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Acute myeloid leukemia (AML) is a malignant clonal tumor originating from

immature myeloid hematopoietic cells in the bone marrow with rapid

progression and poor prognosis. Therefore, an in-depth exploration of the

pathogenesis of AML can provide new ideas for the treatment of AML. In

recent years, it has been found that exosomes play an important role in the

pathogenesis of AML. Exosomes are membrane-bound extracellular vesicles

(EVs) that transfer signaling molecules and have attracted a large amount of

attention, which are key mediators of intercellular communication. Extracellular

vesicles not only affect AML cells and normal hematopoietic cells but also have

an impact on the bone marrow microenvironment and immune escape, thereby

promoting the progression of AML and leading to refractory relapse. It is worth

noting that exosomes and the various molecules they contain are expected to

become the newmarkers for disease monitoring and prognosis of AML, and may

also function as drug carriers and vaccines to enhance the treatment of leukemia.

In this review, we mainly summarize to reveal the role of exosomes in AML

pathogenesis, which helps us elucidate the application of exosomes in AML

diagnosis and treatment.
KEYWORDS
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Introduction

Acute myeloid leukemia (AML) is an aggressive hematological malignancy that affects

adults. It is characterized by the abnormal proliferation and differentiation of immature

myeloblasts, which accumulate in the bone marrow (BM) and peripheral blood and impair

normal hematopoiesis. Although 50% of patients with AML can achieve complete

remission after induction chemotherapy and post-remission treatment, more than 20%
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of patients with AML remain unresponsive and refractory (1). The

precise treatment of AML is impeded by the disease’s aggressive and

heterogeneous nature, which is characterized by genetic

abnormalities, extensive epigenetic changes, and abnormal tumor

microenvironment (TME) (2, 3). Therefore, understanding of the

pathogenesis of AML must be improved, and novel biomarkers for

diagnosis for its diagnosis and prognosis must be developed.

Exosomes, also known as intraluminal vesicles, are 30-100nm

extracellular vesicles (EVs) secreted by various cells, including tumor

cells, into the body fluids, blood, urine, semen, saliva, breast milk,

amniotic fluid, ascitic fluid, cerebrospinal fluid, and bile (4). The

circulatory system serves as the primary medium for exosomes to

perform their long-distance communication function (5, 6). Tumor-

derived exosomes (TEXs) induce vascular leakage, inflammation, and

BM progenitor recruitment during pre-metastatic niche formation

and metastasis (7), and finally induce tumor growth and metastasis,

affecting tumor progression and prognosis (8).

TEXs in TME transport a substantial amount of genetic material

from maternal tumor cells (9). By regulating the physiology of

recipient cells, including signaling to tumor and stromal cells,

exosomes secreted into the extracellular environment can reshape

the TME and promote tumor growth. Exosomes are crucial

components in tumorigenesis and tumor proliferation,

angiogenesis, invasion, and metastasis (10). This intercellular

communication influences cells of various lineages remotely or in

situ. Exosomal communication involving immune cells can induce

intricate cellular modifications and considerably influence the course

of cancer progression by eliciting an immune response. Recent

evidence suggests that exosomes greatly influence cell-to-cell and

cell-to-environment communication in AML (11). Exosomes are

essential for the progression of leukemia and facilitate the survival

and chemoresistance of leukemic cells by transferring their molecular

cargo (12, 13). Therefore, TEXs are essential to the evaluation of the

effects of AML disease activity, severity, and treatment response. In

this review, we briefly describe the production of exosomes and how

vesicles mediate cellular communication, and then explore the

potential use of exosomes in AML diagnosis and treatment.
Origin and mechanisms of exosomes

Approximately 50 years ago, scientists observed that cells in

culture fluid “shed” small vesicles of unknown function -called

exosomes. Previously, “waste” produced by cellular physiological

metabolism. Owing to the development of high-throughput

proteomics and genomics, exosomes have been demonstrated to

be involved in intercellular communication in living organisms.
Exosome biogenesis

Exosome biogenesis is a multistep process involving several

pathways. First, multivesicular bodies (MVBs) are generated

through two stages of inward membrane budding. The

invagination of the cell membrane generates early endosomes,

from which exosomes bud inward and late endosomes or MVBs
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are formed (14). Then, MVBs fuse with the plasma membrane

through exocytosis and release exosomes from the cells in tubular

vesicles (15). The mechanisms underlying MVB formation

including endosomal sorting complex required for transport

(ESCRT) pathway, and tetraspanin-dependent pathway (16, 17).

ESCRT consists of four subunits (ESCRT-0, ESCRT-I, ESCRT-II,

and ESCRT-III) and related molecules (VPS4, VTA1, and ALIX).

ESCRT-0 complex initiates the ESCRT pathway through its subunit

hepatocyte growth factor-regulated tyrosine kinase substrate, which

not only recognizes ubiquitinated proteins and binds to

phosphoinositide in the endosomal membrane but also recruits

ESCRT-I by binding its TSG101 subunit (18–22). Then, ESCRT-I,

and -II promote membrane endosome invagination, ESCRT-III and

VPS4 drive the abscission of vesicles from the membrane, and

exosomes are generated (23–29). However, the ESCRT system is not

the sole pathway for regulating exosome formation. Several

tetraspanins, such as CD63, CD81, and CD9, can sequester

multiple proteins and form tetraspanin-enriched exosomes (30,

31). Apart from these pathways, other regulators have been

identified, including syntenin, ceramide activation via neutral

sphingomyelinase, and lipid-raft formation (32–34).
Secretion of exosome

The mechanism by which MVBs are delivered to the plasma

membrane is still not fully understood. Nevertheless, research has

demonstrated that the process is controlled by small GTPase

molecules that interact with cytoskeletal proteins, and cortactin

and ALIX play roles in the intracellular distribution of MVBs (35–

37). MVBs fuse with the plasma membrane through a series of

proteins, including the soluble N-ethylmaleimide-sensitive factor

attachment protein receptor (SNARE). Vesicle-associated

membrane proteins bind to the plasma membrane proteins

syntaxin and SNAP and then trans-SNARE complexes are

formed, which provide the necessary force for the movement of

MVBs toward the plasma membrane (38). Finally, other SNARE

proteins promote the fusion of MVBs and exosome (38–40).
Exosome uptake

After secretion, exosomes with cargoes are released into the

extracellular environment. The membranes of exosomes can protect

biomacromolecules that exist stably in the body fluid. Therefore,

peripheral blood is the main environment in which exosomes

perform long-distance communication functions (5, 6). In vivo,

exosomes can be assimilated by target cells through the direct fusion

of membranes, ligand-receptor interactions, or endocytosis. First,

exosomes can directly activate receptors on the surfaces of target

cells through protein molecules on the surfaces or lipid ligands,

generating signaling complexes and activating intracellular

signaling pathways (41). Second, in the extracellular matrix,

exosomes release intracellular substances that act as ligands to

bind to receptors on the cell membrane, thereby activating

intracellular signaling pathways (42). Third, exosomes encode
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essential integrin molecules and fuse with the plasma membranes of

target cells or are endocytosed directly into the cells and release

nonspecific proteins, noncoding RNA, and nucleic acids (43).

Biomolecules transferred by exosomes can alter the phenotypes

and functions of recipient cells by altering gene expression and are

involved in many physiological and pathological processes in

recipient and donor cells (44, 45). Figure 1 shows the

relevant mechanism.
Content of exosome

Recent data obtained from the Exosome Database reveal that

exosomes comprise 1116 lipids, 9769 proteins, 3408 mRNAs, and

2838 microRNAs (miRNAs). The lipid content of exosomes consists
Frontiers in Immunology 03
of cholesterol, sphingomyelin, ceramide, phosphatidylserine,

lysophosphatidic acid, and prostaglandins, which are important for

the mechanistic and biophysical aspects of bilayer formation,

curvature, and fluidity and affect membrane fusion (46). Proteins in

exosomes include tetraspanins, which are membrane transport and

fusion proteins on the surfaces of exosomes and act as specific

markers. They include specific proteins that are excellent markers

for exosome recognition, heat shock proteins (HSP-60, HSP-70, and

HSP-90), chaperone proteins, adhesion proteins, MHC (e.g., MHC I

and MHC II, which are evolved in antigen presentation), cytoskeletal

proteins, multivesicular body synthesis proteins, and lipid-associated

proteins (47). In addition, AML-derived exosomes contain the tumor

antigens CD33, CD34, and CD117 (48). Exosomes express the

adhesion molecules ICAM-1 and integrins, which mediate the

interaction and binding of exosomal membranes to receptor cells
FIGURE 1

Exosomes derived from AML cells are used as target cells. (A) AML cells undergo a process from tubular vesicles (early intracellular bodies) to late
intracellular bodies to multivesicular bodies, and finally, they release exosomes into the extracellular space through fusion with the plasma
membrane. (B) AML-derived exosomes play a long-distance communication role mainly through peripheral blood, which can affect some immune
cells; (C) Exosomes communicate with target cells. Exosomes can directly activate receptors on the surface of target cells through surface ligands.
Integrin molecules on the membrane of exosomal cells directly fuse with the plasma membrane of target cells or endocytosis enters the cell.
Outside the cell, exosomes release intracellular substances that bind to receptors on the cell membrane.
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for cargo delivery (49). Nucleic acids, including DNA, mRNA, and

noncoding RNA, are associated with the detection of cancer-

associated mutations in serum exosomes (50). Thus, exosome-

specific nucleic acids and proteins are crucial for identifying

biomarkers of serum exosomes associated with tumor gene

mutations and predicting tumor development and prognosis (51).
AML-derived exosomes cause the
dysfunction of immune cells

Exosomes originating from AML induce
T-cell differentiation towards a
pro-tumor phenotype

The efficacy of tumor immunotherapy is restricted by tumor

cells evading host immune system surveillance and downregulating

the function of immune cells, especially antitumor effector cells,

including CD8+ T and CD4+ T cells, natural killer cells (NK), and

dendritic cells (DCs) (52, 53). Immune cell dysfunction is a

common feature of AML. AML-derived exosomes are key

mediators in the TME and function as immunosuppressants,

enabling AML cells to evade immune surveillance (12). Exosomes

isolated from the plasma of AML patients are loaded with leukemia-

associated antigens and inhibitory molecules, which can disrupt the

functions of immune cells used in adoptive cell therapy, thereby

limiting the expected therapeutic effect of adoptive cell therapy and

resulting in immune dysfunction (54). Human TEXs induce

apoptosis in activated CD8+ T cells, promote the expansion and

function of regulatory T (Treg) cells, and thus promote tumor

evasion. The proliferation of activated CD8+ T cells is inhibited by

co-cultivation with TEX, but TEXs increase the proportion of

activated CD4+ T cells. Additionally, TEXs promote Treg cell

expansion and transport transforming growth factor b (TGFb)
and IL-10, which promote the conversion of T cells into Treg

cells (55). Treg cells constitute a subpopulation of T cells, mainly

CD4+CD25+ cells, and are classified according to their origin.

Elevated levels of Treg cells in peripheral blood are associated

with poor outcomes in patients with AML (56). Pando et al.

investigated the effects of AML-derived EVs on T cell subsets by

an in vitro approach to study the effects of EVs derived from the

human AML cell line MOLM-14 cells on CD4+, CD4+CD39+, and

CD8+ T cell subsets from healthy individuals; the results showed

that tumor-derived EVs modulate T cell responses by upregulating

immune processes, such as immunosuppression and oncogenic

gene expression (57).
AML-derived exosomes downregulate the
natural killer receptor of NK cells

NK cells are major innate immune cells in the bloodstream and

target tumor cells. In AML, the ability of NK cells to eliminate

leukemic cells is dependent on the predominance of activation

signals. Weak activation signals among NK cells lead to their
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inability to exert their cytotoxicity and render them unresponsive

to leukemic cells (58). The low expression of the activation receptor

natural killer group 2D (NKG2D) of NK cells in patients with AML

results in a decline in NK cell activity and the inhibition of its killing

function (59). Szczepanski et al. examined serum exosomes from 19

patients with AML and 14 healthy controls and found that serum

exosomes from patients with AML disrupted NK cell activation by

downregulating the expression of NKG2D; this effect reduced the

toxicity of NK cells to tumor cells, but interleukin 15 counteracted

this inhibitory effect (60). AML-derived exosomes reduced the

cytolytic activity of normal NK cells by downregulating NKG2D

receptor expression and inducing Smad phosphorylation in NK

cells (61). Hong et al. isolated exosomes from the plasma of the

AML human-derived tissue xenograft model they developed; they

observed that the expression levels of surface markers in the

exosomes were similar to those in the exosomes from patients

with AML. The AML-derived exosomes that carr ied

immunosuppressive ligands activated on human NK cell or CD8+

T cell receptors, leading to their dysfunction (62).
AML-derived exosomes inhibit the direct
and indirect anti-tumor
effects of DCs

DCs are major antigen-presenting cells and play an important

role in innate immunity. However, DCs generated in the presence of

TEX under express costimulatory molecules and produce

suppressive cytokines, thus inducing the dose-dependent

suppression of T cell proliferation and antitumor cytotoxicity

(63). In the context of AML, type I interferons produced by

plasmacytoid DCs can clear AML cells. This finding suggests that

DCs eliminate AML cells. Benites et al. used exosomes or lysates

derived from the leukemia K562 cell line as antigen sources of DC

pulses, which initiated the maturation of DCs into a cytotoxic

phenotype and markedly enhanced the cleavage of target cells;

conversely, when the serum exosomes of patients with AML were

used as the pulse sources, opposite effects were observed, which may

have induced the immune tolerance of DCs. Considering these

contrasting effects can contribute to the mitigation of in vivo

immune tumor evasion mechanisms (64). In summary, AML-

derived exosomes transport substances that induce dysfunction in

immune cells and exert a suppressive effect on the immune

system (Figure 2).
AML-derived exosomes related
to AML progress

Exosomes participate in BM
microenvironment reconstitution

The leukemic microenvironment is a complex and

heterogeneous ecological niche composed of various cells,

including leukemic, immune, mesenchymal stem, and endothelial
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cells. The interaction of tumor cells with the microenvironment and

tumor stem cells in the BM promotes the relapse of leukemia and

metastasis to lymphoid tissues (65). Exosomes are important for the

induction of immune responses in a pro-tumor microenvironment

and for tumor progression and survival. They promote tumor

survival by remodeling the extracellular matrix and inducing

angiogenesis and tumor cell proliferation (66). AML can

reconstitute the BM microenvironment to one that promotes the

growth of leukemic cells but inhibits normal hematopoietic

function by secreting exosomes. Exosomes released by AML cells
Frontiers in Immunology 05
upregulate DKK1 in BM mesenchymal stromal cells and thereby

inhibit normal hematopoiesis through the WNT signaling pathway,

and AML-derived exosomes stimulate vascular endothelial growth

factor (VEGF) signaling in human umbilical vein endothelial cells

(HUVECs) by transferring angiogenic factors or proteins and

miRNAs, which form vascular tubular structures that promote

tumor growth (4, 67). Some studies have confirmed that

exosomal miRNAs secreted by AML cells contribute to the

progression of AML by altering the expression of downstream

genes (68). Point mutation inactivation and reduced SHIP1 gene
FIGURE 2

AML-derived exosomes play a role in promoting or inhibiting tumor progression through their contents in the tumor microenvironment. During the
interaction of AML-derived exosomes with immune cells, their contents mainly inhibit the function of immune cells.
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activity have been observed in patients with AML, and the miR-155-

mediated suppression of SHIP1 expression is involved in the

pathogenesis of AML. The miR-155/SHIP1/PI3K/AKT signaling

pathway potentially has a tumor-suppressive function in the

pathogenesis of AML (69). miR-155 is upregulated in FLT3-ITD-

associated AML and targets the myeloid transcription factor PU.1.

The knockdown of miR-155 inhibits proliferation of FLT3-ITD-

associated leukemic cells and induces their apoptosis (70). miR-34c-

5p is a core miRNA in pathways regulating aging. It is expressed

through the p53-p21Cip1-cyclin-dependent kinase (CDK)/cyclin or

the p53-independent CDK/cyclin pathway (p53-p21Cip1-CDK/

cyclin or p53-independent CDK/cyclin pathway (p53-p21Cip1-

CDK/cyclin or p53-independent CDK/cyclin pathways) and

promotes leukemia stem cells senescence. However, miR-34c-5p

is downregulated in AML (excluding APL) stem cells; poor

prognosis and poor therapeutic effect are clinical manifestations

of this outcome (71).
The role of exosomes in the apoptosis
of AML

Apoptosis is one of the key mechanisms affecting the survival of

AML cells, and the dysregulation of apoptosis may lead to the

chemoresistance of AML cells and disease relapse (72). Exosomes

carry many complex cargoes, which can serve as the key mediators

of intercellular communication and regulate cell proliferation (73).

Exosomal miRNAs enter body fluids through autocrine secretion

and create a microenvironment in malignant regulatory pathways

that facilitate the growth of AML cells by cross talk with other cells,

thereby promoting leukemic cell survival, proliferation, and

migratory infiltration (74). AML cells highly resistant to apoptosis

can affect the expression of apoptosis-related proteins in chemo-

sensitive cells. Jiang et al. showed that exosomes secreted by AML

cells are enriched in miR-125b (75). The mechanisms by which

miR-125b affects apoptosis in AML cells are as follows: First, miR-

125b partly targets core binding factor b (CBFb) and blocks

apoptosis by downregulating multiple genes involved in the p53

pathway (76). Second, it inhibits apoptosis and promotes cell

proliferation by affecting brassinosteroid-insensitive 1-associated

receptor kinase 1 (BAK1) expression (77). Third, miR-125b

facilitates the progression of leukemia by promoting the

expression of oncogenic MLL-AFF9 in vivo, and it upregulates

VEGFA, providing conditions conducive to the expansion of

leukemic cells. This process involves carcinogenic miRNAs

mediating noncellular endogenous leukemia and promoting the

miR-125b-TET2-VEGFA pathway. Fourth, caudal-related

homeobox transcription factor 2 (CDX2) binds to the promoter

region of the miR-125b gene and activates the expression of miR-

125b in malignant myeloid cells, and the generated miR-125b

inhibits the translation of CBFb, thereby inhibiting the

differentiation of myeloid cells in granulocyte lineaments and

promoting the occurrence of leukemia (78). Exosomes in the sera

of patients with AML are enriched in miR-10, and miR-10b can

inhibit apoptosis and homeobox D10 expression in AML cells by

directly targeting homeobox D10 (79).
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Exosomes are involved in the development
of drug resistance in AML

Co-culturing of exosomes with multi-drug-resistant AML cell

line with chemo-sensitive HL-60 may cause chemo-resistance

because of the transfer of miR-19b and miR-20a to the exosomes;

thus, exosomes can make chemo-sensitive cells resistant to

chemotherapy (80). Chen et al. demonstrated that exosomes

secreted by the AML cell KG1a can drive BM stromal cells to

produce IL-8, which can inhibit the chemotherapy-induced

apoptosis of AML cells (81). Moreover, an exosome-mediated

communication mechanism may impede drug therapy.

Hekmatirad et al. found that U937 cells (an AML cell line)

increase their resistance to the cytotoxic effects of doxorubicin

(PLD) in pegylated liposomes through exosome-mediated drug

expuls ion (82) . Another study that invest igated the

chemoresistance of AML-BMSC exosomes showed that miR-155

and miR-375 in exosomes derived from AML cells are responsible

for chemoresistance to chemotherapeutic drugs cytarabine and

AC220; the possible mechanism is the miRNA-induced

downregulation of the promoters of apoptosis or cell

differentiation under the guidance; free leukemic cells become

independent of the kinase pathway through this mechanism (83).
Application of exosomes in the
diagnosis and prognosis of AML

Exosomes as biomarkers of tumors have attracted considerable

interest (84). They are present in various body fluids and easy to

isolate and can be extracted from a small amount of serum (85).

Moreover, they have a unique molecular profile (61). AML-secreted

exosomal miRNAs are involved in the progression of AML and can

be used as entry points for AML treatment (86, 87).

AML might reflect unique miRNA profiles. Compared with the

sera of healthy individuals, the sera of patients with tumors contain

a large number of exosomes and specific pathogenic information

molecules of parental cell origin, which represent the biological

behavior of parental cells (88). For example, miRNAs, are important

cargoes carried by exosomes because they act in tumor tissues

through targeted molecules. miRNAs are important biomarkers of

tumor development and prognosis and are protected by exosomal

surface membranes with highly conserved sequences. These

membranes are stable under extreme conditions and can prevent

miRNAs from being released into the circulation (89). miRNAs

have potential use in the diagnosis of multiple diseases (90).

Exosomal miRNA can be collected from 20 mL of serum and can

be used as an ideal molecular marker for the targeted diagnosis and

prognosis of leukemia (91). Serum exosomal miR-10b is an

independent prognostic factor for overall survival in AML

patients. miR-10b expression levels are elevated in the sera of

patients with AML, and its expression levels are strongly

correlated with poor prognosis, and miR-10b level considerably

increases in patients with AML (92–94). Therefore, serum exosomal

miR-10b is a potential diagnostic and prognostic marker for AML.
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The expression levels of miR-146a/b, miR-181a/b/d, miR-130a,

miR-663, and miR-135b were high in M1, whereas those of miR-

21, miR-193a, and miR-370 were high in M5 (95). In addition, miR-

155 is downregulated in peripheral blood mononuclear cells from

patients with multi-drug-resistant AML and adriamycin-resistant

AML cell lines and showed a positive correlation in these patients.

miR-155 can be used as a monitoring indicator for drug resistance

and micro-residual focus with high sensitivity (96).

As mentioned above, numerous biomarkers can demonstrate

powerful uniqueness in the diagnostic prediction of AML (Table 1).

AML-derived exosomes are rich in CD33, CD34, and CD117, and

their overall protein content is significantly higher than that of

healthy controls; the content of some proteins, such as TGF-b1,
decreases at the initial diagnosis and effective treatment of AML and

can thus be used for detecting leukemia relapse and drug resistance

status (97). Plasma exosomal lncRNAs are potential cell-free

indicators for the diagnosis and therapeutic monitoring of AML

and offer novel and cutting-edge concepts for the liquid biopsy of

hematologic cancers (98). Bernardi et al. first used the commercially

available CE-IVD-based kits for exosome-enrichment methods to

investigate leukemic sources and exosomal dsDNA target

resequencing for adult AML marker detection; they performed

next-generation sequencing analysis of exosome-derived dsDNA

isolated from 14 adult patients with AML and identified the optimal

amount of exosomal dsDNA as a potential AML biomarker for
Frontiers in Immunology 07
liquid biopsies; they found exosomal dsDNA can be developed as a

tool that can facilitate the monitoring of AML progression and the

early diagnosis of relapse after allogeneic hematopoietic stem cell

transplantation (99). In summary, exosomes may offer a novel

perspective on AML diagnosis and treatment response (Table 2).
Use of exosomes in the treatment
of AML

Currently, patients with refractory/recurrent AML experience an

aggressive clinical course and have poor prognoses. Therefore,

complementary alternative therapies are urgently needed to improve

conventional treatments and increase survival rate (103). Blocking

exosome-induced production, secretion, and reprogramming has

emerged as a novel approach to treating AML and other types of

leukemia. This exosome-targeted therapy may be financially beneficial

for elderly patients with AML or patients with AMLwho cannot tolerate

strongly induced chemotherapy (101, 104). Therefore, exosome-based

immunotherapy has attracted considerable interest. In T-cell lymphoma

mice, it effectively eliminated minimal residual disease and prolonged

disease-free survival (100). TEX-carrying tumor-associated antigens are

potential cell-free tumor treatments for the specific eradication of

minimal residual leukemic cells (105). Huang et al. found that
TABLE 1 Currently AML biomarkers carried by exosomes.

Substance Expression Sample Reference

Micro-RNA miR-10b Upregulated Bone marrow (15)

miR-125b Upregulated Plasma (12)

miR-155 Upregulated Plasma (12)

miR-21 Upregulated Bone marrow (87)

miR-523 Upregulated Bone marrow (88)

miR-10a-5p Upregulated serum

miR-93-5p Upregulated serum

miR-129-5p Upregulated serum

miR-155-5p Upregulated serum

miR-181b-5p Upregulated serum

miR-320d Upregulated serum

Protein CD33 Upregulated Plasma (61)

CD117 Upregulated Plasma

CD34 Upregulated Plasma (47)

TGF-b1 Upregulated Plasma (4)

lncRNA LINC00265 Downregulated Plasma (59)

LINC00467 Downregulated Plasma

UCA1 Downregulated Plasma

SNHG1 Upregulated Plasma
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lentiviral shRNA– silenced TGF-b1 expression in parental cells of

mouse acute lymphoblastic leukemia cell lines and exosomes from

TGF-b1-silenced leukemia cells (LEXTGF-b1si) had a higher induction-

specific antitumor effect than unmodified leukemia cell–derived

exosomes. In mouse models, LEXTGF-b1si inhibited tumor growth and

prolonged survival as a prophylactic and therapeutic cancer drug (102).

This finding suggests that exosomal immune vaccines hold promise for

the treatment of leukemia through immunotherapy.
Frontiers in Immunology 08
As actionable drug-resistant mediators, exosomes may play a

key role in current and future AML treatment. Hekmatirad et al.

found that tumor cells can excrete drugs through exosomes and

result in resistance and that inhibiting exosome release with

GW4869 increases the sensitivity of U937 cells to PLD Therefore,

the use of exosome inhibitors is a potential strategy for increasing

the sensitivity of cancer cells to treatment. Inhibitors that

pharmacologically inhibit exosome release (such as neticonazole,

ketotifen, cannabidiol, and GW4869) are effective. Mortality and

morbidity in AML are associated with frequent cytopenia, and

exosomes may be involved in the suppression of normal

hematopoiesis in leukemia (82). Namburi et al. found that

exosomes isolated from the plasma of AML patients carry

abundant dipeptidyl peptidase 4 (DPP4) and inhibit the

differentiation of normal hematopoietic progenitor cells in vitro;

pharmacologically inhibiting DPP4 reverses exosome-mediated

colony formation; therefore, reversing the negative effects of

DPP4 exosomes, improving platelet and neutrophil counts, and

restoring BM function in patients are promising treatment

approaches for AML; however, many regulatory proteins in

exosomes contain DPP4 truncation sites and may have different

i nduc t i on , enhanc emen t , o r i nh i b i t i on e ff e c t s on

hematopoiesis (106).

The systematic design of drug delivery vehicles can address

many issues, such as low water solubility, poor biocompatibility,

rapid metabolism in vivo, easy accumulation in nonpathological

tissues, and poor ability to penetrate the membranes of some drugs

(107). Exosomes as drug delivery vehicles are mainly dependent on

their unique natural physicochemical properties, including

phospholipid membrane structure that protects them from

destruction by nucleases and proteases, high stability in blood,

and long blood half-life (108). Nanoscale and lipid bilayer

membranes prevents their removal by mononuclear phagocytes

and reduce immunogenicity (especially of autologous cell origin),

resulting in low cytotoxicity. The specific lipid and protein

composition makes them highly stable in body fluids and enables

them to readily fuse with target cells, rendering them chemotactic

for specific target cells. Exosomes possess distinctive membrane

structures that enables them to easily cross the biofilm barrier and

act as carriers through specific delivery modes and modifications

(109). These advantageous features of exosomes as drug carriers

render them highly attractive for precision medicine. Bellavia et al.

used HEK293T cells to express Lamp2b, an exosomal protein fused

to an IL-3 fragment, and showed that IL3-Lamp2b exosomes loaded

with imatinib targeted chronic myelogenous leukemic cells and

inhibited cancer cell growth in vitro and in vivo (110). Kim et al.

used exosomes to deliver paclitaxel or doxorubicin to mitigate

multidrug resistance in lung cancer (111).

However, exosomes as drug carriers for AML treatment are

currently underdeveloped.
Conclusion

During the progression of AML, exosomes secreted by AML

cells can promote the development of AML by affecting the
TABLE 2 Promising therapy directions of exosomes in AML.

Introduction Reference

Tumor
vaccines

TEX-
based

vaccines

Using exosomes from LEXTGF-b1si as a
prophylactic and therapeutic cancer
vaccine in a mouse model showed a
higher induction-specific antitumor
effect, exhibiting more pronounced
tumor Growth inhibition and
prolongation of survival.

(100)

T cells-
based

vaccines

In vitro analysis showed that tumor-
specific CD4+ and CD8+ IFN-g-
secreting cells could be efficiently
expanded from immunized mice,
suggesting that the T helper 1
response is involved in tumor
rejection and can kill tumor cells

(82)

DC-
based

vaccines

Exosomes are extracted from the
serum of AML patients to pulse DC,
so that DC recognizes and absorbs the
specific antigen contained in it, and
DC further activates tumor-specific
cytotoxic T cells to generate an
immune response and kill AML cells.

(64)

Therapeutic target

Reduce the level of exosome secretion
by interfering with the synthesis,
release and uptake of exosomes and
interfere with their signaling pathways
mediated in target cells

(101)

miR-34c-5p promotes AML cell
eradication by selectively targeting
RAB27B to inhibit exosome shedding
and induce cellular senescence.

(49)

Transfer of miR-222-3p into THP-1
cells promotes proliferation inhibition
and apoptosis of AML cells by
targeting the IRF2/INPP4B
signaling pathway.

(100)

miR-29 targets protein kinase b
(Akt2) and cyclin D2 proteins, as well
as the negative feedback loop of MYC
proto-oncogene (c-Myc) -Akt2 on
miR-29.

(87)miR-451 is involved in the late
maturation of erythroid cells, but the
introduction of miR-451 into AML
cell lines decreased the cell
proliferation rate and increased the
apoptotic activity.

Remission of
drug resistance

Exosomes can transfer drug resistance
between cells through contents, and
inhibiting the secretion of these
contents helps to alleviate
drug resistance

(102)
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proliferation and apoptosis of AML cells, regulating the BM

microenvironment, affecting angiogenesis, and inhibiting

hematopoiesis. Therefore, according to the characteristics of AML

cell-derived exosomes, exosomes can also be used as biomarkers of

AML prognosis, preparing vaccines and drug carriers.
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Cabo F, González M, et al. Unidirectional transfer of microRNA-loaded exosomes from
T cells to antigen-presenting cells. Nat Commun (2011) 2:282. doi: 10.1038/
ncomms1285

36. Sinha S, Hoshino D, Hong NH, Kirkbride KC, Grega-Larson NE, Seiki M, et al.
Cortactin promotes exosome secretion by controlling branched actin dynamics. J Cell
Biol (2016) 214(2):197–213. doi: 10.1083/jcb.201601025

37. Cabezas A, Bache KG, Brech A, Stenmark H. Alix regulates cortical actin and the
spatial distribution of endosomes. J Cell science (2005) 118(Pt 12):2625–35. doi:
10.1242/jcs.02382

38. Han J, Pluhackova K, Böckmann RA. The multifaceted role of SNARE proteins
in membrane fusion. Front Physiol (2017) 8:5. doi: 10.3389/fphys.2017.00005

39. Gross JC, Chaudhary V, Bartscherer K, Boutros M. Active Wnt proteins are
secreted on exosomes. Nat Cell Biol (2012) 14(10):1036–45. doi: 10.1038/ncb2574

40. Wei Y, Wang D, Jin F, Bian Z, Li L, Liang H, et al. Pyruvate kinase type M2
promotes tumour cell exosome release via phosphorylating synaptosome-associated
protein 23. Nat Commun (2017) 8:14041. doi: 10.1038/ncomms14041

41. Fitzner D, Schnaars M, van Rossum D, Krishnamoorthy G, Dibaj P, Bakhti M,
et al. Selective transfer of exosomes from oligodendrocytes to microglia by
macropinocytosis. J Cell Science (2011) 124(3):447–58. doi: 10.1242/jcs.074088

42. Feng D, Zhao W-L, Ye Y-Y, Bai X-C, Liu R-Q, Chang L-F, et al. Cellular
internalization of exosomes occurs through phagocytosis. Traffic (2010) 11(5):675–87.
doi: 10.1111/j.1600-0854.2010.01041.x

43. Morelli AE, Larregina AT, Shufesky WJ, Sullivan MLG, Stolz DB, Papworth GD,
et al. Endocytosis, intracellular sorting, and processing of exosomes by dendritic cells.
Blood (2004) 104(10):3257–66. doi: 10.1182/blood-2004-03-0824

44. Kourembanas S. Exosomes: vehicles of intercellular signaling, biomarkers, and
vectors of cell therapy. Annu Rev Physiol (2015) 77(1):13–27. doi: 10.1146/annurev-
physiol-021014-071641
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