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Activation of sperm Toll-like
receptor 2 induces
hyperactivation to enhance
the penetration to mucus
and uterine glands: a trigger
for the uterine inflammatory
cascade in cattle
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Veterinary Medicine, Obihiro, Japan, 5Department of Theriogenology, Faculty of Veterinary
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It is known that sperm and seminal plasma (SP) affect uterine immunity. In

cattle, artificial insemination enables breeding by depositing frozen and

largely diluted sperm with a negligible amount of SP into the uterus. Thus,

the present study focused on the impact of frozen-thawed sperm on bovine

uterine immunity. We have previously shown that in the bovine uterus, sperm

swim smoothly over the luminal epithelium and some sperm interact with

uterine glands to induce a weak inflammatory response mainly via the

endometrial Toll-like receptor 2 (TLR2) signaling. However, the process by

which sperm is encountered in the uterine glands is not completely clear. The

present study intended to evaluate the role of sperm-TLR2 in sperm-uterine

mucus penetration for reaching the glandular epithelium to induce the

uterine immune response. To activate and block sperm-TLR2, they were

treated with TLR2 agonist and antagonist, respectively. TLR2 activation

enhanced sperm hyperactivation and improved its capacity to penetrate

the artificial viscoelastic fluid and estrous-uterine-mucus. In contrast, TLR2-

blocked sperm showed completely opposite effects. It is noteworthy, that the

TLR2-activated sperm that penetrated the uterine mucus exhibited increased

motile activity with hyperactivation. In the sperm-endometrial ex-vivomodel,

a greater amount of TLR2-activated sperm entered the uterine glands with an

immune response, which was seen as the upregulation of mRNA expression

for TNFA, IL1B, IL8, PGES, and TLR2 similar to those in control sperm. On the

other hand, a lesser amount of TLR2-blocked sperm entered the uterine

glands and weakened the sperm-induced increase only in PGES, suggesting
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that penetration of a certain number of sperm in the uterine gland is

necessary enough to trigger the inflammatory response. Altogether, the

present findings indicate that activation of sperm-TLR2 promotes their

hyperactivation and mucus penetration with greater motility, allowing them

to enter into the uterine glands more. This further suggests that the

hyperactivated sperm contributes to triggering the pro-inflammatory

cascade partly via TLR2 in the uterus.
KEYWORDS

cattle, hyperactivation, immune response, mucus, sperm, Toll-like receptor 2,
uterine gland
1 Introduction

In mammals, following natural mating or artificial insemination

(AI), semen, which consists of sperm and seminal plasma (SP),

enters the female reproductive tract (FRT) (1). During natural

mating, in humans and cattle, semen is deposited in the cranial

vagina, and from there, spermmigrate to enter the uterine lumen by

leaving most of the SP behind in the vagina (1, 2). In pigs and

horses, semen is directly deposited into the uterine body (1, 2). In

mice, most of the semen is rapidly transported into the uterine

cavity, and some remain in the vagina where it coagulates to form a

copulatory plug (2). Sperm and SP are known to modulate the

immune response of the FRT (3–5).

AI is the most common technique used for breeding cattle

worldwide. During AI, sperm are directly deposited into the uterus,

with a very low amount of SP, since they are considerably diluted

during semen extension with the extender (6). Nevertheless, there

are SP components that bind to the surface of sperm and are

retained when sperm pass through the uterus (2, 7). Even though

millions of sperm enter the uterus, only a few thousand sperm reach

the oviduct (1). Our recent research has revealed that following AI,

sperm are quickly transported from the site of semen deposition in

the uterine body. Within an hour of AI, a large number of sperm

pass through the uterine horn, while a massive number of sperm are

excluded backward into the vagina. After 6 hours, only a few sperm

are found remaining in the uterine lumen (8). Such rapid transport

of sperm is independent of the active sperm motility and is

regulated by the uterine smooth muscle contractions (9–12).

During the sperm passage through the uterus, sperm encounter

the uterus ’s unique anatomical features such as the

microarchitecture and mucus lining the endometrium (13).

The uterus not only facilitates the passage of sperm to the

oviduct but also assists in eliminating the huge number of excess

and dead sperm through its innate immunity (3). Of note, we have

shown that in cattle, sperm interact with glandular epithelium to

trigger an acute and transient inflammatory response against sperm

(13, 14). Importantly, Toll-like receptor 2 (TLR2) (3, 13–16) in
02
cattle and TLR4 in mice (17) have been recognized as the main

mediators of uterine immune responses toward sperm.

TLRs are transmembrane proteins and an essential element of the

innate immune system. They play a crucial role in pathogen-specific

recognition (18). Even though TLRs are predominantly expressed in

immune cells (19), several TLRs are generally present in cells of

various tissues including in the male (20) and female reproductive

tract (21). In cattle, endometrium expresses TLRs 1 to 10; specifically,

TLRs 1 to 7 and 9 are expressed in the endometrial epithelial cells,

while TLRs 1 to 4, 6, 7, 9, and 10 are expressed by stromal cells (22).

TLR2 is localized in the surface and glandular epithelia of the

endometrium of cows (15). In general, TLR2 recognizes various

infectious pathogens and their products such as lipoproteins and

peptidoglycans (PGN) of Gram-positive bacteria (18). Notably, TLR2

regulates physiological inflammation during fertilization when sperm

interact with cumulus-oocyte complexes (23).

TLR2 is expressed also in the sperm of several species such as

the Chinese soft-shelled turtle (24), mouse (25), rat (26), and

human (27), but the role of TLR2 in sperm is almost unknown. It

was reported that the presence of TLR2 in sperm is critical for long-

term sperm survival (24) and protection against pathogens (27). It

has been shown that sperm-TLR2 activation mediates the motility

of sperm in humans and mice (27).

Recently, we investigated the interactions of bovine sperm with

the endometrium using the ex-vivo sperm-endometrial model. Our

results revealed that a few numbers of cultured sperm use their

motility to swim smoothly over the luminal epithelium and invade

the uterine glands to trigger the inflammatory response (13). This

raises the question of which system regulates such particular

features of the bovine sperm action to enhance their interaction

with the uterine glands. Importantly, we have recently shown that

during in-vitro fertilization (IVF), sperm-TLR2 activation

stimulates sperm penetration to oocytes (28). This led us to

hypothesize that sperm may acquire a particular motile pattern

that is potentially induced by sperm-TLR2 activation, thereby

efficiently penetrating the mucus to reach the glandular

epithelium and induce uterine inflammatory responses.
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To test the above hypothesis, at first, we confirmed the existence

of TLR2 on the bull sperm, and then onwards we examined its

impact on sperm motile pattern and subsequent mucus penetration

since sperm needs to penetrate the viscoelastic mucus on the

endometrial surface before interacting with the uterine glandular

epithelium. Then, the impact of TLR2 activation/blockage on the

penetration of sperm into the uterine gland and subsequent

induction of uterine inflammatory response was examined.
2 Materials and methods

2.1 Experimental model

The localization of TLR2 on sperm was evaluated using

immunofluorescence staining. The impact of TLR2 activation and

blockage on sperm were analyzed via flow cytometry and computer-

assisted sperm analysis (CASA). The impact of sperm-TLR2 on

mucus penetration as well as sperm penetration of the viscoelastic

fluid and estrous-uterine-mucus was evaluated by the CASA

outcomes. Then, we evaluated the role of sperm-TLR2 in sperm-

uterine immune interactions, using the ex-vivo co-incubation model

of sperm and endometrial tissue. The detailed experimental model

is shown in Figure 1.
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2.2 Reagents and media

Chemicals were procured fromWako Pure Chemical Industries

(Japan) except otherwise stated. The TALP (modified Tyrode

balanced salt solution) (29) was used to wash and dilute sperm,

as well as to incubate sperm with endometrial explants (13). The

viscoelastic model mucus was prepared by adding Long-chain

polyacrylamide, LC-PAM (5-6 MDa, Sigma-Aldrich, USA) into

the TALP. The TALP and the model mucus were balanced in a 38.5°

C incubator with 5% CO2.
2.3 Sperm sample preparation

The swim-up technique was used to separate the active sperm

from the frozen-thawed semen (30). Briefly, frozen semen packed in

0.5 ml straws derived from three fertile Holstein bulls were used.

The semen was collected and processed by the Genetics Hokkaido

Association (Hokkaido, Japan) under controlled hygienic measures.

The frozen-thawed semen was confirmed to be free from bacterial

contamination. At first, sperm (0.25 ml) was layered under TALP (1

ml). After 1 h of incubation, the top sperm layers (0.5 ml) were

collected, pooled, and washed at 200g for 5 min. To activate the

TLR2 (15, 27, 28) in sperm, TLR1/2 agonist, Pam3Cys-Ser-(Lys)4
FIGURE 1

Schematic illustration of the experimental model. Initially, the localization of TLR2 in the frozen-thawed active bull sperm was analyzed using
immunofluorescence staining. Frozen-thawed active (swim-up) bull sperm were treated with TLR1/2 agonist (to activate the TLR2) or antagonist (to
block the TLR2). Sperm motion parameters and organelle functions were evaluated by CASA and flow cytometry analysis, respectively, to evaluate
the effects of TLR2 activation and blockage on sperm. Since the sperm needs to penetrate the viscoelastic uterine mucus before entering into the
uterine glands, at first, the specific sperm motile pattern (hyperactivated sperm) responsible for penetrating the mucus was calculated. Then, to
observe the effect of activation of sperm-TLR2 on mucus penetration, percentages of sperm that penetrated the viscoelastic fluid (0.7% long-chain
polyacrylamide, LC-PAM) and estrous-uterine-mucus were evaluated. Moreover, sperm motion patterns of uterine mucus-penetrated sperm were
evaluated. Further, bovine endometrial explants were incubated with JC1-labeled sperm, and sperm-uterine gland interactions were observed using
fluorescence microscopy. To evaluate the impact of sperm-TLR2 on uterine immune responses, TLR2-activated and -blocked sperm were
incubated with endometrial explants, and mRNA expression of pro-inflammatory cytokines, PGES, and TLR2 was evaluated.
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(Pam, ab142085, Abcam) (a synthetic analog of the triacylated N-

terminal part of gram-positive bacterial peptidoglycan) was used.

Initially, 100 µg/ml of stock agonist solution in 50% ethanol was

prepared. To obtain TLR2-activated sperm (TLR2 ago.(+)), 100 ng/

ml of agonist was incorporated into the sperm and incubated

further for 2 h in a 38.5˚C incubator. Then, two times

centrifugation at 200g for 10 min in 10 ml TALP was conducted

to remove the agonist. Then, the sperm was suspended in TALP.

TLR2 non-activated sperm (TLR2 ago (–).) were prepared in the

same way (with the appropriate vehicle; 50% ethanol for TLR1/2

agonist) except without agonist. To block the TLR2 (15, 28) in

sperm, TLR1/2 antagonist, a synthetic TLR2 blocker (CU-CPT22;

Merck, Darmstadt, Germany) was used (31). Initially, 100 mM of

stock antagonist solution in DMSO was prepared. To obtain TLR2-

blocked sperm (TLR2 ant.(+)), 100 µM of the antagonist was

incorporated into the sperm and incubated further for 30 min in

a 38.5˚C incubator. Then, two times centrifugation at 200g for 10

min in 10 ml TALP was conducted to remove the antagonist. The

resultant sperm were re-suspended in TALP. TLR2 non-blocked

sperm (TLR2 ant (–).) were prepared in the same way (with the

appropriate vehicle; DMSO for TLR1/2 antagonist) except without

antagonists. The concentrations of the agonist and antagonist were

chosen based on an earlier study (28). Sperm cell concentration was

obtained via a hemocytometer (C-chip, NanoEnTek, Korea). To

evaluate the sperm plasma membrane and acrosomal integrity

(PMAI), high mitochondrial membrane potential (HMMP),

plasma membrane stability, and sperm motion parameters, sperm

were incubated for 0, 0.5, and 2 h in a 38.5˚C incubator.
2.4 Immunofluorescence analysis

Immunofluorescence was conducted to detect the TLR2 protein

localization in bull sperm based on a previously described protocol

(24) with modifications. The sperm (5x106 cells/ml) were spread on

slides (S8226, Matsunami Glass Int., Osaka, Japan), air-dried at

room temperature (RT), and fixed in 10% formalin in phosphate

buffer (PB) at RT. After 10 min, the samples were immersed in

absolute methanol for 5 min at -20˚C. Then, the samples were

blocked with 5% BSA for 30 min at RT. Afterward, the slides were

incubated overnight (4˚C in a humidified chamber) with the

primary antibody (1:50, 10 µg/ml, rabbit polyclonal anti-TLR-

2orb11487, Biorbyt, Cambridge, UK). Then, the sections were

labeled with the secondary antibody (1:200, 10 µg/ml, goat anti-

rabbit IgG labeled with Alexa Fluor 546, Invitrogen, Thermo Fisher

Scientific, USA) for 1 h at RT. The samples were labeled with DAPI

(1:50, 340-07971, Dojindo Laboratories, Japan) for 30 min. Slides

were washed and mounted using VECTASHIELD mounting

medium (H-1000; Vector Laboratories, Burlingame, CA 94010,

USA). The Rabbit IgG isotype (1:500, 10 µg/ml, Invitrogen,

Thermo Fisher Scientific) was applied as the IgG negative control.

The sections were observed via fluorescence microscope (Keyence,

BZ-X800, Osaka, Japan) through the BZ-X TexasRed (red

wavelength) and BZ-X DAPI (blue wavelength) filters. Exposure

time was maintained uniformly for all the sections.
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2.5 Evaluation of plasma membrane and
acrosomal integrity, high mitochondrial
membrane potential, and plasma
membrane stability of sperm by
flow cytometry

The sperm PMAI and HMMP were assessed based on previous

reports with minor modifications (32–34). Briefly, each treatment

aliquot was labeled with Propidium Iodide (PI, 5 µg/ml, Sigma

Aldrich) and Fluorescein isothiocyanate-conjugated peanut-

agglutinin (FITC-PNA, 25 µg/ml, Vector Laboratories). PI and

FITC-PNA negative cells were measured as sperm with intact

plasma membrane and acrosome (PMAI). For evaluation of

HMMP, each treatment aliquot was stained with 5,5’,6,6’-

tetrachloro-1,1’3,3’-tetraethylbenzimidazolyl-carbocyanine iodide

(JC1) fluorescent probe (5 µM, AdipoGen). The sperm emitting

orange fluorescence were considered sperm with HMMP. The

sperm plasma membrane stability of viable sperm was analyzed

according to an earlier report (35). Each treatment aliquot was

stained with cell viability indicator Yo-Pro 1 (50 nM, Y3603,

Invitrogen) and plasma membrane destabilization indicator

Merocyanine 540 (M540, 2.7 µM, 323756, Sigma Aldrich). Yo-Pro

1 and M540 negative cells were considered viable sperm with a

stable plasma membrane. Percentages of sperm with stable plasma

membranes were calculated out of total viable sperm. The labeled

suspensions were incubated at 38.5˚C for 10 min under dark

conditions. Sperm suspensions were analyzed using a spectral cell

analyzer (Sony SA3800, Sony Imaging Products & Solutions.,

Tokyo, Japan). Each fluorochrome was excited by 488 nm laser,

and emissions were detected on PMT channel 5-10 (515-546 nm,

FITC), 18-19 (598-617 nm, PI), 5-8 (515-534 nm, JC1 Green), 15-17

(573-598 nm, JC1 Orange), 2 (503-507 nm, Yo-Pro 1), and 16 (581-

589 nm, M540). The flow cytometer was used at short boost mode

and a low flow rate of one. The acquisition was halted after

recording 10,000 single sperm events. The representative flow

cytometric dot plot diagrams are given in Supplementary Figure 1.
2.6 Assessment of sperm motion
parameters by CASA

CASA was conducted according to an earlier report (36). A

measurement of 3 µL (10 x 106 cells/ml) of sperm was added onto a

warmed (38.5°C) chamber slide (SC20-01-04-B, Leja, GN Nieuw-

Vennep, Netherlands). More than 200 sperm tracks were tracked

via the CASA analyzer (SMAS, DITECT, Tokyo, Japan) at 150

frames per second (fps), depending on the images gained through a

phase-contrast microscope (ECLIPSE Ci-L, Nikon, Tokyo, Japan)

in each replicate. The experiment was repeated five times. The

percentage of total, progressive, hyperactivated motile sperm,

straight-line velocity (VSL), curvilinear velocity (VCL), average

path velocity (VAP), linearity (LIN), straightness (STR), beat

cross frequency (BCF), and amplitude of lateral head (ALH)

were measured.
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2.7 Evaluation of hyperactivated sperm

It was reported that, in humans, sperm that could penetrate

periovulatory cervical mucus had an increased velocity and side-to-

side head movement, with a similar group of kinetic properties with

VAP ≥ 25.0 µm/s and ALH ≥ 7.5 µm (37, 38). Moreover, sperm

showing VCL ≥ 150 µm/s, LIN ≤ 50%, and ALH ≥ 7.0 µm were

classified as hyperactivated sperm (39). In cattle, sperm with

increased mean VCL and ALH and decreased LIN were

characterized as hyperactivated sperm (40), and these sperm are

known to advance through the viscoelastic mucus of the female

tract and matrix of the cumulus oophorus (41). These reports

indicate that hyperactivated sperm can penetrate the mucus

efficiently. Therefore, in the present study, the hyperactivated

sperm were characterized as sperm that could penetrate the

mucus to a greater extent when compared to the non-

hyperactivated sperm and computed based on the sperm motion

parameters VCL, ALH, and LIN.

At first, threshold values for hyperactivated sperm (41) were

evaluated with calc ium ionophore (A23187)- induced

hyperactivation (42). Briefly, 5 x 106 cells/ml of sperm were

treated with A23187 (final concentration 1µM, C7522, Sigma

Aldrich) for 30 min, washed at 200g for 10 min, and evaluated

via CASA (SMAS, DITECT, Tokyo, Japan) at 150 frames per second

(fps). Two observers independently evaluated at least 200 individual

sperm tracks. The experiment was repeated three times with

different sperm suspensions. Based on the individual sperm

trajectories, hyperactivated sperm were judged and the VCL,

ALH, and LIN of each hyperactivated sperm were recorded as

previously suggested (41). Since all the sperm that were judged as

hyperactivated showed VCL ≥ 200 µm/s, ALH ≥ 3 µm, and LIN ≤

40%, these values were set as the threshold values for hyperactivated

bull sperm in our CASA system (SMAS, DITECT, Tokyo, Japan).

Then, the percentage of hyperactivated sperm along with other

sperm motility parameters were measured in suspensions

of interest.
2.8 Sperm-viscoelastic fluid or -estrous-
uterine-mucus penetration assay

We investigated the influence of sperm-TLR2 on the ability of

sperm to penetrate mucus via sperm-model viscoelastic fluid and

-estrous-uterine-mucus penetration assays.

We used 0.7% of LC-PAM in the TALP medium as the model

viscoelastic mucus. This media mimics the bovine estrous cervical

mucus (43, 44). Since the overall mucus in the uterus may contain the

majority of the cervical mucus (2) and the endometrial secretion, we

used 0.7% LC-PAM solution for comparison with the mucus of the

uterus. The percentages of viscoelastic fluid penetrated sperm were

assessed by layering sperm over a viscoelastic fluid layer in a 1.5 ml

microcentrifuge tube. Phenol red (1 mg/ml) was incorporated into

the viscoelastic fluid to differentiate the sperm suspension and

viscoelastic fluid layers. A measurement of 1 ml of viscoelastic fluid

was placed in a microcentrifuge tube. A measurement of 0.5 ml of

10x106 cells/ml sperm suspension was gently layered over the
Frontiers in Immunology 05
viscoelastic fluid layer and incubated at 38.5°C incubator for 30

min. After the incubation period, the top 0.5 ml of the sperm

suspension layer was gently aspirated. Additionally, 0.1 ml of the

top viscoelastic fluid layer was aspirated to avoid the mixing of sperm

suspension with the viscoelastic fluid layer. The remaining 0.9 ml of

viscoelastic fluid was mixed and sperm concentration in the

viscoelastic fluid was evaluated. Based on initial sperm

concentration in the sperm suspension and final sperm

concentration in the viscoelastic fluid layer, the proportion of

viscoelastic fluid-penetrated sperm was calculated.

The estrous-uterine-mucus was obtained from pre-ovulatory

stage cows through mechanical pressure. The uterine mucus was

centrifuged twice at 7200g for 10min at 4°C and used in the sperm-

mucus penetration assay as mentioned above. The 0.5 ml of uterine

mucus was placed in a microcentrifuge tube and 0.25 ml of 10x106

cells/ml sperm was gently layered over the uterine mucus layer and

incubated at 38.5°C for 30 min. After the incubation period, the top

0.25 ml of the sperm layer was gently aspirated. Additionally, 0.05

ml of the top uterine mucus layer was aspirated to avoid mixing the

sperm suspension with the uterine mucus layer. The remaining 0.45

ml of uterine mucus was mixed and sperm concentration and

motion behavior (via CASA) in the uterine mucus were evaluated.

Based on the initial sperm concentration in the sperm suspension

and final sperm concentration in the uterine mucus layer, the

proportion of uterine mucus penetrating sperm was calculated.

The estrous-uterine-mucus obtained from five different cows was

used in the five repeats of this experiment.
2.9 Animals and tissue preparation

The healthy bovine female reproductive tracts were obtained

from the abattoir (Doto plant Tokachi Factory, Obihiro, Japan). The

phase of the tract was identified based on a previous report (45).

The ipsilateral ovarian follicle-containing horns from the

preovulatory stage (days 19-22) were separated and transported

on ice-cold saline. Endometrial explants were extracted and

incubated based on an earlier defined protocol (13). Briefly, with

the aid of a biopsy punch, explants were extracted from the

glandular endometrial regions and pre-incubated in a 38.5˚C

incubator for 15 min before starting the co-incubation with sperm.
2.10 Determination of sperm numbers
within uterine glands

As per the previous description, we evaluated the number of

sperm within the uterine glands (13). Briefly, JC1-stained sperm

(106 cells/ml) were cultured with endometrial explants. After 30

min, sperm in endometrial explants were viewed using the

fluorescence microscope, and sperm numbers within the uterine

glands were assessed. Videos and images were taken using the BZ-X

TexasRed (red wavelength) and BZ-X GFP (green wavelength)

filters. Three glands were assessed in each treatment; the

experiment was repeated five times using uteri explants obtained

from different cows.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1319572
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Akthar et al. 10.3389/fimmu.2023.1319572
2.11 The immune response of sperm in
endometrial explants

The immune response of endometrial explants to TLR2-

activated or blocked sperm was investigated based on a previously

described method (13). Briefly, explants were co-cultured with

TLR2-activated or blocked sperm (106 cells/ml) for 2 h then the

explants were collected and washed three times in TALP to get rid

of sperm and stored in TRIZOL at -80˚C for total RNA extraction.

After washing, very few sperm remained within the uterine glands;

thus, the explant preparation for analysis of mRNA expression

contained very few sperm. Our group previously showed that sperm

express a negligible amount of mRNA for our selected genes (30), so

the changes in mRNA expression of these genes were only

attributed to uterine explants in response to sperm.
2.12 RNA extraction, cDNA synthesis,
and qPCR

Endometrial explants were homogenized (13) and RNA

extraction was conducted based on a previously described protocol

(46). Prior to cDNA synthesis, NanoDrop Spectrophotometer (2000c,

Thermo Scientific, Waltham, MA, USA) was used to obtain the

concentration and purity of RNA. The cDNA was synthesized

following a previously described protocol (47).

Quantitative real-time PCR was conducted by a MiniOpticon

(Bio-Rad Laboratories, Tokyo, Japan) via SYBR Green PCR Master

Mix (Bio-Rad Laboratories, USA). The targeted primer pairs are

listed in Supplementary Table 1. The amplification program was set

up according to a previously described protocol (13). The melting

curve was evaluated at the end of the run to observe the specificity of

the amplification. A negative control, reaction-containing nuclease-

free water or non-reverse transcribed RNA was incubated in each

run. The housekeeping gene, b-actin, was used as an internal

standard for normalization of Ct values. The Delta-Delta

comparative threshold method was used to determine the fold

changes in relative mRNA expression and these fold changes were

used in the statistical analysis (48).
2.13 Statistical analyses

GraphPad Prism 5 software was applied for statistical analysis

(GraphPad Software, La Jolla, CA, USA). The data in all experiments

were normally distributed. The mean differences between the two

groups were compared using the student t-test. The mean differences

for more than two groups were compared using one-way ANOVA

followed by Tukey’s tests. For mRNA expression, the animal was

selected as a statistical unit and each experiment was repeated five

times using explants from five different uteri (three explants/

treatment/experiment). Each treatment had three replicates, and

the mean of these replicates of each uterus was considered and

these values were applied in the analysis and depicted in the figures.

The values are presented as mean ± standard error of the mean

(SEM). The significance of the data was determined based on their
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respective p-values where *P<0.05, **P<0.01, and ***P<0.001. All

experiments were repeated five times.
3 Results

3.1 Immunofluorescence localization of
TLR2 in bull sperm

Immunofluorescence analyses showed TLR2 protein

localization in the bull sperm head’s posterior segment in all

stained cells. The TLR2 activation or blockage did not change the

TLR2 expression in the sperm head. The IgG controls did not show

any fluorescent signal (Figure 2).
3.2 TLR2 activation or blockage did not
affect the PMAI, HMMP, plasma membrane
stability, and mean values of sperm
motion parameters

Since sperm PMAI, HMMP, and plasma membrane stability

were the important functional prerequisites for sperm action, we

aimed to test whether TLR2 agonist (to activate TLR2) or antagonist

(to block TLR2) had any negative effects on these sperm parameters

via flow cytometric analysis. Moreover, mean values of sperm

motion parameters were analyzed via CASA.

According to the flow cytometry analysis and CASA, neither the

TLR2 activation nor blockage could affect the PMAI, HMMP, and

plasma membrane stability (Supplementary Tables 2 and 3), as well

as the percentage of total, progressive motile sperm and mean

values of sperm motion parameters such as VSL, VCL, VAP, LIN,

STR, BCF, and ALH of sperm when compared to non-treated sperm

at 0, 0.5, and 2 h (Supplementary Tables 4 and 5).
3.3 TLR2 activation and blockage
differentially modulated the hyperactivated
sperm motility

The endometrial surface was coated with the viscoelastic mucus

layer, and sperm had to penetrate this mucus before entering the

uterine glands. Since sperm with hyperactivated motility were

known to penetrate the mucus efficiently, we investigated whether

regulation of sperm-TLR2 modulated sperm hyperactivation which

was related to mucus penetration.

Initially, we determined the threshold values for hyperactivated

sperm in the CASA system (please refer to the methodology section

for more details). To do this, a calcium ionophore (A23187) was

utilized to induce hyperactivation. All sperm with hyperactivation

showed VCL ≥ 200 µm/s, ALH ≥ 3 µm, and LIN ≤ 40% (Figures 3A,

B). As a result, these values were defined as the threshold values for

hyperactivated bull sperm. The A23187 resulted in an increase in

the mean values of VCL and ALH and a decrease in LIN (p<0.05)

(Supplementary Table 6). The A23187 treatment pointedly
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enhanced the percentage of hyperactivated sperm compared to the

control (p<0.001) (Figure 3C).

Analyzing sperm motility revealed that a small portion of sperm

(10-15%) acquired hyperactivation without any stimulus (Figures 3D,

E). Notably, TLR2 activation increased the percentage of

hyperactivated sperm at 0h compared to the non-activated sperm

(p<0.05). However, activation of TLR2 did not modulate the

percentage of hyperactivated sperm at 0.5 and 2h (Figure 3D).

Meanwhile, TLR2 blockage reduced the percentage of hyperactivated

sperm at 0.5h (p<0.05). The TLR2 blockage did not modulate the

percentage of hyperactivated sperm at 0 and 2h (Figure 3E).
3.4 TLR2 activation and blockage impacted
the sperm viscoelastic fluid penetration

Since the endometrial surface was coated with a viscoelastic

mucus layer, we tested whether sperm-TLR2 regulated sperm

penetration to mucus via sperm-model viscoelastic fluid

penetration assay (Figure 4A).

In this assay, a significantly higher percentage of TLR2-

activated sperm penetrated the viscoelastic fluid when compared

to the non-activated sperm (p<0.05, ~ 20% increase vs. TLR2 non-

activated sperm) (Figure 4B). Meanwhile, a lesser percentage of

TLR2-blocked sperm penetrated the viscoelastic fluid when

compared to the non-blocked sperm (p<0.05, ~ 22% reduction vs.

TLR2 non-blocked sperm) (Figure 4C).
3.5 TLR2 activation enhanced the sperm
penetration and motility in estrous-
uterine-mucus

Since the sperm-TLR2 regulated the sperm penetration to model

viscoelastic fluid, we, therefore, tested the sperm-TLR2 activation on
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sperm penetration to estrous-uterine-mucus (Figure 5A) and

subsequent sperm motility behavior in this mucus. A significantly

higher percentage of TLR2-activated sperm penetrated the estrous-

uterine-mucus when compared to the non-activated sperm (p<0.05,

~ 36% increase vs. TLR2 non-activated sperm) (Figure 5B).

Meanwhile, the percentage of total, progressive, and

hyperactivated motility of TLR2-activated sperm that penetrated

the estrous-uterine-mucus was significantly increased compared

to the non-activated sperm (p<0.05). However, the mean values of

other motion parameters such as VSL, VCL, VAP, LIN, STR, BCF,

and ALH of TLR2-activated sperm were not affected in estrous-

uterine-mucus (Figure 5C).
3.6 TLR2 activation and blockage
modulated the presence of sperm in
uterine glands

Fluorescence microscopy revealed that 30 min after the co-

incubation of TLR2-activated or blocked sperm with endometrial

explants, the sperm entered the uterine glands (Figures 6A and 7A). A

higher number of TLR2-activated sperm entered and remained within

the uterine glands when compared to TLR2 non-activated sperm

(p<0.01, ~ 32% increase vs. TLR2 non-activated sperm) (Figures 6A,

B). A lesser number of TLR2-blocked sperm remained in the uterine

glands when compared to TLR2 non-blocked sperm (p<0.001, ~ 44%

reduction vs. TLR2 non-blocked sperm) (Figures 7A, B).
3.7 TLR2 activated and blocked sperm
differently modulated the immune
transcription in endometrial explants

Incubation of TLR2 non-activated or non-blocked sperm with

endometrial explants upregulated the mRNA expression of tumor
FIGURE 2

Immunofluorescence localization of TLR2 in bull sperm. The micrographs show the localization of TLR2 in non-treated, TLR2-activated (TLR2
ago.(+)), and TLR2-blocked (TLR2 ant. (+)) bull sperm. The localization was detected via immunofluorescence labeling with the Alexa-Fluor-
conjugated anti-TLR2 antibody. For negative control, the sections were treated with Rabbit IgG isotype. DAPI stains the nucleus. The phase-contrast
micrographs depict the morphology of the bull sperm. TLR2 was expressed in the posterior segment of the non-treated bull sperm head in all
stained sperm. TLR2 localization did not change with the TLR2 activation or TLR2 blockage and was expressed in the same location as non-treated
sperm. The result is representative of five separate experiments. In each experiment, more than 200 sperm per group were evaluated.
Scale bar = 20µM.
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necrosis factor-alpha (TNFA), interleukin 1-beta (IL1B), interleukin

8 (IL8), prostaglandin E synthase (PGES), and TLR2 compared to

the control (p<0.05) (Figures 6C and 7C). Incubation of TLR2-

activated sperm with endometrial explants did not further

upregulate the mRNA expression of observed genes (Figure 6C),

whereas the exposure to TLR2-blocked sperm inhibited the sperm-

induced increase in PGES mRNA expression (p<0.05) (Figure 7C).

Moreover, TLR2-blocked sperm in comparison to the control did

not upregulate the TNFA and IL1B mRNA expressions, whereas

they upregulated the IL8 and TLR2 mRNA expressions

(p<0.05) (Figure 7C).
4 Discussion

In the uterus, sperm are rapidly transported in the uterine

cavity through the contraction of uterine smooth muscles. For the

first time, the present investigation demonstrates that sperm

undergo hyperactivation via TLR2 and utilize the activated
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motility to penetrate the lining uterine mucus and invade the

uterine glands to induce transient uterine inflammatory responses

in cattle. The findings suggest that this sperm-TLR2-mediated

hyperactivation may occur in the uterus after insemination. The

working hypothesis for the role of sperm-TLR2 in sperm-uterine

gland immune interaction is illustrated in Figure 8.

The present study mainly focuses on studying the impact of

sperm in the uterus giving special emphasis on AI, the technique

exclusively used in cattle breeding worldwide. During AI, sperm

are directly deposited in the uterus where the amount of SP that

accompanies the sperm is reduced since it is significantly diluted

using different semen extenders (~1% of SP in frozen semen

straws) to maximize the efficiency of a single ejaculate, and

routine use of AI reduces maternal exposure to SP (6).

Therefore, in the present study, frozen-thawed, washed, and

active sperm (via swim-up technique) were used to investigate

the impact of sperm-TLR2 on sperm behavior and subsequent

penetration into the mucus and uterine glands to trigger the

uterine inflammatory response.
B C

D E

A

FIGURE 3

Sperm-TLR2 activation enhanced the hyperactivated sperm motility. (A) Sperm trajectory profiles of control and Calcium ionophore (A23187)-treated
sperm. The arrows indicate the hyperactivated sperm trajectories. (B) Individual sperm trajectories of non-hyperactivated (VCL ≤ 200 µm/s, ALH ≤ 3
µm, and LIN ≥ 40%) and hyperactivated (VCL ≥ 200 µm/s, ALH ≥ 3 µm, and LIN ≤ 40%) sperm. (C) The percentage of hyperactivated sperm in
control and A23187-treated groups. Data are presented as mean ± SEM of three independent experiments. In each experiment, 200 individual sperm
tracks were evaluated. ***p<0.0001 denotes the significant difference. (D) The percentage of hyperactivated sperm in TLR2 non-activated (TLR2 ago
(–).) and TLR2-activated (TLR2 ago.(+)) groups. (E) The percentage of hyperactivated sperm in TLR2 non-blocked (TLR2 ant (–).) and TLR2-blocked
(TLR2 ant.(+)) groups. Data are presented as mean ± SEM of five independent experiments. In each experiment, 200 individual sperm tracks were
evaluated. *p<0.05 denotes the significant difference.
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The existence of the uterine mucus plays a vital part in

supporting sperm passage through the uterus. A viscoelastic

mucus exists on the bovine surface endometrium, and sperm

have to penetrate this mucus coating to enter the uterine glands

(13). Importantly, sperm hyperactivation (i.e., sperm with higher

curvilinear velocity, side-to-side head movement, and lower path

linearity) (39, 40) facilitates sperm progress through the

viscoelastic mucus of the female tract and cumulus oophorus

matrix (41).

The involvement of sperm-TLR2 in regulating sperm

penetration to oocytes during IVF (28) prompted us to

investigate whether the activation of sperm-TLR2 triggers sperm

hyperactivation and subsequent mucus penetration. In the present

study, the calcium ionophore, a trigger of hyperactivation,

increased the percentage of hyperactivated sperm and

modulated the mean values of hyperactivated-related parameters

(i.e., VCL, ALH, and LIN). The TLR2 activation and blockage

increased and decreased the proportion of hyperactivated sperm,

respectively. These indicate that the activation of sperm-TLR2

enhances hyperactivated motility, which is associated with the

ability to penetrate mucus.

Although the used concentrations of TLR2 agonist or

antagonist increased or decreased the sperm hyperactivation,

respectively, they did not affect the total motile sperm, mean

values of sperm motility parameters, and other functional

parameters such as sperm plasma and acrosomal membrane
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integrity, high mitochondrial membrane potential, and plasma

membrane stability throughout the observed time points, which

are the prerequisites for their action for fertilization (32, 34, 35).

This suggests that sperm-TLR2 partially regulates the motility

pattern (i.e., toward hyperactivation) without interfering with

other sperm parameters. The detailed mechanism by which

sperm-TLR2 regulates the hyperactivation is unclear. However,

we have shown previously that the activation of sperm-TLR2

enhances Ca2+ influx into sperm (28) which is essential for the

induction of hyperactivated sperm movement. Therefore, it is

possible that TLR2 activation might modulate the activity of

sperm ion channels, such as the CatSper channel, which is

responsible for the Ca2+ influx and the hyperactivation of

sperm (41).

Moreover, the increase in ATP levels is required to induce

hyperactivation (41). The present results show that sperm become

hyperactivated without changing the mitochondrial membrane

potential which is a measure of the ability of the mitochondria to

produce ATP. It is possible that the TLR2-activated sperm may

have a slight or transient increase in the mitochondrial membrane

potential that is sufficient to provide the energy for

hyperactivation but not enough to cause significant changes in

the mitochondrial membrane. However, more sensitive analysis

such as a luciferin-luciferase bioluminescence assay is required to

measure the ATP levels to get a deeper understanding of this

mechanism. Presumably, these hyperactivated sperm are strong
B CA

FIGURE 4

Sperm-TLR2 activation induced the sperm penetration of the viscoelastic fluid. (A) Brief methodology showing sperm penetrating the viscoelastic
fluid (0.7% of long-chain polyacrylamide, LC-PAM). The number of sperm that penetrated the viscoelastic fluid was evaluated after 30 min following
incubation of 10x106 cells/mL (0.5 ml) of sperm layering over the 1 ml of LC-PAM. (B) The percentage of penetrated TLR2 non-activated (TLR2 ago
(–).) and TLR2-activated (TLR2 ago.(+)) sperm into the 0.9 ml LC-PAM fraction. (C) The percentage of penetrated TLR2 non-blocked (TLR2 ant (–).)
and TLR2-blocked (TLR2 ant.(+)) sperm in the 0.9 ml LC-PAM fraction. Data are presented as mean ± SEM of five independent experiments. *p<0.05
denotes the significant difference.
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enough to overcome the greater resistance (49, 50) and fluid shear

to penetrate through the mucus (51, 52).

In support of the idea above, the proportions of TLR2-activated

and -blocked sperm that penetrated the artificial viscoelastic fluid

were higher and lower, respectively, compared to non-treated

sperm. Importantly, TLR2-activated sperm penetrated the

estrous-uterine-mucus in a greater proportion. Finally, in the ex-

vivo sperm-endometrial explant co-culture model, the fact that the

TLR2-activated and -blocked sperm entered the uterine glands with

a higher and lower number revealed a clear association between

sperm-TLR2 activation and motile activity together with their

penetration of mucus and the uterine glands.

More exactly, a lesser portion of non-treated sperm also

showed a hyperactivated motile pattern, entered the viscoelastic

fluid as well as estrous-uterine-mucus, and penetrated the uterine

glands, suggesting that highly active sperm (i.e., hyperactivated

sperm) are not exclusive population, but rather a major one to

enter the uterine glands. In fact, TLR2-activated sperm showed

higher motile activity with hyperactivation after moving into

estrous-uterine-mucus, supporting the above interpretation that
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these activated sperm are the major population detected in the

uterine gland. Collectively, our results reveal that TLR2 activation

enhances the sperm motile pattern and mucus penetration,

thereby contributing to entering into the uterine glands. Since

the present ex-vivo model has limitations on investigating the

features of sperm within the uterine glands, further advanced

investigations (such as artificial uterine models) are necessary to

clarify which kind of sperm enters the uterine glands in the non-

treated sperm group; in particular, it is worth revealing whether

the TLR2 is activated in these sperm.

In the uterine explant ex-vivomodel, the sperm typically trigger

the weak inflammatory response with a slight upregulation of

TNFA, IL1B, IL8, and PGES mRNA expressions (13). Even

though a higher percentage of TLR2-activated sperm (by 32%

increase vs. TLR2 non-activated sperm) entered the uterine

glands, this did not further increase the mRNA expression of the

above-investigated cytokines in the present study. This suggests that

a certain, but not large, number of sperm acting in the uterine

glands is sufficient for triggering the cascade of the maximum

physiological inflammatory response toward sperm.
B

C

A

FIGURE 5

Sperm-TLR2 activation enhanced sperm penetration and motile activity in the estrous-uterine-mucus. (A) Brief methodology showing sperm
penetrating the estrous-uterine-mucus. The number of sperm and sperm motion parameters that penetrated the estrous-uterine-mucus was
evaluated after 30 min following incubation of 10x106 cells/mL (0.25 ml) of sperm layering over the 0.5 ml of uterine mucus. (B) The percentage of
penetrated TLR2 non-activated (TLR2 ago (–).) and TLR2-activated (TLR2 ago.(+)) sperm into the 0.45 ml uterine mucus fraction. Data are presented
as mean ± SEM of five independent experiments. *p<0.05 denotes the significant difference. (C) The motion parameters of estrous-uterine-mucus
penetrated TLR2 ago (–). and TLR2 ago.(+) sperm analyzed via CASA. Data are presented as mean ± SEM of five independent experiments. In each
experiment, 200 individual sperm tracks were evaluated. *p<0.05 denotes the significant difference.
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On the other hand, a lesser number of TLR2-blocked sperm

(by 44% reduction vs. TLR2 non-blocked sperm) in uterine glands

weakened the above inflammatory response. Together, the data

suggest that a certain number of sperm with the ‘narrow range’ in

the uterine gland is sufficient to trigger the physiological uterine

inflammatory response. This mechanism of interaction of a small

population of sperm with uterine glands might serve to trigger

mild and transient inflammatory responses and avoid the

induction of massive and generalized inflammation throughout

the entire uterine mucosa during sperm transport. Such a weak

pro-inflammatory response is essential to switch on the maternal

innate immunity, which has a crucial part in eliminating dead and

excess sperm in preparing the endometrium without critical

damage for implantation (3, 53).

The endogenous ligands to activate the sperm-TLR2 have not

been identified in the present study. The endogenous TLR2 ligand

such as the extracellular matrix molecule, hyaluronan (23, 54),

recognized as a regulator of TLR2 (55), is one of the candidates

along with the other possible physiological uterine microbiota-

derived ligands (56, 57). Very recently, we reported that

hyaluronan was present in the bovine endometrium and modulated

the sperm-endometrial epithelial immune interaction through the
Frontiers in Immunology 11
cluster of differentiation 44 (CD44) and TLR2 (58). Thus, hyaluronan

could also assist in activating the sperm-TLR2 in-vivo.The TLR1/2

and TLR2/6 are two types of heterodimers that TLR2 forms with

either TLR1 or TLR6. These heterodimers have different ligand

specificities and signaling pathways, thus having different impacts

on the immune response (14). The agonist, Pam3Cys-Ser-(Lys), and

antagonist, CU-CPT22, used in the present study are both specific to

the TLR1/2 complex. Therefore, it is highly possible that the observed

effects are due to the triggering of TLR1/2 heterodimerization of the

sperm. In the physiological status, sperm are known to exhibit

hyperactivated motility in the oviduct, which is essential for

fertilization (41). The present study reveals that hyperactivated

sperm also have a significant role in the uterus, at least in cattle,

where they penetrate the uterine glands to trigger the uterine immune

response. The hyperactivated sperm in the uterus are probably no

longer able to migrate toward the oviduct to contribute to fertilization

since sperm are exposed to polymorphonuclear neutrophils attack

inside the uterine glands (13). Conversely, linear progressive motile

sperm in the uterus are known to migrate toward the oviduct to

participate in the fertilization process (59) and are also reported to

have greater fertilizing capacity (60). These suggest that the

inseminated sperm activated by endogenous TLR2 ligands in the
B

C

A

FIGURE 6

Sperm-TLR2 activation increased sperm numbers in glands and modulated the subsequent sperm-induced mRNA expression in explants. (A) JC1
stained midpiece mitochondria of TLR2 non-activated (TLR2 ago.(-)) and TLR2-activated (TLR2 ago.(+)) sperm within the uterine glands after 30 min
incubation with endometrial explants. Bar = 50µM. (B) The number of sperm/glands in explants incubated with TLR2 ago.(-) and TLR2 ago.(+) sperm.
Data are presented as mean ± SEM of five independent experiments. **p<0.01 denotes the significant difference. (C) Relative mRNA expression of
pro-inflammatory cytokines, IL8, PGES, and TLR2 in endometrial explants incubated with 106 cells/mL TLR2 ago.(-), TLR2 ago.(+), and without sperm
(control) for 2 (h) Data are presented as mean ± SEM of five independent experiments. Three uterine explants for each treatment were used from an
individual cow in each experiment. Different letters denote a significant difference (p<0.05).
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uterus probably contribute to triggering the innate immune cascade

in the bovine uterus.

In conclusion, our findings provide evidence that, in cattle,

sperm-TLR2 activation induces hyperactivation of sperm,

successive mucus penetration, and sperm entering into the
Frontiers in Immunology 12
uterine glands. Thus, it seems that sperm-TLR2 plays a role in

the initiation of the whole cascade of sperm-induced uterine

inflammatory response. The in-detail binding mechanism of

sperm-TLR2 in the direct interaction with the uterine gland

epithelium is yet to be intensively investigated.
B

C

A

FIGURE 7

Sperm-TLR2 blockage reduced sperm numbers in glands and modulated the subsequent sperm-induced mRNA expression in explants. (A) JC1
stained midpiece mitochondria of TLR2 non-blocked (TLR2 ant.(-)) and TLR2-blocked (TLR2 ant.(+)) sperm within the uterine glands after 30 min
incubation with endometrial explants. Bar = 50µM. (B) The number of sperm/glands in explants incubated with TLR2 ant.(-) and TLR2 ant.(+) sperm.
Data are presented as mean ± SEM of five independent experiments. ***p<0.001 denotes the significant difference. (C) Relative mRNA expression of
pro-inflammatory cytokines, IL8, PGES, and TLR2 in endometrial explants incubated with 106 cells/mL of TLR2 ant.(-), TLR2 ant.(+), and without sperm
(control) for 2 (h) Data are presented as mean ± SEM of five independent experiments. Three uterine explants for each treatment were used from an
individual cow in each experiment. Different letters denote a significant difference (p<0.05).
FIGURE 8

Schematic illustration for the working hypothesis of the interaction between bovine sperm and uterine gland to induce the inflammatory response.
The Toll-like receptor 2 (TLR2) is localized in the posterior segment of the bull sperm head. In the uterus, sperm glide over the mucus layer on the
surface epithelium while migrating toward the oviduct. (1) Activation of sperm-TLR2, possibly by the endogenous TLR2 ligands regulates the sperm
motile pattern by increasing hyperactivated motility. (2) Presumably, these hyperactivated sperm overcome the greater resistance and fluid shear to
penetrate through the viscoelastic estrous-uterine-mucus and enter into the uterine glands. (3) Subsequently, this sperm interacts with the uterine
gland (4) to trigger the inflammatory response towards sperm. However, the detailed molecular binding mechanism of sperm-TLR2 in the direct
interaction with the uterine gland epithelium is unknown and yet to be investigated.
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