
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Richard Kennedy,
Mayo Clinic, United States

REVIEWED BY

Kyle Mincham,
Imperial College London, United Kingdom
Boris Michael Hartmann,
Österreichische Agentur für Gesundheit und
Ernährungssicherheit, Austria

*CORRESPONDENCE

Nelson Leung Sang Tang

nelsontang@cuhk.edu.hk

Suk Ling Ma

suklingma@cuhk.edu.hk

†These authors have contributed
equally to this work and share
first authorship

‡These authors have contributed
equally to this work and share
last authorship

RECEIVED 10 October 2023
ACCEPTED 18 December 2023

PUBLISHED 10 January 2024

CITATION

Huang B, Huang J, Chiang NH, Chen Z, Lui G,
Ling L, Kwan MYW, Wong JSC, Mak PQ,
Ling JWH, Lam ICS, Ng RWY, Wang X, Gao R,
Hui DS-C, Ma SL, Chan PKS and Tang NLS
(2024) Interferon response and profiling of
interferon response genes in peripheral blood
of vaccine-naive COVID-19 patients.
Front. Immunol. 14:1315602.
doi: 10.3389/fimmu.2023.1315602

COPYRIGHT

© 2024 Huang, Huang, Chiang, Chen, Lui, Ling,
Kwan, Wong, Mak, Ling, Lam, Ng, Wang, Gao,
Hui, Ma, Chan and Tang. This is an open-
access article distributed under the terms of
the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction
in other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 10 January 2024

DOI 10.3389/fimmu.2023.1315602
Interferon response and profiling
of interferon response genes in
peripheral blood of vaccine-
naive COVID-19 patients
Baozhen Huang1†, Jinghan Huang1†, Nim Hang Chiang1†,
Zigui Chen2, Grace Lui3, Lowell Ling4, Mike Yat Wah Kwan5,
Joshua Sung Chih Wong5, Phoebe Qiaozhen Mak5,
Janet Wan Hei Ling5, Ivan Cheuk San Lam5,
Rita Wai Yin Ng2, Xingyan Wang1, Ruonan Gao6,
David Shu-Cheong Hui3, Suk Ling Ma6*, Paul K. S. Chan2‡

and Nelson Leung Sang Tang1,7,8*‡

1Department of Chemical Pathology, and Li Ka Shing Institute of Health Science, Faculty of Medicine,
The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China, 2Department of
Microbiology, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China,
3Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong
Kong, Hong Kong, Hong Kong SAR, China, 4Department of Anaesthesia and Intensive Care, The
Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China, 5Paediatric Infectious Disease
Unit, Department of Paediatrics and Adolescent Medicine, Princess Margaret Hospital, Hong
Kong, Hong Kong SAR, China, 6Department of Psychiatry, The Chinese University of Hong Kong,
Hong Kong, Hong Kong SAR, China, 7Hong Kong Branch of CAS Center for Excellence in Animal
Evolution and Genetics and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in
Common Diseases, Hong Kong, Hong Kong SAR, China, 8Functional Genomics and Biostatistical
Computing Laboratory, CUHK Shenzhen Research Institute, Shenzhen, China
Introduction: There is insufficient understanding on systemic interferon (IFN)

responses during COVID-19 infection. Early reports indicated that interferon

responses were suppressed by the coronavirus (SARS-CoV-2) and clinical trials of

administration of various kinds of interferons had been disappointing. Expression of

interferon-stimulated genes (ISGs) in peripheral blood (better known as interferon

score) has been a well-established bioassay marker of systemic IFN responses in

autoimmune diseases. Therefore, with archival samples of a cohort of COVID-19

patients collected before the availability of vaccination, we aimed to better

understand this innate immune response by studying the IFN score and related

ISGs expression in bulk and single cell RNAs sequencing expression datasets.

Methods: In this study, we recruited 105 patients with COVID-19 and 30 healthy

controls in Hong Kong. Clinical risk factors, disease course, and blood sampling

times were recovered. Based on a set of five commonly used ISGs (IFIT1, IFIT2,

IFI27, SIGLEC1, IFI44L), the IFN score was determined in blood leukocytes

collected within 10 days after onset. The analysis was confined to those blood

samples collected within 10 days after disease onset. Additional public datasets of

bulk gene and single cell RNA sequencing of blood samples were used for the

validation of IFN score results.

Results:Compared to the healthy controls, we showed that ISGs expression and IFN

score were significantly increased during the first 10 days after COVID infection in

majority of patients (71%). Among those low IFN responders, they were more
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commonly asymptomatic patients (71% vs 25%). 22 patients did notmount an overall

significant IFN response and were classified as low IFN responders (IFN score < 1).

However, early IFN score or ISGs level was not a prognostic biomarker and could not

predict subsequent disease severity. Both IFI27 and SIGLEC1 were monocyte-

predominant expressing ISGs and IFI27 were activated even among those low IFN

responders as defined by IFN score. In conclusion, a substantial IFN response was

documented in this cohort of COVID-19 patients who experience a natural infection

before the vaccination era. Like innate immunity towards other virus, the ISGs

activation was observed largely during the early course of infection (before day

10). Single-cell RNA sequencing data suggested monocytes were the cell-type that

primarily accounted for the activation of two highly responsive ISGs (IFI44L

and IFI27).

Discussion: As sampling time and age were two major confounders of ISG

expression, they may account for contradicting observations among previous

studies. On the other hand, the IFN score was not associated with the severity of

the disease.
KEYWORDS

COVID-19, IFN, ISGs, biomarker, severity
1 Introduction

The current pandemic coronavirus disease 2019 (COVID-19) is

caused by the infection of the severe acute respiratory syndrome

coronavirus 2 (SARS-CoV-2). The clinical presentations are highly

variable, ranging from asymptomatic to severe disease leading to

intensive care admission and even death. Both innate and adaptive

immune response play important roles in both defenses against the

virus and disease course.

Interferons (IFN) play a fundamental role in the innate immune

system. They act as inhibitors of viral replication in infected cells

and have a defensive action in uninfected cells. However, some

studies suggested that delayed IFN-I response and lower levels of

IFN-I and -III are special features after SARS-CoV-2 infection, both

in cell line and animal models (1, 2). Furthermore, soon after the

outbreak of COVID-19, several studies reported unexpectedly low

IFN-I levels in COVID-19 patients (3, 4) supporting the notion that

IFN response was impaired in some patients (5, 6). Studies also

suggested that IFN-I increased with tumor necrosis factor (TNF)

and interleukin-1 (IL-1) in severe cases but not in mild cases (7).

Additionally, a clinical study carried out early during the pandemic

suggested that administration of IFN was beneficial in viral

clearance and reduction of inflammatory cytokines (8). All these

data provide support for treatment with exogeneous interferon in

COVID-19 patients.

However, other COVID-19 studies observed a substantial IFN

response. For example, in studies measuring interferon stimulated

genes (ISGs) in bronchoalveolar lavage fluid (BALF, containing

both cells of the respiratory epithelium and immune cells), SARS-
02
CoV-2 robustly triggered the expression of numerous ISGs (9, 10).

ISGs were increased in the T cell and monocytes of critical COVID-

19 patients (6) and also in the PBMCs of moderate severity patients

(11). These results are in contrast with other studies reporting

dysfunction of IFN caused by SAR-CoV-2, for example Lee et al.

reported dysregulation of IFN-I activity and inflammation were the

cause of severe COVID-19 (5). It is uncertain if ISGs or IFN

response is impaired in leukocytes after infection.

The first-ever global scale vaccination against SARS-CoV-2 started

from the end of 2020 represents a major achievement of public health

in the history of mankind (12, 13). Vaccination activated the essential

acquired immunity to reduce disease sequel of the infection. After the

introduction of vaccination, natural immune response against infection

is changed. Therefore, it is expected the immune response of patients

with (predominant adaptive immunity) or without (innate immunity)

prior vaccination are different. In order to understand the natural

innate immune response to SARS-CoV-2, study of patients without

prior vaccination is required as it cannot be revealed with patients with

vaccination history. So that, archival samples of vaccine-naïve COVID-

19 patients taken before the era of vaccination are most valuable in this

regard. Here, we retrieved archival blood samples from a small cohort

of patients before vaccination that were available to study the interferon

response of a natural COVID-19 infection.

While early trial results of recombinant interferon treatment

had been controversial, the results of subsequent worldwide

solidarity trials conducted by WHO demonstrated that interferon

regimens appeared to have little or no effect on the outcome of

hospitalized COVID-19 patients (14). This was also supported by

the Adaptive COVID-19 Treatment Trial 3 (ACTT-3), which
frontiersin.org
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showed no benefit of treatment with interferon beta-1a together

with antiviral remdesivir than treatment with just remdesivir in

hospitalized patients (15). However, research of early treatment

Pegylated Interferon Lambda for COVID-19 patients who had been

vaccinated, reported more rapid viral clearance and reduced risk of

requiring hospitalization (16).

These contradictory findings may underline a complex

interaction between the SAR-CoV-2 virus and the host’s IFN

response (17). On one hand, inhibition of IFN production was

observed in SARS-CoV and Middle East respiratory syndrome

(MERS)-CoV (18, 19). Other studies showed that ISG expression

was markedly increased in the upper respiratory tract in patients

with COVID-19 (20, 21). Few studies examined specifically early

IFN response in leukocytes in COVID patients. As these studies did

not explicitly investigate the time course of the IFN response, it is

unclear if the sampling time, tissue type (respiratory epithelium

versus blood leukocytes) and the definition of disease severity

caused contradictory findings on the IFN response in patients

with COVID-19.

Interferon represents an early host response, early sample

collection (within 10 days after onset) was particularly difficult

but they are essential for a better understanding of the role of IFN

response in COVID-19. In this regard, we try to address several

research questions with this study. Is there an inadequate IFN

response within the first 10 days after onset of COVID-19 infection

and does it predict the subsequent disease course and severity? We

conducted this study with patients recruited in the first wave of

COVID outbreak in Hong Kong to answer these research questions.
2 Materials and methods

2.1 Patients in this cohort and samples

From June 2020 to September 2020 before the availability of

vaccine, a total of 81 COVID-19 patients with positive SARS-COV-2
Frontiers in Immunology 03
testing results in public hospitals in Hong Kong were invited to join

this study and their blood samples were collected within 10 days after

disease onset and clinical data available (Figure 1 and Table 1). Study

approval was obtained from The Joint Chinese University of Hong

Kong – New Territories East Cluster Clinical Research Ethics

Committee (The Joint CUHK-NTEC CREC 2020.076). After

receiving informed consent, 6 ml EDTA peripheral blood was

collected for various investigation. 0.3 ml of whole blood was

thoroughly mixed with 3x volume of TRIzol-BD (T3809, Sigma-

Aldrich) to stabilize RNA in blood leukocytes and kept at -70C until

total RNA extraction.

The disease course of COVID-19 infection was classified

according to the WHO clinical progression scale with the broad

classification into 4 groups: namely ambulatory mild, hospitalized

moderate, hospitalized severe diseases and dead (22). A few

asymptomatic patients were picked up by community screening

using viral RNA qPCR but did not have fever or other symptoms. In

subsequent statistical analysis, asymptomatic, mild, and moderate

patients were grouped into the non-severe group to compare with

patients with severe disease (i.e., hospitalized severe diseases and

dead). According to hospital guidelines implemented at that time,

interferon-based therapy was given to patients who were

symptomatic, especially for those with moderate to severe disease.

The therapy was composed of Interferon beta-1b 0.25mg (8 MIU)

subcutaneous alt day (maximum 7 doses), up to 14 days of

symptom onset. In addition, various anti-viral drugs were

supplemented to interferon treatment including Ribavirin,

Lopinavir, and Remdesivir. They are grouped into one single

group of interferon treatment.
2.2 RNA extraction, reverse transcription
and real-time qPCR

Total RNA was extracted from whole blood using a modified

AGPC method with 1-Bromo-3-chloropropane (B9673, Sigma-
FIGURE 1

Study workflow.
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Aldrich) and isopropanol (I9516, Sigma-Aldrich). The washing and

elution steps followed the TRI Reagent® BD instructions from the

manufacturer. First-strand cDNA synthesis of the samples was

performed using the PrimeScript RT reagent Kit (#RR037A,

Takara Bio, Shiga, Japan). Total RNA was transcribed in the 10

mL reverse transcription system: 2 µL 5X PrimeScript Buffer (for

Real-Time), 0.5 µL PrimeScript RT Enzyme Mix I, 0.5 µL Oligo dT

Primer (50 mM), 2 µL Random 6 mers (100 mM) and 5 µL RNA (Up

to 1 µg/µL) of the samples. The conditions of reverse transcription

were 37°C in 15 minutes of incubation, followed by 85°C in 5

seconds of RT enzyme denaturation, and finally 4°C in short-term

preservation until storage in the refrigerator. The reaction was

performed in a C1000 Touch Thermal Cycler (Bio-Rad, Hercules,

California, USA).

The synthesized cDNA was used for real-time qPCR by TB

Green® Premix Ex Taq™ II (Tli RNase H Plus) kit (#RR820A,

Takara Bio, Shiga, Japan). Each sample was duplicated in real-time

qPCR analysis. The expression levels of target genes were calculated

in terms of Ct value. The PCR conditions were pre-incubation (95°

C in 30 seconds), subsequently 45 cycles of amplification (95°C in 5

seconds, 55°C in 30 seconds, and 72°C in 20 seconds), melting (95°

C in 1 minute, 40°C in 1 minute and 65°C in 20 seconds), and finally
Frontiers in Immunology 04
the coiling (40°C in 30 seconds). The reaction was carried out in the

LC480 thermal cycler (Roche, Basel, Switzerland).
2.3 SARS-CoV-2 infection diagnosis and
viral load analysis

Viral load may be an important factor affecting the disease

course and severity. Multiple samples were collected from each

patient to measure viral loads and the peak viral load defined as the

highest value of viral load during the course of infection was used in

statistical analysis. Viral RNA was extracted from nasopharyngeal

swabs using the QIAamp Viral RNA Mini Kit (Qiagen, Hilden,

Germany) according to the manufacturer’s instructions. SARS-

CoV-2 RNA was quantified using RT-PCR. The primer-probe set

N1 (2019-nCoV_N1-F: 5’-GAC CCC AAA ATC AGC GAA AT-3’,

2019-nCoV_N1-R: 5’-TCT GGT TAC TGC CAG TTG AAT CTG-

3’ and 2019-nCoV_N1-P: 5’-FAM-ACC CCG CAT TAC GTT TGG

ACC-BHQ1-3’) designed by US Centers for Disease Control and

Prevention (CDC) were purchased from Integrated DNA

Technologies, USA. The one-step real-time RT-PCR reaction

contained 5 mL of the extracted preparation, 4 mL TaqMan™ Fast
TABLE 1 Basic characteristics and general information of the cohort.

Characteristics All (n=81) Non-severe (n=68, 84%) Severe (n=13, 16%) P valuea

Age (years), mean (SD) 39.95 (24.72) 34.54 (23.09) 68.23 (8.07) <0.001b

Day from onset, median (Q1-Q3) 5 (3-7) 3.5 (2-7) 7 (5-8) 0.01c

Day from admission, median (Q1-Q3) 3 (1-4) 2 (1-4) 4 (3-6) 0.02c

Female, n (%) 39 (48.15%) 37 (54.41%) 2 (15.38%) 0.02d

Current Smoker, n (%) 13 (24.07%) 0 (0.00%) 13 (100%) <0.001d

IFN Treatment, n (%) 29 (35.80%) 16 (23.53%) 13 (100%) <0.001d

CRP (mg/L), median (Q1-Q3) 5.5 (0.83-27.13) 4.5 (0.65-14.88) 39.2 (13.13-73.13) 0.01c

Peak viral load, median (Q1-Q3) 4.85×107

(3.28×105-1.54×109)
2.24107 (2.53105-1.66109) 2.77108 (3.66107-1.47109) 0.24c

CBC-platelet (billion/L), median (Q1-Q3) 204.5 (155.8-263.8) 218 (170.75-270.25) 150 (114.25-164.5) 0.002c

WBC (109/L), median (Q1-Q3) 4.90 (3.80-6.55) 4.90 (4.08-6.13) 4.95 (3.40-9.13) 0.99c

LYM%, median (Q1-Q3) 27.65 (18.75-37.70) 32.75 (21.00-40.00) 11.50 (9.50-22.50) <0.001c

MON%, median (Q1-Q3) 10.00 (7.98-13.93) 10.00 (8.00-13.23) 8.50 (6.00-14.75) 0.58c

NEU%, median (Q1-Q3) 57.75 (47.00-70.25) 56.00 (46.85-65.25) 77.00 (68.25-82.25) <0.001c

EOS%, median (Q1-Q3) 0.90 (0-2) 1 (0-2) 0 (0-0) 0.01c

BAS%, median (Q1-Q3) 0.30 (0-1) 0.50 (0-1) 0 (0-0) 0.01c

Neutrophil to Lymphocyte ratio, median
(Q1-Q3)

2.09 (1.31-3.63) 1.69 (1.20-3.16) 6.60 (2.90-8.88) <0.001c

Platelet to Lymphocyte ratio, median (Q1-Q3) 0.26 (0.16-0.74) 0.24 (0.16-0.61) 0.37 (0.20-0.88) 0.48c
fr
A total of 81 subjects in the cohort were divided into mild and severe COVID-19 cases and compared using statistical tests. T-test was used for continuous normally distributed variables and
Mann Whitney U test was used for variables with skewed distribution. c2 test was used for categorical variables. P values indicating statistical significance are shown.
IFN, Interferon; CRP, C-reactive protein; Q1-Q3, Quartile 1-3; CBC, Complete blood count; WBC, White blood cell; LYM, Lymphocyte; MON, Monocyte; NEU, neutrophil; EOS, Eosinophil;
BAS, Basophil.
a. P value for the comparison between the two groups.
b. P value from T-test.
c. P value from rank sum test.
d. P value from c2 test.
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Virus 1-Step Master Mix (Applied Biosystems, USA) in a final

reaction volume of 20 mL. The primer and probe concentrations

were 0.5 mM and 0.125 mM, respectively. The cycling conditions, 25°

C for 2 min, 50°C for 15 min, 95°C for 2 min, followed by 45 cycles

of 95°C for 15 s, and 55°C for 30 s, were performed with the

StepOnePlus Real-Time PCR System (Applied Biosystems, USA).

Samples were considered as negative if the Ct values exceeded

39.9 cycles. The Ct values of real-time RT-PCR were converted into

viral RNA copies based on a standard curve prepared from 10-fold

serial dilutions of known copies of a plasmid containing the full

N gene (2019-nCoV_N_Positive Control, Integrated DNA

Technologies, USA).
2.4 Data analysis of qPCR and IFN
score calculation

Based on the MIQE principle, all RT-qPCR experiments include

calibrators and PCR efficiency. PCR efficiency is calculated from

serially diluted samples. The calibrator is a constant human cDNA

sample obtained from the same healthy donor. The duplicate Ct

value difference must be less than 1. The delta-delta Ct method was

used for the relative quantification of transcript abundance (TA).
Frontiers in Immunology 05
Gene UBC and RPL31 were used as the internal housekeeping (HK)

gene. The fold change (FC) for each gene (g) was calculated by an

efficiency corrected ddCT method as: FCg=eg(CTg_calibratior -

CTg_mean)/median[ehk(CThk_calibratior - CThk_mean)]. The

median based IFN score was calculated as follows: IFN

score=Median of (FC(IFIT1), FC(IFIT2), FC(IFI27), FC(IFI44L),

FC(SIGLEC1)). IFN scores and FC of gene expression shown in the

figures are log transformed by a base of 2 (i.e. log2 transformation).

Spearman correlations between IFN score and each of the IFN genes

were shown in Supplementary Figure SF1.
2.5 Public COVID-19 single-cell RNA-
seq datasets

PBMC scRNA-seq datasets of COVID-19 patients were collected

from two publicly available resources, namely the CZ CELLxGENE

Discover platform (https://cellxgene.cziscience.com/) and the Gene

Expression Omnibus (GEO) database (Table 2). To retrieve the

relevant datasets, filters were applied using keywords ‘COVID-19’,

‘Homo sapiens’, and ‘blood PBMC’. A total of ten datasets (7, 23–31)

that fulfilled the aforementioned criteria were obtained from the

CELLxGENE Discover platform. Furthermore, two datasets,
TABLE 2 General information of public single cell RNA-seq datasets used in this study.

Datasets (No.
of cells)

Publications Platform Patients Healthy

Ahern et al. (836,148)
EGAS00001005493

A blood atlas of COVID-19 defines hallmarks of disease severity and specificity (23) 10x 5’ v1;
CITE-seq

100 10

Yoshida et al. (422,220)
GSE168215

Local and systemic responses to SARS-CoV-2 infection in children and adults (24) 10x 5’ v1;
CITE-seq

20 50

Van der Wijst et al.
(600,929)
GSE168453

Type I interferon autoantibodies are associated with systemic immune alterations in patients
with COVID-19 (25)

10x 5’;
CITE-seq

54 11

Stephenson et al.
(647,366)
E-MTAB-10026

Single-cell multi-omics analysis of the immune response in COVID-19 (26) 10x 3’;
CITE-seq

69 35

Ren et al. (1,462,702)
GSE158055

COVID-19 immune features revealed by a large-scale single-cell transcriptome atlas (27) 10x 3’ v3; 10x
5’ v2

35 25

Liu et al. (372081)
GSE161918

Time-resolved systems immunology reveals a late juncture linked to fatal COVID-19 (28) 10x 5’ v1;
CITE-seq

32 14

Wilk et al. (44,721)
GSE150728

A single-cell atlas of the peripheral immune response in patients with severe COVID-19 (29) Seq-Well 7 6

Lee et al. (59,572)
GSE149689

Immunophenotyping of COVID-19 and influenza highlights the role of type I interferons in
development of severe COVID-19 (7)

10x 3’ v3 8 4

Schulte-Schrepping
et al. (90,957)
EGAS00001004571

Severe COVID-19 Is Marked by a Dysregulated Myeloid Cell Compartment (30) 10x 3’ v2; 10x
3’ v3

18 21

Arunachalam (49,139)
GSE155673

Systems biological assessment of immunity to mild versus severe COVID-19 infection in
humans (31)

10x 3’ v3;
CITE-seq

7 5

Yu et al. (424,080)
GSE171555

Mucosal-associated invariant T cell responses differ by sex in COVID-19 (32) 10x 5’ v1 16 8

Amrute et al. (199,097)
GSE192391

Cell specific peripheral immune responses predict survival in critical COVID-19 patients (33) 10x 5’ 12 6
fro
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GSE171555 and GSE192391 (32, 33), were selected from the GEO

database for downstream analysis. Subsequently, all the datasets were

subjected to preprocessing steps to ensure data quality control

and consistency.

2.5.1 Pre-processing single-cell RNA-seq data
and pseudobulk preparation

The CELLxGENE collections comprise more than ten pre-

processed COVID-19 single-cell RNA-seq datasets in which the

cells have been well labeled. Only COVID-19 cases within 10 days of

onset and healthy controls from the ten selected datasets were

included in this study. The raw datasets selected from GEO

(GSE171555 and GSE192391) underwent quality control, where

low-quality cells or doublets were removed based on the number of

expressed genes fewer than 200 or greater than 4000 or had

mitochondrial counts > 25%. The remaining data were then

normalized using the ‘NormalizeData()’ function from Seurat (34)

and log-normalization was performed with a scale factor of 10000.

Cell annotations were generated using a reference-based method

with azimuth datasets (34, 35) . Specifical ly , Seurat ’s

‘FindTransferAnchors()’ and ‘MapQuery()’ functions were used to

map cells to the reference azimuth dataset (i.e. PBMC multimodal

data). Predicted cell types for each cell were manually validated. The

labeled datasets were used to create pseudobulk data, which has

been shown to improve the performance of differential expression

analysis in single-cell RNA-seq data (36–38). Pseudobulk data was

generated by summing the raw counts for each gene across

individuals and cell types, including monocyte, B cell, CD4+ T,

CD8+ T, and NK cells, resulting in five gene × individual matrices.

2.5.2 Quality control for the pseudobulk datasets
To ensure data quality and reduce noise, a series of filtering steps

were performed at the gene and sample levels. Firstly, if genes that

were missing in any of the datasets or with a maximum log count-

per-million (log CPM) value less than 5 in all the five cell-types,

pseudobulk data were removed. Secondly, outlier samples (i.e.

individuals in pseudobulks) were excluded based on Mahalanobis

distance metrics that were computed using 19 selected housekeeping

genes (39–41). Finally, for datasets with batches (e.g. Liu et al.

dataset), Combat-seq (42) was applied to reduce the batch effects.

These steps ensured that the data used in the downstream analysis

passes quality control and had minimal technical artifacts.
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2.5.3 Differential expression analysis at the
pseudobulk level

EdgeR (43) likelihood ratio test (LRT) was used to compare

gene expression profiles between COVID-19 patients and healthy

controls across the five cell types at the pseudobulk level. Prior to

the analysis, the normalized library size factor was calculated for

each of the quality-controlled datasets using edgeR. To visualize the

effect sizes and corrected p values, bubble plots were created.

Additionally, raw count gene expression levels were normalized

by limma voom (44) to the log2 space for visualization purposes

only. To facilitate comparisons between different cell types at the

pseudobulk level, gene expressions were presented as log2 (target

gene/reference gene). This simple normalization approach was

consistent with our qPCR analysis and allowed for the

measurement of target gene transcript abundance and

comparison of expression differences between cell types. Two

different housekeeping genes (UBC and RPL31) were used as

reference genes.

2.5.4 Comparisons between cell types stratified
by disease status

To investigate the expression differences of the target IFN genes

among various cell types within different disease status, we

generated two pseudobulk datasets from Stephenson et al. (26)

and Van der Wijst et al. (25). These datasets were chosen for their

relatively balanced case-control numbers and the availability of the

highest cell counts/individuals. Raw count gene expression levels

were normalized by limma voom with edgeR normalized library

size factors, and expressions were presented as log2 (target gene/

reference gene) to enable comparability of gene expression levels

among different cell types at the pseudobulk level. This simple

normalization method was consistent with our qPCR analysis.

2.5.5 Public peripheral blood bulk transcriptome
data of COVID-19 patients

Four peripheral blood transcriptomes (i.e. bulk RNA-seq)

datasets were obtained from NCBI GEO database (GSE152641,

GSE157103, GSE161731 and GSE171110) (Table 3). For each of the

datasets, low-expressed genes were removed based on the edgeR

(43) filtering step with default parameters. Data was then

normalized by edgeR library-size normalization and log2

transformed by limma voom (44). The ratio-based gene
TABLE 3 General information of public blood bulk RNA-seq datasets used in this study.

Datasets Publications Platform Patients Healthy

GSE152641 Transcriptomic similarities and differences in host response between SARS-CoV-2 and other
viral infections (45)

GPL24676 Illumina
NovaSeq 6000

62 24

GSE157103 Large-Scale Multi-omic Analysis of COVID-19 Severity (46) GPL24676 Illumina
NovaSeq 6000

100 26

GSE161731 Dysregulated transcriptional responses to SARS-CoV-2 in the periphery (47) GPL24676 Illumina
NovaSeq 6000

77 16

GSE171110 CD177, a specific marker of neutrophil activation, is associated with coronavirus disease
2019 severity and death (48)

GPL16791 Illumina
HiSeq 2500

44 10
fro
A total of 4 public blood bulk RNA-seq datasets for COVID-19 were used in this study.
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expression levels were calculated as log2(target gene)-log2(reference

gene) as calculated in qPCR analysis. A meta-analysis of the selected

IFN gene expression levels was performed between COVID-19 and

healthy controls using both fixed effect models and random effect

models in R packages ‘meta’, ‘rmeta’ and ‘metafor’ (49).

Standardized mean differences and 95% confidence intervals were

calculated using the ‘Hedges’ method for each of the datasets and

meta-analysis.
2.6 Statistical analysis

Statistical analyses were performed using the R statistical

package (R 4.2.1). Clinical variables, including sample size, age,

sex, smoking status, day from onset, whether received IFN

treatment, C-reactive protein (CRP) level, peak viral load, and

various cell counts, percentages, and ratios, were summarized as

the basic characteristics and stratified by disease severity. Group

differences were assessed using t-test for normally distributed

continuous variables, the Mann Whitney U test for continuous

variables with skewed distributions, and the chi-square test for

categorical variables. ROC curves were used to evaluate sensitivity

and specificity for every possible cut-off for the potential biomarkers

in bulk RNA-seq data. For RNA-seq data, gene counts were

normalized using the TMM method (43). In the analysis of

single-cell RNA-Seq (scRNAseq), we used the Kruskal-Wallis test

to determine the expression differences among different cell types,

stratified by disease status.

Correlation analysis between IFN score and continuous clinical

variables was performed by Spearman correlation. Associations

between IFN score and categorical clinical variables were tested

by Wilcoxon Rank sum test (two categories) or Kruskal-Wallis test

(more than two categories) with pairwise comparisons. The

correlations between IFN score and each of the single gene were

performed by Spearman correlation and were visualized using R

package ‘PerformanceAnalytics’. Other plots were created by

‘ggpubr’. P values < 0.05 were considered significant.
3 Results

3.1 Characteristics of COVID-19 patients

The COVID-19 patients (n = 81, 48.15% females) included in this

study had an average age of 39.95 ± 24.72 years. Patients were divided

into two groups based on their severity and 13 (16%) of them were

classified as severe (Table 1). Similar to other clinical reports,

COVID-19 severity was positively correlated with age (p<0.001)

and men were likely to get severe disease (p=0.02). Furthermore, all

the severe cases were current smokers. Elevated CRP levels were

associated with COVID-19 severity (p=0.01). Additionally, severe

cases were associated with decreased complete blood count (CBC)

(p=0.002), and lymphocytes % count (p<0.001) and thus a higher

neutrophil to lymphocyte ratio (p<0.001).

Although there were 105 patients in the cohort, 24 of them did

not have blood sample available for analysis during the first 10 days
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after disease onset. Another 6 patients had a poor RNA yield which

may be due to sample degradation. Finally, only 75 patients had

blood sample available for ISGs expression qPCR analysis and

determination of IFN score.
3.2 qPCR IFN scores correlate with
percentages of lymphocytes but showed
no obvious difference between
severity groups

Associations between qPCR IFN scores and all clinical variables

were examined (Figure 2 and Supplementary Figure SF2). As

expected, a positive correlation between IFN score and

neutrophil-to-lymphocyte ratio in blood was observed (p=0.02)

(Figure 2A), while the percentage of lymphocytes was negatively

associated with IFN score (p=0.007) (Figure 2B). Furthermore,

asymptomatic patients had a lower IFN score compared to both

symptomatic groups mild and severe group (Figure 2C). For the

whole cohort, IFN score of Day3-6 was significantly higher than

Day0-2. However, after separating into subgroups of patients with

or without interferon treatment, this difference was no

longer significant.

When the routine clinical laboratory results were analyzed,

WBC and CBC were negatively associated with IFN scores,

whereas higher peak viral load, and percentages of monocytes

and neutrophils were correlated with higher IFN scores

(Supplementary Figure SF2A). On the other hand, IFN scores was

not associated to smoking status nor age (Supplementary Figures

SF2B, D). Although asymptomatic patients had borderline

significant lower IFN score than non-severe symptomatic patients

(p=0.04), there was no apparent difference in IFN scores between

the 2 groups of symptomatic patients (severe vs non-severe

symptomatic patients) (Figure 2C).

Next, the IFN-based treatment effect on IFN score was explored,

stratified by different days from onset. Interestingly, there was no

significant difference in IFN scores between the treatment and no

treatment groups in all three time periods sample groups (p>0.2),

indicating that IFN-based treatment might not add any substantial

change in the endogenous IFN response.
3.3 Characteristics of low interferon
responder COVID patients

Interferon score represents the median of the elevation fold

changes of 5 ISG. In the figures, this score is expressed in log2 scale.

Therefore, a value of 1 represents 2 folds activation for the median

ISG which signify a significant IFN elevation and it also indicates

that there are 2 other genes activated by more than 2 folds.

Therefore, patients with log2 IFN score less than 1 were labelled

as low responder. 22 out of 75 (29%) patients were low responders

(Figure 2D). Among the low responders, we looked into the

expression level of individual ISGs (Figures 3B–F). Although the

median log2 expression of the 5 ISGs were below 1, two ISGs

showed sign of activation. They were IFI27 and IFI44L (Figures 3C,
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D). IFI27 (Figure 3D) showed the most notable activation and the

median activation was above 5 even among these low responders.

So, the low IF score (Figure 3A) was due to lack of activation of the 3

other ISGs (IFIT1, IFIT2, SIGLEC1).
Frontiers in Immunology 08
As shown in Table 4A, majority of low interferon responders

were asymptomatic patients (chi square test, p<0.05). On the other

hand, IFN score did not predict disease severity among

symptomatic patients (Table 4B).
B C

D E F

A

FIGURE 3

Distributions of IFN score/genes among COVID-19 patients with IFN score <1. (A–F) Represents IFN score, ISG IFIT1, IFIT2, IFI27, IFI44L,
SIGLEC1 respectively.
B

C D

A

FIGURE 2

Relationships between IFN scores and selected clinical variables. Relationships between IFN scores, Neutrophil-Lymphocyte ratio, percentage of
Lymphocytes, COVID-19 severity and day from onset were highlighted. (A,B) Relationships between IFN scores, Neutrophil-Lymphocyte ratio and
percentage of Lymphocytes were investigated by Spearman correlations with R and p values shown. (C) Kruskal-Wallis test and pairwise Rank Sum
tests were performed to study the association between IFN score and COVID-19 severity. (D) Proportion of low interferon responder (log2 IFN score
<1) among patients with or without symptom
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3.4 Meta-analysis of ISG expression in bulk
RNA sequencing of peripheral
blood samples

Patients summary of the 4 peripheral blood bulk gene

expression datasets were given in Table 3. The effect size of ISG

activation by SAR-CoV-2 was analyzed by standardized mean

difference (SMD) across the 4 datasets. ISG expression was

normalized by a housekeeping gene (e.g. UBC as results shown in

Figures 4A–E). Among the IFN genes analyzed by meta-analysis,

IFI27 was the most highly activated (Figure 4C). The SMD between

COVID patients and control was 1.72 (95% confidence interval

(CI): 1.16-2.28). IFI44L was the next highly activated gene SMD at

0.93 (95% CI: 0.29-1.56) (Figure 4D). Similar finding was observed

when the data was normalized by another housekeeping gene,

RPL31 (Supplementary Figure SF3) As the data were log-

transformed before analysis, such magnitude of increase

represented 2 to more than 4 folds increase in expression of these

interferon genes in the peripheral blood samples.
3.5 Selected IFN genes are highly
expressed in COVID-19 monocytes

We next studied the selected IFN gene expressions across five

main leukocyte cell types in single cell RNAseq datasets (i.e.

monocyte, B cell, CD4+ T cell, CD8+ T cell and NK cell) in

COVID-19 cases and healthy controls at single cell and

pseudobulk level (sum aggregation of single-cell RNA-seq data).

Figure 5 are the violin plots of the 5 ISGs of COVID-19 patients

compared to healthy controls. From the scRNAseq results, it was

evident that both IFI27 and SIGLEC1 were ISG predominantly

expressed by monocytes. IFI27 is expressed across cell types at

baseline but it was only activated in monocyte after infection

(Figure 5C). On the other hand, both baseline expression and

post-infection activation were predominant in monocytes among

leukocyte cell types in PBMC. IFIT1 and IFIT2 are well described
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neutrophil expressed ISG and their expression are most prominent

in mature neutrophil after interferon stimulation (G5) (50–53)

(Figures 5A, B). In differential expression analysis, four out of the

five selected ISGs (IFIT1, IFI27, IFI44L and SIGLEC1) showed

higher expression in COVID-19 than healthy control (Figures 5A–

E). Among healthy subjects, assumed as the baseline expression

when expressed as pseudobulk data, four (IFIT1, IFIT2, IFI27 and

IFI44L) out of the five selected IFN genes were universally expressed

among the 5 major cell types, while SIGLEC1 was preferentially

expressed by monocytes (Figure 5E). These gene expression levels

were transformed to target/reference gene log ratios for better

visualization (See Methods for details). Two different reference

genes (UBC: shown in Figure 5; RPL31: shown in Supplementary

Figure SF4) were used and both showed similar results.

Taken together, the larger effect size between COVID-19 and

healthy controls as well as the higher expression levels in monocytes

suggested that IFI27 and SIGLEC1 is a monocyte-specific

biomarker with slightly different property in response to viral

infection. Although IFN genes such as IFI27 and IFI44L are also

highly expressed in various cell types in COVID-19 samples,

monocytes contributed the most among PBMCs, suggesting its

active involvement in interferon response.
4 Discussion

Soon after the COVID-19 outbreak, it became widely accepted

that the SARS-CoV-2 virus is capable of suppressing our innate

immunity by impairing our interferon response (5). An impaired

interferon response had been described by studies that investigated

interferon pathway in COVID patients mainly focused on respiratory

tissue IFN responses, such as lung tissue (54) and BALF (9). However,

the ability of the virion to antagonist interferon pathway was only

observed in specific in-vitro experiments and the ability of viral

proteins to inhibit IFN responses differed among studies (55). It is not

sure to what extent the inhibitory effects were due to overexpression

of the viral protein in ectopic subcellular locations (56).

Interferon stimulated gene expression represents an unbiased

whole-body response or bioassay of the presence and the scale of

production of various interferons. Therefore, interferon scores are

more clinically relevant biomarker of interferon activation. If the

SARS-CoV-2 is inhibiting interferon response significantly at

the host level, it should be reflected by poor interferon scores

among the majority of COVID-19 patients. In fact, early studies

reported interferon score was low in COVID-19, even among

patients with severe and critical disease (5). Subsequently, an

insufficient interferon response was also associated with adverse

disease outcomes (2, 5, 57). In addition, patients with inherited

interferon defects got severe COVID-19 disease. These findings

would suggest that boosting the interferon pathway with

exogeneous interferon would be helpful. However, the WHO

solidarity trial concluded that none of the 4 repurposing drugs

(including a treatment limb of a 6-day course of interferon beta-1a)

could prevent severe disease in COVID-19 patients (58). The results

contradicted the notion that COVID-19 patients had impaired

interferon responses.
TABLE 4 Shows the disease characteristics of the 2 responder groups.

(A) Patients with asymptomatic COVID-19 disease or
symptoms with different IFN response.

Asymptomatic
COVID-19

COVID-19

Low responders (29%) 5 17

Adequate
responders (71%)

2 51

(B) Among symptomatic COVID-19 patients, IFN score did not
predict severity.

Mild disease Severe
disease

Total

Low responders 14 3 17

Adequate responders 41 10 51
P < 0.05 by Fisher exact test.
Not significant by Fisher exact test.
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Here, we tried to tackle these contradictory findings by a

systemic analysis on ISGs expression in blood as a bioassay of the

interferon response of the human host. Many early studies either

did not specify the days after disease onset when blood or tissue

samples were collected for study or collected samples later than the

first week. For example, Hadjadj et al. collected samples after a

median of 10 days after disease onset (5). Our study limited the

sample collection period to the first 10 days of infection (i.e. the

early stage after infection) and our finding suggested that most

patients, in fact, mounted an adequate interferon response and it
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can be reflected by IFN score. Then, the IFN score declined

naturally as in other viral infections. It is now documented that

the interferon response and score are only activated during the very

early phase of viral infection and will largely be subsided at the end

of the first week (55, 56, 59).Therefore our data further confirmed

the importance of the timeframe for sample collection and

examination of IFN genes Similarly, contradictory results of

treatment with various exogenous interferon in different trials

could be due to difference in the outcome measures and timing of

the interferon administration. Whether interferon is administered
B

C

D

E

A

FIGURE 4

Forest plots showed meta-analysis of target IFN gene expression levels (log-ratio using UBC as reference gene) between COVID-19 and healthy
control among four blood bulk RNA-seq datasets (GSE152641, GSE157103, GSE161731 and GSE171110). (A–E) Represents gene IFIT1, IFIT2, IFI27,
IFI44L, SIGLEC1 respectively.
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early (within the first few days after onset) or late may result in

completely different outcomes. This is a conclusion made by Jhuti

et al. after reviewing the clinical trials including interferon

administration before the TOGETHER study reported in 2023

(16, 60). Brzoska et al. also arrived at the same conclusion after

reviewing four major clinical phase III trials with interferons (59).

Our study is quite unique that we have the chance to analyze blood

samples collected within the first 10 days after onset. Therefore, we

provided a more realistic picture of interferon activation in

COVID-19 patients. And we showed that most COVID-19

patients did mount an appropriate interferon response after SAR-

CoV-2 infection.

However, 29% of patients (22 out of 75 patients in our cohort)

whose interferon scores were less than 2 times of the healthy

control. Five of them (23%) were asymptomatic patients. Most of

these low interferon responders experienced only mild diseases that

did not require hospital admission. Only 3 of them (14%) had a

severe disease. Statistical analysis suggested that low interferon

responders were more common among the asymptomatic

patients (P value < 0.05 by Fisher Exact test). But the comparison

of disease severity among symptomatic patients suggested that low

interferon responders did not differ from other patients with good

interferon activation. They only had partial ISGs activation

confining to only 1 out of the 5 ISGs examined. In other words,

low interferon responders are more likely to be asymptomatic

patients but this status does not predict disease severity. It is not

well understood why some patients were asymptomatic. A

hypothesis may be drawn from the latest genome-wide

association study report. Pairo-Castineira et al. reported the latest

GWAS on COVID-19 so far (61). Many genes in the interferon

pathway are found among the top hits in the largest GWAS up-to-

day. For example, a SNP on the JAK1 gene (rs12046291) was

associated with critical COVID-19. It may suggest that some

alleles in JAK1 might affect the extent of JAK1 activation by

interferon. However, this is still pending experimental validation.
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Other associated SNPs are found in genes like IFNAR2, OAS1

and IFNA10.

Concerning the hematological cell-type that accounts for the ISG

expression after interferon activation, single cell RNA sequencing

provided the information. While most of the ISG are expressed by

most cell types, IFI27 is more specific to monocytes. It has a higher

expression in monocytes in COVID-19 samples and the activation is

also more intense. Nonetheless, it keeps consistent expression levels

among all the selected cell types in normal samples. Additionally, it

is worth noting that the gene SIGLEC1 is apparently specific to

monocytes in both COVID-19 and normal samples. Regardless of

the disease status, it shows consistently higher expression levels in

monocytes than the other cell types. Interestingly, larger expression

differences between COVID-19 and normal samples are also

presented in monocytes with higher statistical significance than

any other selected cell types. This phenomenon suggests that

certain specific gene activities uniquely or dominantly take place

within monocytes in COVID-19 samples and could be investigated

in depth. In the future, drug trials with interferon therapy should be

targeting at this subpopulation of patients with a partial ISGs

activation. While giving interferon injections to all COVID-19

patients might not be helpful to prevent severe disease, a more

targeted approach to a subgroup of patients may be more effective.

There has been a lack of data on ISGs in clinical whole blood

sample and many researchers suggested that IFN response in

COVID-19 patients was inadequate. We detected the ISGs and

calculated the IFN score to reflect the systemic IFN response in the

COVID-19 patients. Compared to healthy controls, the IFN score of

COVID-19 patients was increased on average by 20.94 folds.

Therefore, most COVID-19 patients did not have inadequate IFN

responses, which was reported recently in other studies (11).

Contrary to other studies suggesting that COVID-19 patients

have insufficient IFN response, there was a marked interferon

response of COVID-19 patients in our cohort, particularly during

the early phase of COVID-19 (6, 54). To investigate the reasons for
B C

D E

A

FIGURE 5

Violin plots showed comparisons of target IFN gene expression levels between disease status among five main cell types at pseudobulk level in
EMTAB-10026 single cell RNA-seq dataset. (A–E) Represents gene IFIT1, IFIT2, IFI27, IFI44L, SIGLEC1 respectively.
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these contrasting results, we also investigated the effect of sampling

times. If the blood samples were collected late (e.g. one week after

fever onset), ISGs was lowered or returned to normal levels (28).

This was also found in our cohort, peripheral blood ISGs levels

changed as early as during the first few days after onset of COVID-

19 infection. In common with more recent reports (28, 30, 62),

attention about the sampling time is strongly recommended when

describing and interpreting the expression level of ISGs in COVID-

19 patients. For example, samples were collected at a median of 10

days after disease onset in Hadjadj et al. (5), the late-collected

sample set might explain why interferon activity appeared to be

impaired. As for the association with severity, one study reported

impaired IFN-I activity and decreased ISGs in blood in severe

COVID-19 patients (5). While in our cohort, association was not

found between ISGs and disease severity.
5 Conclusion

1. In a cohort of vaccine-naive patients, we showed an early and

significant systemic interferon response in the majority (71%) of

patients after COVID-19 infection. It suggests that COVID-19

induces a sufficient endogenous IFN response.

2. IFI27 and SIGLEC1 were predominately expressed by

monocyte and were most intensely activated after SAR-CoV-2

infection. These two monocyte-predominant expressing ISGs are

useful biomarkers to monitor IFN response in monocyte in

peripheral blood.

3. Low interferon responders (as defined by the IFN score) are

common among asymptomatic patients. Even though many ISGs

(such as IFIT1) were not raised, the monocyte-predominant ISG,

IFI27 was activated in most of them. It is not known why IFN

response was confined to monocytes but not extended to other cell

types in peripheral blood. This patient subgroup may benefit from

exogenous interferon treatment. However, the overall IFN score

and individual ISG levels did not predict disease severity.
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