatment cohorts.
Conclusion

Herein, we constructed a robust consensus NETsLnc signature

based on multiple machine learning algorithms, which is beneficial for

the prognosis and immunotherapy response prediction of STS patients.

This work not only deepens our understanding of STS but also opens

avenues for more targeted and effective treatment strategies.
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