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Identification and validation of
platelet-related diagnostic
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screening in ischemic stroke by
integrating comprehensive
bioinformatics analysis and
machine learning
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Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China,
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Background: Ischemic stroke (IS), caused by blood and oxygen deprivation due

to cerebral thrombosis, has links to activated and aggregated platelets.

Discovering platelet-related biomarkers, developing diagnostic models, and

screening antiplatelet drugs are crucial for IS diagnosis and treatment.

Methods and results: Combining and normalizing GSE16561 and GSE22255

datasets identified 1,753 upregulated and 1,187 downregulated genes. Fifty-one

genes in the platelet-related module were isolated using weighted gene co-

expression network analysis (WGCNA) and other analyses, including 50

upregulated and one downregulated gene. Subsequent enrichment and network

analyses resulted in 25 platelet-associated genes and six diagnostic markers for a risk

assessment model. This model’s area under the ROC curve outperformed single

genes, and in the peripheral blood of the high-risk group, immune infiltration

indicated a higher proportion of CD4, resting CD4 memory, and activated CD4

memory T cells, along with a lower proportion of CD8 T cells in comparison to the

low-risk group. Utilizing the gene expression matrix and the CMap database, we

identified two potential drugs for IS. Finally, a ratMACO/Rmodel was used to validate

the diagnostic markers’ expression and the drugs’ predicted anticoagulant effects.

Conclusion: We identified six IS platelet-related biomarkers (APP, THBS1, F13A1,

SRC, PPBP, and VCL) for a robust diagnostic model. The drugs alpha-linolenic

acid and ciprofibrate have potential antiplatelet effects in IS. This study advances

early IS diagnosis and treatment.
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Introduction

Stroke, the global second most prominent cause of death

following ischemic heart disease, is an abrupt onslaught on the

nervous system. Etiologically, it is traceable to cerebral vascular

reperfusion damage, a subset of cerebrovascular ailments (1–3).

Ischemic stroke (IS), characterized primarily by cerebral vascular

thrombosis, precipitates an inadequate distribution of blood and

oxygen to the brain (4). IS screening and diagnosis are conducted by

employing facial, arm, and speech tests (FAST) and various

advanced medical imaging techniques. Nevertheless, the potential

for diagnostic failure or deferred imaging examination is introduced

by factors such as atypical symptomatology in stroke patients,

physical discomfort, emotional distress, and the limited sensitivity

of diagnostic equipment (5).

In the therapeutic landscape, recombinant tissue plasminogen

activator (tPA) thrombolysis is the sole FDA-endorsed IS treatment

(6). Clinical outcomes show significant improvement when 0.9 mg/

kg of alteplase is administered intravenously within a 4.5-h stroke

onset (5). Concurrently, calcium antagonists administered

intravenously and orally active antihypertensives regulate patients’

blood pressure, while active bleeding in patients with acute

hemorrhagic stroke is meticulously managed. Severe cases may

incline toward surgical interventions, such as craniotomy and

neuroendoscopic surgeries (7). Despite these advancements, the

efficacy of tPA therapy is hampered by the narrow time window

within which the treatment can be administered, a situation further

compounded by patient-related factors such as delayed hospital

arrival (8). Furthermore, surgical intervention has not substantially

improved mortality rates or patient prognosis (9).

Within the sphere of thrombotic disorders, platelets, being

infinitesimal cell fragments, are cardinal actors in thrombus

generation and are the core focus of antithrombotic therapy (10).

Recent research has elucidated that platelets are activated through

various agonists, such as reactive oxygen species, von Willebrand

factor, and damage-associated molecular pattern molecules, in the

wake of ischemia/reperfusion (I/R) damage (11). Preliminary stages

of cerebral vessel thrombus formation involve the accumulation of

platelet-bound red blood cells and certain coagulation factors at the

injury site, thereby giving rise to a developing, porous, protein-

scaffolded thrombus. However, subsequent accruement of platelets

and fibrin metamorphoses the thrombus into a dense, stable, and
Abbreviations: 6-keto-PGF1a, 6-keto-prostaglandin F1a; APP, amyloid-beta

precursor protein; DEGs, differentially expressed genes; F13A1, coagulation

factor XIII A chain; FIB, fibrinogen; HBMECs, human brain microvascular

endothelial cells; IS, ischemic stroke; LASSO, least absolute shrinkage and

selection operator; MCAO/R, medial cerebral artery occlusion/reperfusion; NK

cells, natural killer cells; OGD/R, oxygen glucose deprivation/reoxygenation;

PADGs, platelet-related diagnostic genes; PAI, plasminogen activator inhibitor;

PF4, platelet factor 4; PPBP, platelet basic protein; PRGs, platelet-related genes;

RT-qPCR, real-time quantitative polymerase chain reaction; SRC, proto-

oncogene tyrosine-protein kinase Src; THBS1, thrombospondin-1; TIA,

transient ischemic attack; tPA, tissue plasminogen activator; TXB2,

thromboxane B2; VCL, vinculin; WGCNA, weighted gene co-expression

network analysis.
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high-occlusion structure. Such development amplifies the resistance

of the thrombus to thrombolysis and diminishes tPA penetration,

thereby presenting a significant clinical challenge to IS treatment

(12). While antiplatelet agents (like aspirin and clopidogrel) are

enlisted as secondary prevention treatments for stroke, alternative

antithrombotic therapies not targeting platelets have

comprehensively demonstrated efficacy only for atrial fibrillation

(11). Consequently, the link between cerebral ischemic damage and

platelets is gaining extensive scientific focus in the quest for viable

diagnostic and therapeutic targets.

Over recent decades, the advent of multi-omics, sundry artificial

intelligence mechanisms, and data-driven technologies has

extensively propelled the discovery of medical diagnostic and

prognostic markers and the screening of prospective drug

candidates (13). Based on the intricate and high-dimensional

nature of datasets related to cerebral ischemia, the imperative of

employing machine learning—a suite of mathematical approaches

devised to extract knowledge and insights from expansive datasets—

has become more apparent (13) Computer-Assisted Drug Design

(CADD), which utilizes computational technology and software to

enhance the identification of potential drug candidates backed by the

structural understanding of target molecules (structure-based) or

established ligands with biological functions (ligand-based), is

becoming fundamental (14). In recent years, there has been

significant exploration of expression data pertaining to IS. Zhang

et al. conducted a comprehensive analysis, determining that the

differentially expressed genes within the IS patient dataset were

notably enriched in two pathways, namely, oxidative

phosphorylation and Alzheimer’s disease (15). Furthermore, the

validation of key genes was performed using quantitative real-time

polymerase chain reaction (qRT-PCR) (15). Additionally, Yang et al.

employed a weighted co-expression network analysis to categorize

patients with acute IS into three subgroups. This classification

facilitates tailored treatment based on their peripheral blood

immune status (16). Several studies have utilized weighted gene co-

expression network analysis (WGCNA) to identify immune-related

genes and cell death-related biomarkers, which play pivotal roles in

the progression of IS (17, 18). Concurrently, the networks associated

with ciRNA, miRNA-mRNA, and neutrophils have been established,

shedding light on the pertinent gene biomarkers (19, 20). Despite the

previous bioinformatics analyses reporting various cell death modes

and immunophenotypes in IS, a systematic analysis of platelets,

integral targets in the coagulation and antithrombotic processes of

IS, and their related drugs, remains outstanding. This endeavor,

processed through a meshwork of bioinformatics and machine

learning, aims to establish a validated approach to drug screening

premised on the genes associated with this model.
Materials and methods

Data sources and processing

The GSE16561 and GSE22255 datasets were retrieved from the

Gene Expression Omnibus database (http://www.ncbi.nlm.nih.gov/

geo/) (21). These cohorts include peripheral blood samples from IS
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patients. Comprehensive details regarding these datasets are briefly

summarized in Table 1. The inclusion criteria for the dataset in this

study comprised the following: (a) the dataset needed to encompass a

genome-wide mRNA expression profile. (b) The data source should

originate from peripheral blood samples obtained from individuals

within the IS group and samples from healthy population controls

that had not been stimulated with drugs and transfected. (c) The

dataset had to be original and complete. (d) The dataset type was

specifically designated as “expression profiling by array.”

Moreover, the identifier conversion for expression profiling arrays

of GSE22255 and GSE16561 was achieved employing the

“hgu133plus2.db” Platform annotation file, alongside the “tidyverse”

and “AnnoProbe” packages sourced from R. After their generation, the

expression profiles were consolidated utilizing the Combat function

derived from the “sva” package to neutralize potential batch

discrepancies. An in-depth examination of the preprocessed data was

conducted via principal component analysis (PCA), facilitated by

applications of the “FactoMine” and “factoextra” R packages.
Analysis of differentially expressed genes
and construction of the WGCNA network

The “limma” package, also a function of R, was utilized for

screening differentially expressed genes (DEGs) within the IS

patient pool and control group in the combat dataset. Threshold

values for DEG identification were stringently established at P <

0.05 and |log2 fold change (FC)| ≥ 1, respectively. Following this

procedure, the identified DEGs of blood samples were introduced

for WGCNA using the “WGCNA” package in R (22).

Upon conducting the logarithmic transformation of expression

profiles, the hclust function guided the clustering of DEGs into

comparable modules. The enable WGCNA Threads function

directed multithreaded operations juxtaposed with a scatter plot

to distinguish the optimal threshold. In contrast, the urodynamic

function was applied to meticulously analyze the gene hierarchical

clustering tree, resulting in co-expression modules. Afterward, co-

expression modules exhibiting close resemblance (r > 0.75)

were grouped.
Function enrichment of Gene Ontology
and Kyoto Encyclopedia of Genes and
Genomes and gene set
enrichment analysis

The lightgreen module, which included 51 genes of WGCNA

results, was considered the platelet-related module. We used the

enrichGO and enrichKEGG functions of the “ClusterProfiler”
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package in Bioconductor (http://bioconductor.org/packages/

release/bioc/html/clusterProfer.html) to perform Gene Ontology

(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)

enrichment analysis on genes in the lightgreen module. Specifically,

the identification of biological processes (BPs), cellular components

(CCs), molecular functions (MFs), and KEGG pathways under the

human genome was performed to identify platelet-related BPs and

pathways. The P value cutoff was 0.05. To determine whether there

were any remaining platelet-relevant gene (PRG)-enriched

pathways in other modules, the expression profiles of all DEGs

were subjected to gene set enrichment analysis (GSEA), and

platelet-related GO entries or KEGG pathways and their enriched

genes were screened out with adjusted P < 0.05 through GSEA

function in the “ClusterProfiler” package.
Construction and analysis of protein–
protein interaction

STRING database (https://cn.string-db.org/) was used to

conduct the protein–protein interaction (PPI) of 66 genes in

platelet-related GO entries or KEGG pathways and the module.

Organisms were chosen “Homo sapiens,” the minimum required

interaction score corresponding to “high confidence (0.700)” and

the “tsv” format of the result and then output into Cytoscape 3.9.0.

Then, to identify highly interconnected gene modules, the

“MCODE” plugin of Cytoscape was used according to the “K-

core>2.”Hub genes were detected with the “cytiHubbvba” plugin of

Cytoscape according to their network features. Hub genes and genes

in core modules were merged, and duplicates were removed. Lastly,

the subsequent establishment of the PPI biological function co-

expression network of PRGs was realized by GeneMANIA (http://

www.genemania.org/).
Screening of diagnostic biomarkers via
machine learning

Least absolute shrinkage and selection operator (LASSO) was

used in this study to screen for significant platelet-associated

prognostic genes (PAPGs). After removing genes with 0

coefficient, the “glmnet” package in R was used to perform

LASSO and identify genes significantly associated with IS and

control samples. The formula for calculating the LASSO risk

score is as follows: Risk score = (ExpressionGENE1 ×

CoefficientGENE1) + (ExpressionGENE2 × CoefficientGENE2) +

…+ (ExpressionGENEn × CoefficientGENEn) (23). LASSO

coefficient maps and curves are presented in R using the

plot function.
TABLE 1 Basic information about the datasets.

Datasets Platform IS samples Control samples Sequencing type Source

GSE16561 GPL6883 39 24 mRNA Peripheral blood

GSE22255 GPL570 20 20 mRNA Peripheral blood
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Validation of diagnostic efficacy of
signature genes in IS

The samples in the combined expression matrix of GSE16561

and GSE22255 were divided into high-risk groups and low-risk

groups according to the risk score of LASSO. The risk scores of

high- and low-risk groups for each gene set and the expression

levels of PAPGs in IS patients and controls were presented as box

plots using the “ggplot2” package in R. We further evaluated its

diagnostic potential in GSE16561 and an outside validation group,

GSE22255, respectively. The “ROCR” package in R was used to

perform the receiver operating characteristic (ROC) curve and

evaluate the diagnostic potential of the PAPGs. The value of the

area under the curve (AUC) greater than 0.7 indicated favorable

diagnostic performance.
Immune cell infiltration

The Cell-type Identification By Estimating Relative Subsets Of

RNA Transcripts (CIBERSORT), a computational method that can

analyze the expression profile matrix by vector regression, can

identify 22 human immune cell subtypes. We used the

“CIBERSORT” package in R to explore the differences in immune

cell composition between IS and normal patients. The “corrplot”

package was used to draw the correlation between immune cell

composition and PAPGs by the Spearman method.
Construction of mRNA–miRNA
interaction network

Two analytical tools, MiRTarBase and miRWalk database, were

used to predict the pivotal miRNAs targeted by PAPGs. The results

of the two databases were taken from the intersection of the

miRNAs to screen out the miRNAs targeting more than two

genes as the retention.
Drug discovery in Connectivity Map

Connectivity Map (CMap) is an open database (https://

www.broadinstitute.org). We used to predict small molecule

compounds that may induce or reverse the altered expression of

PAPGs in cell lines and to identify connections between potential

drugs that share chemicals, physiological processes, and

mechanisms of action (24). It came into service to screen

potential drugs according to PRGs in IS patients.
Molecular docking analysis

The obtained potential antiplatelet drugs of IS patients were

docked with six proteins in PAPGs. Molecular docking was

performed using AutoDockTools 1.5.6 and AutoDock Vina 4.2.

Briefly, the docking is as follows. Firstly, the core compound
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structure files (mol2 format) were downloaded from the

PubChem database. ChemDraw was used to minimize the

structure energy and convert the structure into a 3D structure.

Then, the target crystal structure was obtained from the PDB

database (https://www.pdb.org/x) and imported into PyMOL

1.7.2.1 (https://pymol.org/2/x) for dehydration and hydrogenation

for ligand separation. Docking grid boxes were subsequently

constructed in AutoDockTools 1.5.6 at the active site of each

target protein and then saved in pdbqt format. Molecular docking

of putative targets and active compounds using AutoDock Vina 4.2

and evaluating free binding energies. Finally, visualize and analyze

the interaction and critical patterns between drugs and proteins

using PyMOL and Discovery Studio 2020.
Materials

Linseed oil (purity ≥99%) was purchased from Aladdin

(Shanghai, China). Ciprofibrate (molecular weight = 289.15;

purity >98%) was obtained from Aladdin (Shanghai, China).

Enteric-coated aspirin was purchased from Bayer Healthcare Co.

Ltd. (Beijing, China). Rat ELISA kits for 6-keto-prostaglandin F1a
(6-keto-PGF1a), thromboxane B2 (TXB2), tissue plasminogen

activator (tPA), and plasminogen activator inhibitor (PAI) were

acquired from RuiDaHengHui Science & Technology Development

Co., Ltd. (Beijing, China). Human assay kits for fibrinogen (FIB)

content were obtained from Mantino Medical Devices Co., Ltd.

(Changchun, China). TRIzol (155960-18) was purchased from

Ambin (Beijing, China). Triphenyltetrazolium chloride (TTC)

Solution (2%) was purchased from Solarbio (Beijing, China). Red

Blood Cell Lysis Buffer (C3702) and DEPC water (R0022) were

provided by Beyotime (Shanghai, China). PrimeScript™ RT Master

Mix (Perfect Real Time) (RR036A) and TB Green Premix Ex Taq II

(Tli RNaseH Plus) (2X) (RR036A) were purchased from Takara

(Beijing, China).
Animals

In this experiment, healthy male Sprague-Dawley (SD) rats (230–

270 g) were purchased from Beijing Vital River Laboratory Animal

Technology Co., Ltd. (Beijing, China). All of the SD rats were adapted

to ventilated cages (temperature: 20°C–25°C, relative humidity: 30%–

50%) under a 12-h light/dark cycle and were given free access to food

and water. All animal care and experimental protocols were approved

by the Institutional Animal Care and Use Committee of the Chinese

Academy of Medical Sciences & Peking Union Medical College

(SYXK 2023–0008). All efforts were made to minimize the number

of animals used and to ensure minimal suffering.
Medial cerebral artery occlusion/
reperfusion model

The SD rats were anesthetized with isoflurane (4% for initiating

anesthesia in a chamber and 1.5% for maintaining anesthesia
frontiersin.org
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afterward), and the cerebral I/R was induced by medial cerebral

artery occlusion/reperfusion (MCAO/R) operation. In a nutshell,

the suture occlusion technique was used to occlude the middle

cerebral artery, and the lines were then removed from the common

carotid artery after 120 min (25). The sham-operated rats suffered

from the same procedure apart from the sutures inserted into the

internal carotid artery. A heating pad (Sunbeam, USA) was used to

keep the body temperature of rats at 37°C ± 0.5°C. The groups of

animals were blinded; the researchers did not know to which group

each animal was assigned.
Drug treatment

The drugs were dissolved in 5% carboxymethylcellulose sodium

before administration. All of the drugs were chronically delivered

into bodies by intragastric (i.g.) administration. The rats were

randomly assigned to five experimental groups: the sham group,

the MCAO/R group, the ciprofibrate +MCAO/R group, the linseed

oil +MCAO/R group, and the aspirin +MCAO/R group. Linseed

oil (3 mL kg-1), ciprofibrate (7.5 mg kg-1), or aspirin (positive

control drug, 30 mg kg-1) were given 14 days before MCAO surgery.
TTC staining

TTC staining was conducted 24 h after I/R to determine

whether the cerebral infarction model was successfully established

and the reduction of cerebellar infarction volume in the treatment

groups. The rats’ brains were frozen at -20°C for 20 min, cut into 2-

mm coronal slices, placed in TTC staining solution (2%), incubated

at 37°C for 15 min, and overnight in 4% paraformaldehyde.
Enzyme-linked immunosorbent assay

Plasma was collected from each sample. The expression level of

FIB, 6-keto-PGF1a, TXB2, t-PA, and PAI was assessed using

enzyme-linked immunosorbent assay (ELISA) kits according to

the previous method (26).
Blood total RNA extraction and real-time
quantitative polymerase chain reaction

Real-time quantitative polymerase chain reaction (RT-qPCR)

was used to assess mRNA expression. First, total RNA was isolated

from arterial blood nucleated cells using TRIzol and red blood cell

lysate. Complementary DNA was synthesized using PrimeScript™

RT Master Mix. PCR primer sequences are shown in

Supplementary Table S1. The prepared cDNA, GAPDH, and TB

Green were used as a template and reference for RT-qPCR reactions

on LightCycler96 Real time PCR System (Roche, USA).

Amplification conditions were as follows: 95°C for 5 min, 95°C

for 10 s, 60°C for 30 s, and 72°C for 30 s, for a total of 35 cycles.
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Eventually, the relative mRNA expression was analyzed using the

2−DDCq method [DCq = Cq (target gene)-Cq (reference gene)] (27).
Statistical analysis

The bioinformatics analysis was conducted with R software

(Version 4.3.0). GraphPad Prism9.5 was used for statistical analysis

in biological experiments. Data were analyzed using Student’s t-test

or one-way ANOVA, followed by Tukey’s test or two-way ANOVA

and Bonferroni’s multiple comparison test to determine whether

the data were normally distributed. P < 0.05 was deemed statistically

significant in all cases. ImageJ 1.44p software (National Institutes of

Health, Bethesda, MD, USA) was used to quantify the cerebral

infarct area.
Results

Experimental design

The study’s workflow is depicted in Figure 1, which outlines

each step of the methodology. Initially, the data were processed to

DEGs. Two datasets, GSE22255 and GSE16561, were amalgamated

and normalized to create a comprehensive gene expression profile.

The DEGs were subsequently applied to the WGCNA and PPI

network to identify platelet-related modules and corresponding

genes. A total of 25 PRGs were distinguished. Following this, the

LASSO algorithm formulated a platelet-related diagnostic model,

including six diagnostic molecular markers. Potential IS-related

antiplatelet drugs were forecasted, and their molecular binding to

platelet-related diagnostic genes (PADGs) was illustrated. The

possibility of miRNAs that could modulate the expression of

these markers was also projected. The final step involved

validating the changes in the expression of these proposed

diagnostic markers in rat blood samples pre- and post-IS.

Additionally, predictions related to the potential drug’s

effectiveness in preventing cerebral infarction and enhancing

coagulation capacity were verified.
Data processing and DEG identification

PCA between the two datasets and between IS patients and

controls showed that normalized GSE16561 covered GSE22255,

with apparent differences in samples between IS patients and

management (Figures 2A, B). After differential analysis of the

expression profile of GSE22255 and GSE16561 combination,

2,940 DEGs between IS patients and controls were obtained, of

which 1,753 upregulated genes were shown in red, 1,187

downregulated genes were shown in blue, and the screening

condition was P < 0.05 and |logFC| > 1(FC, fold change; adj.P:

adjusted P value), black dots in the volcano plot represent

undifferentiated genes (Figures 2C, D).
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1320475
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Geng et al. 10.3389/fimmu.2023.1320475
Establishment of the WGCNA network and
identification of the platelet-
related module

After removing missing values in the expression profile, we

detected heterogeneity in each sample by hierarchical clustering trees,

set the cut height to 4,500, used the “cutreeStatic” function to exclude

outliers in the study, and included all samples after the cut in the

subsequent research. A total of 12,773 genes and 102 representatives

from the gene expression matrix were used for WGCNA analysis

(Figure 3A). The “pickSoftThreshold” function guided the
Frontiers in Immunology 06
multithreaded work and filtered the soft thresholds (Figure 3B). The

optimal soft threshold was set to 9. Based on the weighted network and

the mutual co-expression of genes, we performed a hierarchical cluster

tree analysis to cluster the genes that can interact with each other to

generate modules with the most similar expression. Based on their

expression profiles, a total of 18 modules were obtained (Figure 3C).

Dendrogram branching indicated that the genes in each module were

highly heterogeneous (Figure 3D).

We performed GO and KEGG enrichment analysis on the 18

modules obtained by WGCNA, respectively. Module 7, also known

as the lightgreen module, was designated as the platelet-related
FIGURE 1

The experimental technical road map of the whole essay.
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module due to the significant enrichment of pathways and

biological processes associated with platelets and coagulation

exclusively within this module (Supplementary Table S2). It

consisted of 51 genes, among which 50 genes demonstrated

upregulation, while one gene exhibited downregulation within the

expression profile of IS patients. GO and KEGG enrichment

analysis was performed on the genes in this module. The top 5

enriched genes in the biological processes of GO were blood

coagulation, coagulation, hemostasis, regulation of body fluid

level, and wound healing (Figure 4A). KEGG’s top 5 enriched

pathways included platelet activation, TGF-b signaling pathway,

etc. (Figure 4B). In addition, there are many biological processes

and molecular functions related to platelets in this module,

including platelet aggregation, platelet morphogenesis, platelet

formation, platelet a-granule, platelet a-granule lumen, and

platelet a-granule membrane (Figure 4C). The relationships

between these platelet-related entries and the 14 genes enriched

were plotted as a network (Figure 4D).
Analysis of GSEA and PPI networks and
integration of PRGs

Although the lightgreen module was identified as the most

platelet-related module, GSEA was performed for all expressed

genes to avoid missing PRGs in stroke patients in other modules.

Indeed, numerous platelet-related gene sets were identified and
Frontiers in Immunology 07
were enriched for factors involved in megakaryocyte development

and platelet production, platelet alpha granules, platelet-derived

growth factor binding, platelet-derived growth factor receptor

signaling, and platelet alpha granules (Figures 5A-E).

Deletion of duplicate values from these platelet-related gene sets

resulted in 65 genes that were entered into STRING for protein–

protein interaction analysis, with a confidence of greater than 0.700

(Figure 5F). The “cytohubba” plugin in Cytoscape 3.9.0 analyzed

the above PPI network and screened the top 15 genes (Figure 5G).

The “MCODE” plug-in was also used, and the genes with a degree

value less than 2 were trimmed. Node Score Cutoff was selected as

0.2, K-core as 2, and Max. Depth was chosen as 100 to cluster the

remaining genes. A total of two modules were obtained: module 1

had 8 nodes and 26 edges with a score of 7.429 (Figure 5G), and

module 2 had 5 nodes and 9 edges with a score of 4.500 (Figure 5G).

Finally, we summarized 15 Hub genes, 8 genes obtained by

clustering 14 genes enriched in platelet-related entries in 14

lightgreen, and 25 genes were confirmed as PRGs (Supplementary

Table S3).
Identification of PADGs and validation of
diagnostic models

We obtained the expression data of 25 PRGs from the combined

expression profiles of GSE16561 and GSE22255 as the training set. We

then applied the LASSO algorithm to derive coefficient profiles
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A

FIGURE 2

Normalization of the dataset and acquisition of differentially expressed genes. PCA plots for GSE16561 and GSE22255 samples (A). PCA plots for IS and
control samples (B). Volcano plot of DEGs in IS patients and healthy individuals (|logFC| > 2, P < 0.05) (C). Differential fold plot of DEGs between IS patients
and healthy individuals (D). PCA, Principal components analysis; DEGs, Differentially expressed genes; IS, Ischemic stroke; logFC, Log fold change.
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FIGURE 3

Establishment of WGCNA network of DEGs. Cluster tree of 102 samples after clipping (A). Analysis of the scale-free exponent and the average
connectivity of each soft threshold, the red line indicates the minimum soft threshold of 9 for constructing the scale-free network (B). Clustering of
modular characteristic genes for all DEGs (C). Gene dendrogram for all DEGs (D).
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FIGURE 4

GO and KEGG enrichment analysis of the lightgreen module. The top 5 GO entries (A) and KEGG pathways (B) of enriched genes and their enriched
targets were identified. Platelet-related enrichment analysis entries (C) and their corresponding targets (D) in the lightgreen module.
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(Figure 6A) and partial 191 likelihood deviations (Figure 6B) using the

“glmnet” package in R. From these analyses, we identified six labels

with non-zero coefficients, namely, APP, THBS1, F13A1, SRC, PPBP,

and VCL; these tags were used to construct the LASSO regression

model and were identified as PADGs. The risk score formula was as

follows: riskScore = 0.032435376×ExpressionMAPK3 + 0.000297749 ×

ExpressionPPBP + 0.015633334 ×ExpressionTHBS1 + 0.001329085×

ExpressionF13A 1 + 0.118914685 × ExpressionSRC +0.015304202 ×

ExpressionVCL. The expression matrices of PRGs from each dataset of

GSE16561 and GSE22255 were selected as two separate validation sets

with forgeneralized cross-validation of the risk score model. Patients

with IS in each cohort had significantly higher risk scores than the

control samples (Figure 6C). ROC analysis was subsequently used to

determine the diagnostic potential of our model. In the two validation

sets, the AUC of the total risk screen was 0.841 and 0.791, respectively,

which was larger than the AUC of any single variable screened by the

LASSO model in the validation set (Figure 6D). Additionally, we

conducted external validation using mRNA samples from the

peripheral blood individuals affected by stroke and healthy

individuals within the GSE202709 dataset. The risk score within the

stroke population group was notably higher than that within the

healthy group (Supplementary Figure S1A), and the ROC analysis

illustrated an AUC value of 0.917 (Supplementary Figure S1B). This

indicates that the diagnostic potential of the risk score model is greater

than that of any single PADG.
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In addition, to test the reliability of this model, we performed

cerebral I/R in rats. The RT-qPCR findings showed that the relative

mRNA levels of VCL, THBS1, F13A1, SRC, and APP in the MCAO/

R group’s blood rose significantly (P < 0.05 or P < 0.0001)

(Figure 6E). This trend aligns with the expression pattern these

b iomarker s showed in human per iphera l b lood in

previous screenings.
Immune cell infiltration of PADGs

CIBERSORT represents a deconvolution computational

algorithm designed to estimate the proportions of 22 immune

cells within a given tissue based on the gene expression derived

from RNA sequencing (28, 29). In this study, we employed the

“CIBERSORT” tool within the R environment to assess the

immunological profiles of peripheral blood samples obtained

from both high-risk and low-risk individuals. Populations at high

risk had higher naive CD4 T cells, resting CD4 memory T cells,

activated CD4 memory T cells, activated natural killer (NK) cells,

macrophages M0, and resting dendritic cells compared with the

population at low risk. On the contrary, memory B cells, CD8 T

cells, resting NK cells, monocytes, macrophages M2, activated mast

cells, and activated neutrophils were lower (Figure 7A). All PADGs

were positively correlated with monocytes and resting dendritic
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FIGURE 5

Screening and recruitment of PRGs. GSEA of platelet-related KEGG gene set (A), platelet-related GO.CC gene set (B, E), platelet-related GO.MF gene
set (C), and platelet-related GO.BP gene set for all genes (D). Protein–protein interaction (PPI) analysis of platelet-associated gene sets (F). The Top
15 Hub gene of the PPI network, and from yellow to orange to red, genes get higher and higher scores, the top 2 modules of this network, and K-
core = 2, module 1 score = 7.429, module 2 score = 4.500 (G).
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1320475
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Geng et al. 10.3389/fimmu.2023.1320475
cells and negatively correlated with naive B cells and activated NK

cells. APP and SRC were negatively correlated with neutrophils,

while PPBP, THSB1, F13A1, and VCL were positively correlated

with neutrophils. Only VCL was negatively correlated with

macrophage M1 (Figure 7B). In addition, the correlation

coefficients between APP and monocytes, F13A1 and monocytes,

platelet basic protein (PPBP), and resting mast cells were large. All P

values were less than 0.05 (Figure 7C). APP and F13A1 may cause

changes in the immune microenvironment by regulating monocytes

after IS.
Screening of small-molecule drugs

The CMap was used to compare the reference gene expression

profiles after drug treatment according to the upregulated or

downregulated differential genes to find possible small-molecule

drugs. The upregulated genes in the 22 PRGs were used to predict

potential drugs, and 30 antiplatelet-related drugs were screened out, as

shown in Supplementary Table S4. We employed miRWalk 2.0

software to conduct mRNA-miRNA analysis on six genes within

PADGs (Supplementary Figure S2A). Subsequently, 59 miRNAs

were subjected to enrichment analysis using GeneCodies, revealing

significant enrichment in biological functions pertaining to protein

phosphorylation, negative regulation of transport processes, and signal

transduction. Additionally, the enriched biological pathways

encompassed signaling events in the FoxO signaling pathway, lipid

and atherosclerosis, and the AMPK signaling pathway (Supplementary
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Figures S2B, S2C). The first five drugs (alpha-linolenic acid,

ciprofibrate, SYK inhibitor, verapamil, and GR-206) were selected to

construct a miRNA-mRNA-drug network (Figure 8A). The top 5

drugs were entered into the CMap touchstone database, which

facilitates the exploration of connections between the genetic

alterations of genes and the drug signatures, in order to identify

compounds with similar pharmacological effects. Each predicted

drug exhibited more than 90% similarity to at least one existing

antiplatelet agent based on alterations in gene expression profiles:

alpha-linolenic acid with platelet-activating factor receptor

antagonist, GR-206 with platelet aggregation inhibitor, SYK inhibitor

with phosphodiesterase inhibitor, verapamil with platelet growth factor

receptor antagonist, ciprofibrate with platelet growth factor can be seen.

Receptor antagonists are highly similar (Figure 8B).
Molecular docking of compounds
with PADGs

In light of the structural formula of SKY inhibitors is not single,

alpha-linolenic acid, and ciprofibrate were selected for molecular

docking with six PADGs in Autoduck, each with 20 conformations.

A total of 18 groups were docked, and the lowest binding energy of

the docked conformation in each group was selected and shown in

Table 2. A binding energy of less than -5 indicates good docking in

nine groups. The ligands in the other three groups were all alpha-

linolenic acid, and the absolute values of binding energies were low.

The binding of SRC to these two compounds to other proteins
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FIGURE 6

Development and validation of platelet-related diagnostic models. Distribution of LASSO regression coefficients for PADGs (A). The parametric plot
of LASSO regression for PRGs (B). Risk scores of platelet-related diagnostic models for IS patients and healthy people in GSE16561 and GSE22255
(C). ROC curve analysis of individual factors and diagnostic models of GES16561 and GSE22255 (D). Relative mRNA levels of Vcl, Thbs1, F13a1, Src,
and App in sham and MCAO/R groups (E). (* P < 0.05, ** P < 0.01, *** P < 0.001.).
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suggests that SRC may be an essential target for the

pharmacological effects of these drugs. Subsequently, we

conducted visualizations of the docking process involving SRC

and these two compounds, employing Discovery Studio to

illustrate a 2D map demonstrating the interaction between the

receptor and the ligand. From the range of conformations, we

selected the conformation displaying the best overlap for further

analysis of the binding interaction. Specifically, a-linolenic acid was

observed to form an alkyl bond with the 190th amino acid (LEU) of

the A-chain of SRC (1us0). Conversely, ciprofibrate engaged in

hydrogen bonds with the 191st (THR), 192nd (GLN), and 193rd
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(GLU) amino acids of the A chain of SRC (1us0), while establishing

ps bonds with the 194th amino acid (LYS) of the A chain.

Additionally, it formed an alkyl bond with the 195th amino acid

(LEU) of the A chain, as illustrated in Figures 9A-D.
Verification of the changes of coagulation
function in rat MCAO/R model

Based on their highest scores, pharmacodynamic experiments

and coagulation factor detection were performed using the top-
B
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FIGURE 7

Immune infiltration analysis. Correlation between high-risk and low-risk groups with 19 immune cells (A). Correlation analysis between PADGs and
19 kinds of immune cells (B). Scatter plot of association between APP and monocytes, F13A1 and monocytes, and PPBP and resting mast cells (C)
(* P < 0.05, ** P < 0.01, *** P < 0.001).
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ranked predicted drugs, ciprofibrate and linseed oil. The linseed oil

utilized had an alpha-linolenic acid content of 53%. Results depicted

in Figures 10A, B show that after I/R, the percentage of infarction

stood at 23.10% ± 1.57%. Notably, this was reduced to 18.54% ±

1.44% following the prophylactic administration of ciprofibrate and

to 18.76% ± 2.61% after the administration of linseed oil. This

reduction was statistically significant when compared with the

sham-operation group (P < 0.05). However, the body weight

observed among the groups did not differ significantly, with the

exception of the sham group, as illustrated in Figure 10C.
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In Figures 10D–I, it was observed that the mRNA levels of App,

F13a1, Ppbp, SRC, Thbs1, and Vcl exhibited a significant increase

subsequent to MCAO induction (P < 0.05, P < 0.01, or P < 0.001).

Notably, the two drugs foreseen by CMap—namely, linseed oil (a

major component of a-linolenic acid) and ciprofibrate—nearly

reversed the MCAO-induced elevation in mRNA levels of these six

genes (P < 0.05, P < 0.01, or P < 0.001). Although aspirin did not lead

to a significant reduction in the mRNA levels of Vcl and Thbs1

compared with the MCAO/R group, it effectively reversed the mRNA

levels of the remaining four genes. These findings align closely with
B

A

FIGURE 8

Screening of antiplatelet-related small-molecule drugs in IS. Construction of the miRNA-mRNA-drug network (A). Scoring of the pharmacological
similarities between the top 5 compounds and platelet inhibitors (B).
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the earlier predicted alterations in gene expression profiles of

the drugs.

Subsequent figures, specifically Figures 11A–C, indicate a

significant increase in FIB, tissue tPA, and TXB2 levels in rats

after MCAO (P < 0.05 or P < 0.001). While not as impactful as

aspirin in returning the indices to normal levels, both ciprofibrate

and linseed oil treatments resulted in substantial reductions in the

plasma levels of these factors (P < 0.05, P < 0.01, or P < 0.001,

respectively). These substantial trends evidence the valuable

preventative impact of these two drugs on the enhancement of

coagulation function post-IS by our initial predictions.

Contrastingly, in Figures 11D, E, the levels of PAI and 6-keto-

PGF1a declined significantly after MCAO (P<0.05 or P<0.001).

However, more significant increases were recorded in the
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ciprofibrate group than in the aspirin group when compared to

MCAO/R group (P<0.01 or P<0.001).
Discussion

IS represents a gene-associated multivariate and heterogeneous

circulatory system aberration characterized by a high mortality rate

and protracted functional incapacitation. Prior peer-reviewed

empirical investigations have explored the transcriptional profiles

presented in the peripheral blood of IS patients or within murine

(MCAO) and rat brain tissue to delineate biomarkers and

therapeutic targets for IS. Notwithstanding, the DEGs revealed

inconsistencies across separate studies (30–32).
TABLE 2 Docking binding energy of PADGs and small-molecule drugs.

Rank Target PBD ID Compound PubChem ID Affinity (kcal/mol)

1 SRC 1us0 Ciprofibrate 2763 -9.383

2 SRC 1us0 Alpha-linolenic acid 5280934 -7.815

3 PPBP 7pud Ciprofibrate 2763 -7.527

4 F13A1 4kty Alpha-linolenic acid 5280934 -6.185

5 APP 5z6d Ciprofibrate 2763 -6.000

6 VCL 4ln2 Ciprofibrate 2763 -5.985

7 F13A1 4kty Ciprofibrate 2763 -5.885

8 THSB1 2erf Ciprofibrate 2763 -5.339

9 PPBP 7pud Alpha-linolenic acid 5280934 -5.226

10 APP 5z6d Alpha-linolenic acid 5280934 -4.655

11 VCL 4ln2 Alpha-linolenic acid 5280934 -4.152

12 THSB1 2erf Alpha-linolenic acid 5280934 -3.445
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FIGURE 9

Molecular docking of SRC and small-molecule drugs. Docking situation (A) and interaction (B) of SRC and alpha-linolenic acid. Docking situation (C)
and interaction (D) of SRC and ciprofibrate.
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The presented study is pioneering in employing a confluence of

LASSO, WGCNA, and CIBERSORT algorithms, utilizing platelets as

definitional tags to unearth novel biomarkers and diagnostic models

germane to IS, grasping the diversity and intricacy of the immune

microenvironment, and exploring prospective antiplatelet drugs. The

current investigation proposes platelet-linked diagnostic markers in

IS, specifically APP, SRC, PPBP, F13A1, VCL, and THSB1. Upon

conducting a comprehensive bioinformatics analysis, Wicik Z and
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colleagues ascertained APP to be firmly tied to collective platelet

activity, designating it as one of the genes most susceptible to

noncoding regulation in diseases related to platelet reactivity (33), a

conclusion in line with our findings. Furthermore, the probability

prediction models integrating these PADGs proved highly accurate

(with AUC > 0.7) in diagnosing IS within both cohorts.

The enrichment analysis of the 51 DGEs housed in the

lightgreen module ascertains these genes’ participation in
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FIGURE 10

Verification of the changes in coagulation function and diagnostic marker expression. TTC staining of brain slices (A) and the infarction percentage
(B) statistics. The changes in body weight of rats in each group were calculated from the first day of administration to the 15th day before sacrifice
(C). Relative mRNA levels of App, F13a1, Ppbp, SRC, Thbs1, and Vcl in sham, MCAO/R, MCAO/R + linseed oil, MCAO/R + ciprofibrate, and MCAO/R +
aspirin groups (D-I). (* P < 0.05, ** P < 0.01, *** P < 0.001.).
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biological procedures including, but not limited to, “blood

coagulation,” “coagulation,” and “hemostasis” following IS. They

have salient correlations with the formation, activation, and

aggregation of platelets in the bloodstream and platelet a particle

genesis and release in the uterine cavity, thereby validating their

engagement with IS onset and progression. Embolic stroke is

fundamentally anchored in arterial thrombosis, with platelets first

observed in blood over 130 years prior and acknowledged as the

primary cell type regulating such thrombotic events (34). Post-

trauma, platelets discharge contents like thrombin A2 and a
particles to mobilize and activate a broader number of platelets,

whereupon platelet accumulation occurs at the injury site, leading

to primary thrombi formation. Moreover, following reperfusion

injury, platelets mediate environmental alterations to the

circulatory system, play a role in the detrimental T-cell reactions,

and exacerbate and propagate neuroinflammation in I/R injury

(35). Therefore, compiling platelet-specific biomarkers as diagnostic

indicators or potential therapeutic targets for stroke demonstrates

wide-ranging promise.

Our findings mirror the consistent motif in similar scholarly

investigations identifying identical pivotal genes. In a significant

revelation, SRC was observed to be substantially downregulated

poststroke in human brain microvascular endothelial cells

(HBMECs), contributing to vascular endothelial cell protection

from ischemic and oxygen glucose deprivation/reoxygenation
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(OGD/R) injury. This was achieved by impairing the SRC signaling

trajectory, subsequently realizing gentle inhibitory effects on platelet

aggregation (36). Symmetrically, SRC is seen to execute a

neuroprotective role in stroke (37). In a sophisticated proteomic

analysis by George PM et al., PPBP emerged as a key biomarker in

transient ischemic attack (TIA) patients’ serum. Substantial

elevations in PPBP serum concentrations were noticed in TIA and

minor stroke patients compared to counterparts with migraines and a

healthy control group (38). Intriguingly, alterations in these crucial

genetic regulators could exacerbate IS severity. Regarding this, it was

discovered that the homozygous genotype of the F13A1 204Phe allele

precipitously elevated IS risk in young females (39).

In analyzing the consolidated microarray gene expression data,

differential landscapes of immune cell types were compared

between two cohorts defined as high risk and low risk, utilizing

the algorithmic approach provided by CIBERSORT. The analysis

engaged 22 immune cell types, leading to the discernment of

statistically significant disparities in the constitution of 15

immune cells when contrasting the high-risk group against the

low-risk group. An elevation in the prevalence of immune cell

groups—naive CD4 T cells CD4, resting CD4 memory T cells,

activated CD4 memory T cells, activated NK cells, macrophages

M0, and the arrangement of dendritic cells—was significantly noted

in the high-risk group relative to that in the low-risk group.

Conversely, concentrations of memory B cells, CD8 T cells,
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FIGURE 11

The content of coagulation factors between the different groups. The FIB content of each group (A). The tPA content of each group (B). The TXB2
content of each group (C). The PAI content of each group (D). The 6-keto-PGF1acontent of each group (E). (* P < 0.05, ** P < 0.01, *** P < 0.001.).
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1320475
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Geng et al. 10.3389/fimmu.2023.1320475
resting NK cells, monocytes, macrophages M2, activated mast cells,

and neutrophils activated were significantly attenuated.

Significant differences were observed in the proportion of T-cell

subsets infiltrating the high-risk group compared to the low-risk

group. Notably, the immunomodulatory and hemostatic functions

of platelets in IS potentially involve CD4 T cells. Our findings align

with established evidence, indicating the pivotal role of CD4+

regulatory T cells in mitigating inflammation and reinstating

immune homeostasis poststroke; activated platelets may further

influence T-cell function through the secretion of diverse elements

like PF4 or serotonin (34, 40). Investigations have revealed that

memory CD4 T cells can reduce hemorrhagic transformation in

murine IS by binding to platelet P-selectin glycoprotein ligand-1

(41). Moreover, the absence of CD84 on platelets impairs CD4+ T-

cell motility and cellular infiltration, consequently reducing

thrombus formation and neurological impairment (42).

Furthermore, platelet GPIb inhibition diminishes the infiltration

of immune cells such as T cells, thus mitigating the local

inflammatory response in the ischemic brain (43). In contrast to

CD4 T cells, CD8 T-cell infiltration was observed to be lower in the

high-risk group following platelet activation compared to the low-

risk group. Recent evidence has highlighted that platelet-derived

TLT-1 acts as a direct immunosuppressant of CD8+ T cells (44).

Platelets can also influence antigen presentation by CD8 T cells;

they bind to antigen-specific CD8 T cells through major

histocompatibility complex class I (MHC-I) processing and cross-

presentation of antigens, thereby regulating CD8+ T-cell numbers,

functional responses, and outcomes (45).

Additionally, other immune cells have been demonstrated to

be closely associated with the onset or prognosis of IS.

Postischemic pharmacological intervention has been shown to

augment neuroprotection against ischemic cerebral damage,

predominantly by curbing the seepage and activation of NK

cells, thereby diminishing infarct dimensions (34). Furthermore,

the circulating transfer cell platelets were observed to trigger the

downregulation of NK G2D ligands with platelet transforming

growth factor-b. This results in the mitigation of NK cell

cytotoxicity and their capacity to release IFN-g (46). Aligning

with these findings, our data demonstrate the inverse correlation

between activated NK cells and the expression of all six PADGs, in

direct contrast with the positive correlation identified with

monocytes (28). Monocytes, under specific conditions, tend to

form aggregates with platelets in circulation. This phenomenon is

frequently observed in patients suffering from cardiovascular and

cerebrovascular ailments as a sequela of inflammatory

provocation and infection (34). A deeper foray into immune

infiltration corroborated the fidelity of our risk stratification

model, hence fortifying our confidence therein.

The application of GSEA and PPI network examination using

MCODE and CytoHubba plugin tools culminated in identifying an

aggregate of 25 platelet-associated genes. Further scrutiny of the

correspondent gene expression profile revealed potential

antiplatelet therapeutics for IS, alpha-linolenic acid and

ciprofibrate. These compounds have the potential to modulate the
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expression of 22 augmented genes. Alpha-linolenic acid, frequently

incorporated into dietary regimens, exerts its effects by mitigating

platelet activation, which in turn reduces the presence of pro-

inflammatory cells and sickle cell quantities, as evidenced in

patients with sickle cell disease (34). It has also been shown to

curtail platelet clearance in the reticuloendothelial system in those

with atherosclerosis and arterial thrombosis (47). Ciprofibrate, a

historically prevalent lipid-lowering medicine, displays significant

efficacy in decreasing blood lipid concentrations in patients with

hypercholesterolemia (48). When applied in conjunction with

aspirin for the management and treatment of patients co-

diagnosed with atherosclerosis and hyperlipoproteinemia, an

enhanced ability for aspirin to inhibit thromboxane A2 formation

and exercise antiplatelet effects has been noted (49). Although these

pharmaceutical interventions are currently excluded from

declarative clinical guidelines for treating or preempting IS, they

have promising platelet inhibitory effects in other thrombotic

conditions. Their potential inclusion in the antithrombotic

treatment of IS may offer significant financial savings in drug

development. Subsequently, we utilized molecular docking to

simulate the interaction of these three compounds with PADGs.

The majority displayed docking binding energies less than 5, with

some—such as SRC—indicating superior docking via traditional

hydrogen bonds, hydrophobic bonds, or p bonds, suggesting a

possible therapeutic target pertinent to the pharmacological efficacy

of these compounds.

Lastly, pharmacodynamic experiments confirmed that both

ciprofibrate and alpha-linolenic acid-rich linseed oil could

significantly improve the elevation of blood coagulation function

after IS and had a significant preventive effect on cerebral infarction.

Furthermore, nearly all of them were able to substantially reverse

the MCAO/R-induced elevation in mRNA levels of App, F13a1,

Ppbp, SRC, Thbs1, and Vcl. Notably, the ability of ciprofibrate to

modulate alterations in PAI and 6-keto-PGFa1 after IS was even

greater than aspirin’s. This suggests that these two drugs can

potentially improve cerebral vascular blockage. RT-qPCR also

confirmed a significant increase in the expression of PADGs in

blood after IS.

In summary, we identified platelet-related diagnostic markers

and established a high-accuracy risk assessment model based on

various bioinformatics algorithms and computer-aided drug design

methods. Meanwhile, we screened and verified diagnostic markers’

expression and associated drugs’ preventive effects. This study

contributes a transformative perspective for the diagnosis

approach, prevention, and therapeutic intervention of IS and

provides new ideas for the search for antithrombotic drugs with

fewer side effects. However, we should underscore the importance

of balanced control in managing thromboembolic and hemorrhagic

risk when preventing and treating IS. Overenthusiastic

thrombolysis, albeit effective in resolving the ischemic event,

inadvertently enhances the propensity toward cerebral

hemorrhage poststroke. Therefore, identifying the equilibrium

point of thrombolysis and hemostasis presents a promising

direction for future investigations.
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Conclusion

In summarizing this study, we affirm that our risk assessment

model, based on PADGs, specifically APP, THBS1, F13A1, SRC,

PPBP, and VCL, presents robust diagnostic capabilities for stroke

patients. The noteworthy antithrombus agents—alpha-linolenic

acid and ciprofibrate—emerge as potential candidate drugs for

preventing and treating cerebral thrombosis post-IS. This

underlines a promising milieu for exploring antiplatelet therapy

and IS management.
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Validation of platelet-related diagnostic models in GES202709. Risk scores of

platelet-related diagnostic models for IS patients and healthy people in
202709 (A). ROC curve analysis of individual factors and diagnostic models

of GES202709 (B).

SUPPLEMENTARY FIGURE 2

Prediction and enrichment analysis of PADGS-associated miRNAs.
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