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Unraveling the enigma of B cells
in diffuse large B-cell lymphoma:
unveiling cancer stem cell-like
B cell subpopulation at single-
cell resolution

Fengling Liu1†, Jie Zheng2†, Gaohui Yang1, Lin Pan1, Yanni Xie1,
Siyu Chen1, Jinwei Tuo1, Jinxia Su1, Xiuyi Ou1

and Rongrong Liu1*

1Department of Hematology, The first Affiliated Hospital of Guangxi Medical University,
Nanning, China, 2Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi
Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University,
Nanning, China
Background: Diffuse large B-cell lymphoma (DLBCL) represents the most

prevalent form of aggressive non-Hodgkin lymphoma. Despite receiving

standard treatment, a subset of patients undergoes refractory or recurrent

cases, wherein the involvement of cancer stem cells (CSCs) could be significant.

Methods:We comprehensively characterized B cell subpopulations using single-

cell RNA sequencing data from three DLBCL samples and one normal lymph

tissue. The CopyKat R package was employed to assess the malignancy of B cell

subpopulations based on chromosomal copy number variations. CIBERSORTx

software was utilized to estimate the proportions of B cell subpopulations in 230

DLBCL tissues. Furthermore, we employed the pySCENIC to identify key

transcription factors that regulate the functionality of B cell subpopulations. By

employing CellphoneDB, we elucidated the interplay among tumor

microenvironment components within the B cell subpopulations. Finally, we

validated our findings through immunofluorescence experiments.

Results: Our analysis revealed a specific cancer stem cell-like B cell

subpopulation exhibiting self-renewal and multilineage differentiation

capabilities based on the exploration of B cell subpopulations in DLBCL and

normal lymph tissues at the single-cell level. Notably, a high infiltration of cancer

stem cell-like B cells correlated with a poor prognosis, potentially due to immune

evasion mediated by low expression of major histocompatibility complex

molecules. Furthermore, we identified key transcription factor regulatory

networks regulated by HMGB3, SAP30, and E2F8, which likely played crucial

roles in the functional characterization of the cancer stem cell-like B cell

subpopulation. The existence of cancer stem cell-like B cells in DLBCL was

validated through immunofluorescent staining. Finally, cell communication

between B cells and tumor-infiltrating T cell subgroups provided further

insights into the functional characterization of the cancer stem cell-like B

cell subpopulation.
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Conclusions:Our research provides a systematic description of a specific cancer

stem cell-like B cell subpopulation associated with a poor prognosis in DLBCL.

This study enhances our understanding of CSCs and identifies potential

therapeutic targets for refractory or recurrent DLBCL patients.
KEYWORDS

diffuse large B cell lymphoma, cancer stem cell, single-cell RNA sequencing, bulk RNA
sequencing, transcription factor, immune escape
1 Introduction

Non-Hodgkin’s lymphoma ranks among the top ten most

common malignancies affecting both males and females, accounting

for 2.8% of all new tumor cases and 2.6% of all tumor deaths worldwide

in 2020 (1). The most prevalent subtype, diffuse large B-cell lymphoma

(DLBCL), makes up 40% of all non-Hodgkin’s lymphoma cases (2). R-

CHOP regimen, the standard chemoimmunotherapy treatment of

DLBCL, only can lead to a cure in around 50%-60% of patients, and

the rest of the refractory or relapse patients usually have poor outcomes

(3). Therefore, there is an urgent need to gain insight into the

underlying mechanisms of refractory or relapsed DLBCL to identify

promising therapeutic approaches.

Cancer stem cells (CSCs) are a distinct group of cells with self-

renewal and multidirectional differentiation capabilities, which are

closely associated with drug resistance, recurrence or refractoriness,

and poor prognosis in tumor patients (4, 5). The concept of CSCs was

first hypothesized in acute myeloid leukemia, and then validated in

many solid tumors, including liver cancer, breast cancer, kidney cancer,

bladder cancer, colorectal cancer, and so on (6). For instance, Pan et al.

(7) utilized high-resolution single-cell technology to deeply analyze the

heterogeneity of tumor cells in collecting duct renal cell carcinoma,

leading to the discovery of a subgroup of CSCs closely associated with

tumor bone metastasis, which provided a new perspective for targeted

therapies in this highly malignant tumor. In the context of DLBCL, the

previous report demonstrated that the knockdown of ZNF267 (a gene

positively correlated with CSCs) decreased the stemness characteristics

of DLBCL and impeded its proliferation and metastasis (5). Chen et al.

(8) established a direct link between the presence of CSCs and

resistance to R-CHOP by developing drug-resistant DLBCL cell lines.

Their findings also highlighted the potential of targeting core stemness-

associated transcription factors, such as SOX2, which could reduce the

survival of CSCs and potentially reverse drug resistance. However,

although recent research has preliminarily suggested the existence of

CSCs in DLBCL, there is currently a dearth of comprehensive research

on CSCs in DLBCL (9, 10), particularly in the realm of omics-based
CSC, cancer stem cell;

B-cell; GCB, germinal

P, uniform manifold

RAS, regulon activity

, regulatory specificity
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investigations.With the advancements in single-cell genomics, it is now

possible to dissect the heterogeneity of cells within tumors at high

resolution and uncover rare cellular subpopulations (11, 12). Gaining a

deeper understanding of the molecular characteristics of CSCs in

DLBCL will be instrumental in unraveling the underlying

mechanisms of refractory or relapsed DLBCL, thereby identifying

promising therapeutic approaches.

In this study, we aimed to integrate single-cell RNA sequencing

(scRNA-seq) data and bulk RNA-seq data to reveal the

transcriptome characterize and clinical value of cancer stem cell-

like B cells in DLBCL. In addition, we would focus on the key

transcription factor regulatory networks that regulated the

functional characterization of cancer stem cell-like B cell

subgroup. The study would improve our understanding of the

characterize of cancer stem cell-like B cells and provide new

therapeutic ideas for relapsed and refractory DLBCL patients.
2 Materials and methods

2.1 Data acquisition

In this study, we utilized scRNA-seq data from a study by Steen

et al. (13) for further analysis, which could be downloaded from the

Gene Express ion Omnibus da tabase (GEO, ht tps : / /

www.ncbi.nlm.nih.gov/geo/, GSE182436), including three cases of

DLBLC tumors (DLBCL002, DLBCL007, and DLBCL111) and a

patient with tonsilitis (represented the normal lymph tissue).

Among these cases, DLBCL002 and DLBCL111 samples were

obtained from patients diagnosed with activated B-cell (ABC)

molecular subtype of DLBCL, while DLBCL007 sample was

obtained from a patient diagnosed with germinal center B-cell

(GCB) molecular subtype. After filtering out samples with

missing or less than 1 month of follow-up information, we

obtained 230 DLBCL tumor samples from the Genomic Data

Commons Data Por t a l (GDC Data Por t a l , h t tps : / /

portal.gdc.cancer.gov/) for further bulk-RNA sequencing analysis.
2.2 scRNA-seq data processing

The Seurat R package (version 4.1.0) (14) was extensively

utilized for the scRNA-seq data processing, encompassing crucial
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tasks such as data normalization, dimensionality reduction,

clustering, and visualization. To ensure data quality, rigorous

quality control measures were implemented, including the

exclusion of cells with total gene expression below 200 or above

5000, as well as cells exhibiting mitochondrial RNA content

exceeding 10%. To address batch effects among the four samples,

the harmony R package (version 1.0) (15) was applied for data

integration. Differential gene expression analysis between

subpopulations was performed using the FindAllMarkers function

in Seurat, employing a significance threshold of P-adjust < 0.05. The

standardized markers were then used for the annotation of cell

types. In the reanalysis of B or T cell subpopulations, the same

approach as described above was followed, while excluding the need

for additional quality control steps.
2.3 Identification of tumor malignant cells
and single-cell copy number
variation analysis

The CopyKat R package (16) was used to analyze copy

number variations (CNV) in B cells obtained from three tumor

samples, using B cells from the normal lymph tissue as reference

cells. Moreover, this package was utilized to distinguish between

malignant and benign B cells within the tumor samples. The

benign cells are characterized by diploid copy number, while

malignant cells typically exhibit aneuploid copy number

variations. The basic parameters of CopyKat are set as follows:

ngene.chr = 5, win.size = 25, KS.cut = 0.15, distance

= “euclidean”.
2.4 Pseudotime trajectory analysis

The development trajectories of B and T cells were performed

by the Monocle 3 R package (version 0.2.3.0) (17). Moreover, the

analysis process was standardized and processed using the functions

provided by the Monocle 3 R package. To enhance our

understanding of the development trajectories between

subpopulations, we utilized the Seruat R package (version 4.1.0)

(14) to visualize the pseudo-temporal trajectory of uniform

manifold approximation and projection (UMAP) coordinates.
2.5 CIBERSORTx analysis

CIBERSORTx, known as “digital flow cytometry”, is a powerful

tool developed for quantifying the abundance of cell types in bulk

RNA-seq data (18). In our study, we utilized this tool to assess the

infiltration levels of various B cell subpopolations in a cohort of 230

DLBCL patients. To achieve this, we deconvolved the bulk RNA-seq

data using the CIBERSORTx Docker image and chosen the

CIBERSORTx Fractions module. The input data were derived

from the expression matrices of scRNA and bulk-RNA.
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2.6 Survival analysis and Cox analysis

The comprehensive analysis was conducted for incorporating

Kaplan-Meier (KM) survival analysis, as well as univariate and

multivariate Cox regression analysis, utilizing the survminer and

survival R packages. The single-sample Gene Set Enrichment

Analysis (ssGSEA) algorithm from the GSVA R packages (version

1.42.0) (19) was used to score characteristic genes of cluster 4 in

bulk-RNA data. Because of the sparsity of the single-cell matrix, we

considered both the multiple of average expression difference and

the proportion of gene expression in the subset as constraints for

the selection of cluster 4 characteristic genes (p<0.05, the

proportion of gene expression in the cluster 4 > 0.8, the

proportion of gene expression in the other cluster<0.5).
2.7 SCENIC analysis

To investigate the key transcription factor regulatory networks

that regulate the function of different B cell subpopulations, we

utilized the Single-Cell reEgulatory Network Inference and

Clustering in Python (pySCENIC) for analysis. We computed

regulon activity scores (RAS) to determine the activity levels of

transcription factors. Then we converted the RAS values into a

binary format, generating binarized regulon activity scores

(binRAS). The AUCell_exploreThresholds function from the

AUCell R package was employed to transform the regulonAUC

matrix into a binary matrix. To define active regulatory elements

specific to each subpopulation, we set the “smallestPopPercent”

parameter to 0.25. This transformation facilitated easier

interpretation and analysis of the activity states of transcription

factors in different B cell subpopulations. The conversion involved

Z score normalization across all cells based on the RAS values and

setting a threshold as a cutoff. A value of 1 denoted an active state,

while a value of 0 indicated an inactive state. Moreover, we

calculated the regulatory specificity score (RSS) for each B cell

subpopulation using the calcRSS function from the SCENIC R

package (version 1.3.1) (20). The RSS provided a quantitative

measure of the regulatory activity specific to each subpopulation.
2.8 Cell-cell communication analysis

We performed additional analysis to estimate cell-cell

interaction levels between different subpopulations using the

Python-based CellPhoneDB (21). The corresponding standardized

data matrix was incorporated into the analysis. Ligand-receptor

pairs with p>0.05 calculated by CellPhoneDB were filtered.
2.9 Functional enrichment analysis

We conducted functional enrichment analysis on differentially

expressed genes obtained from different subpopulations using the
frontiersin.or
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enricher function from the clusterProfiler R package (version 4.2.2)

(22). For the functional enrichment analysis, we downloaded 50

hallmark reference gene sets from the Molecular Signatures

Database (MSigDB, https://www.gsea-msigdb.org/gsea/msigdb).

The enrichKEGG and enrichGO functions were used to perform

KEGG and GO feature enrichment analysis, respectively.
2.10 Immunofluorescent staining

Paraffin-embedded DLBCL sections confirmed by pathologists

were collected. Paraffin-embedded DLBCL sections were

deparaffinized with the dewaxing agent and absolute ethanol.

After that, citric acid solution (Servicebio, G1202) was used for

antigen retrieval and 3% H2O2 was used to inactivate endogenous

peroxidase. Then 3% bovine serum albumin (Servicebio,

GC305010) was added to block sections for 30 minutes. Add the

primary antibody, anti-CD79A (ZEN BIO, R23860), and incubate

overnight at 4 °C. After washing sections three times using PBS, add

goat anti-rabbit IgG H&L (HRP) (Servicebio, GB21303) and

incubate for 50 minutes. After washing three times using PBS,

add CY3-tyramide (Servicebio, G1223) for 10 minutes. Wash with a

citric acid solution to remove the first type of primary antibody.

Then add the second primary antibody, anti-HMGB3 (Affinity

Biosciences, AB_2841269), and incubate overnight at 4 °C. After

washing sections three times using PBS, add anti-rabbit IgG (Alexa

Fluor 488 conjugate) (Servicebio, GB25303) and incubate for 50

minutes. Finally, sections were stained with DAPI (Servicebio,
Frontiers in Immunology 04
G1012) and sealed with an anti-fluorescent quenching agent

(Servicebio, G1401). Finally, fluorescence image capture was

performed using laser scanning confocal microscopy and

processed using ImageJ software.
2.11 Statistical analysis

All correlation was assessed using the Spearman Rank Correlation

test. The comparison of exhaustion scores among T cell subsets was

evaluated by the Kruskal-Wallis test. A value of p < 0.05 was

considered statistically significant in all statistical analysis.
3 Results

3.1 Single-cell transcriptomic atlas of
DLBCL and normal lymph tissues

In this study, we investigated scRNA data from four tissue

samples, including three samples from patients with DLBCL (two of

the ABC subtype and one of the GCB subtype) and one sample from

normal lymph tissue (Figures 1A, S1A). In order to ensure data

quality, rigorous quality control measures were applied, resulting in

a total of 14,569 cells deemed suitable for further analysis (Figures

S1B-S1C). To address potential batch effects between the different

samples, the scRNA data from the four different samples were

integrated using the Harmony R package (15), which aided in
A

B C

FIGURE 1

The single-cell transcriptomic atlas of one normal lymph tissue and three DLBCL samples. (A) The left panel shows a UMAP visualization of six major
cell clusters in the scRNA-seq data from four samples. The middle and right panels provide an overview of these six major cell clusters, categorized
by sample cases and DLBCL molecular subtypes. Specifically, DLBCL002 and DLBCL111 belong to the ABC subtype, DLBCL007 belongs to the GCB
subtype, and T2 represents normal lymph tissue. (B) The dot plot depicts the expression patterns of marker genes for each cell type in the scRNA-
seq data. The size of the dots represents the percentage of gene expression within the cell subgroups, while the color indicates the intensity of
expression. (C) The average number (left panel) and cell proportion (right panel) of six major cell clusters in four samples.
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minimizing any unwanted variations introduced by technical

differences (Figures 1A, S1A).

By leveraging classic marker genes (23), we successfully

identified distinct cell types within the integrated scRNA data.

This strategy facilitated the classification of cells into six main

subpopulations, each exhibiting their own set of characteristic

marker genes (Figures 1A, B). These subpopulations included a B

cell cluster (marked by CD19, MAS4A1, CD79A, and CD79B), a

plasma cell cluster (marked by MZB1 and IGHG1), a T cell cluster

(marked by CD3D, CD3E), an NK cell cluster (marked by GNLY,

KLRC1, and KLRF1), and a myeloid cell cluster (marked by CD68,

CD14, CD163, and LYZ). However, there exists a population of cells

that exhibit concurrent expression of markers associated with both

immune cells and endothelial cells, yet there is presently no

definitive description or nomenclature for this cell subset. These

cells were grouped together in the “others cluster” (Figure 1B).

Among the identified cell subpopulations, T cells were found to be

the main cluster across all samples, followed by the B cell cluster

(Figure 1C). It is worth noting that the proportion of B cells within

tumor samples varied, indicating the presence of heterogeneity

within the tumor samples (Figure 1C).
3.2 Refined analysis of B cell subgroups
revealed tumor cell heterogeneity and
identified a cancer stem cells like B
cell subgroup

To gain a deeper understanding of the tumor heterogeneity in

DLBCL, we conducted a comprehensive analysis of the B-cell subsets.

Our analysis identified a total of 4,032 B cells across the four samples.

Despite using the harmony R package (15) to eliminate batch effects,

the sample distribution of cell subsets still exhibited marked

heterogeneity (Figures 2A, B). For better comprehension, we

defined the seven clusters obtained after refined analysis of B cell

subgroups as clusters 0-6 (Figure 2A). Among them, clusters 0 and 5

were derived entirely from the normal tissue sample, T2B, while

clusters 1, 3, and 6 primarily originated from distinct tumor tissue

samples, namely DLBCL002B, DLBCL111, and DLBCL007,

respectively (Figure 2B). The results demonstrated the significant

tumor tissue heterogeneity. It was worth noting that, despite the

significant heterogeneity presented, cluster 2 and cluster 4 still

contained four samples of B cells (Figures 2A, B).

CopyKAT is a method used to distinguish between benign and

malignant cells based on their CNV (16). Benign cells are

characterized by diploid copy number, while malignant cells

typically exhibit aneuploid copy number variations. Here, we

utilized this method to discriminate between benign and

malignant B cells in the four samples. The results indicated that

all B cells from the normal tissue sample (primarily clusters 0 and

5), as well as a small fraction of B cells from three tumor tissue

samples (cluster 2), were categorized as benign cells (Figure 2C). In

contrast, the majority of B cells originating from tumor samples

were classified as malignant cells, specifically clusters 1, 3, and 6

(Figure 2C). These cells exhibited clear chromatin deletion and

amplification, indicating significant genomic alterations associated
Frontiers in Immunology 05
with malignancy (Figures 2D, S2A). It is worth noting that cluster 4

encompassed both benign and malignant cell types, warranting

further investigation to understand its characteristics and

behavior (Figure 2C).

To gain a deeper understanding of the functionality and

biological characteristics of different B cell subgroups, we compared

the transcriptomic features among these subgroups (Figure 2E)

(Table S1). Among them, cluster 0 and cluster 2, defined as benign

B cells, expressed high levels of MHC molecules gene expression

(such asHLA-B,HLA-DPA1,HLA-DPB1,HLA-E,HLA-A, andHLA-

DRA) and enrichment in pathways related to antigen presentation

and interferon (Figures 2E, G, S2B). In addition, based on correlation

analysis, we observed that the transcriptional profiles of cluster 0 and

cluster 5 derived from normal tissues exhibited a higher degree of

similarity with the transcriptional profile of cluster 2, which contains

cells from tumor samples, compared to other cell subsets primarily

derived from tumor samples (Figure 2F). Furthermore, clusters 3

displayed higher levels of IgG molecule expression, which may

indicate a more mature state (Figure 2E). However, the most

surprising finding was the discovery of cluster 4, which exhibited

specific expression of numerous genes related to cell proliferation,

cycle, and stemness, such as MKI67, TOP2A, TUBA1B, TUBB,

UBE2C, HMGB1, CENPF, and CDK1 (Figures 2E, H). This

expression pattern closely resembled the characteristic gene

expression of CSCs subset identified in collecting duct renal cell

carcinoma by Pan et al. (7).

Furthermore, the results of functional enrichment analysis also

revealed that cluster 4 exhibited significant enrichment in cell cycle

and stem cell-related pathways, including G2M checkpoint, E2F

targets, MYC targets V1, MYC targets V2, mTORC1 signature, and

mitotic spindle-related pathways (Figures 2G, S2B). Notably,

pseudotime analysis indicated that cluster 4 had a lower

pseudotime value (Figure 2I), demonstrating its multilineage

differentiation capabilities. Additionally, cell cycle analysis further

demonstrated that most cells in cluster 4 were arrested at the G2M

phase (Figure 2J), implying active cell proliferation within this

cluster. Combining the above results, we considered that the

cluster 4 subpopulation may be closely related to stemness

differentiation. It was worth noting that cluster 4 also contained B

cells from the normal sample, which to some extent reflects that

there were a small number of cells with possible malignant

transformation in the normal sample (Figure 2B). This further

highlighted the significance of this specific subpopulation of cells

in DLBCL.
3.3 Low MHC molecule expression in
cancer stem cell-like B cell subgroup
correlated with a poor prognosis in DLBCL

In this study, we assessed the abundance of different B cell

subgroups in 230 DLBCL samples from the GDC database using

CIBERSORTx (18). Cluster 0 and cluster 5 were excluded from

further analysis as they predominantly originated from the normal

sample (Figure 2B). KM survival analysis revealed that the abundance

of cluster 1 and cluster 4 was associated with a poor prognosis,
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FIGURE 2

Re-clustering of B cells in one normal lymph tissue and three DLBCL samples. (A) UMAP visualization of seven B cell subsets in four samples after
re-clustering B cells. Renaming cell subpopulations to cluster0, cluster1, cluster2, cluster3, cluster4, cluster5, and cluster6. Different cell populations
are marked with different colors, with one dot representing one cell. (B) The left panel displays the overview of six major cell clusters categorized by
sample cases. The right panel presents a stacked histogram illustrating the cell proportion of sample types in seven B cell subsets. (C) The UMAP
visualization depicts the distinction between malignant and benign types within the seven B cell subsets, achieved through the utilization of
copyKAT. In this context, the term “aneuploid” represents malignant cells, “diploid” represents benign cells, and “NA” indicates undefined cases.
(D) The chromatin deletion and amplification in benign (green) and malignant (orange) B cell subsets in the DLBCL002 sample. In the figure, the
rows represent cells, and the columns represent the positions of chromosomes. The presence of chromosomal deletions and amplifications in the
cells is depicted using a gradient of blue and red colors. The more inclined towards blue, the greater the extent of chromosomal deletions, while the
more inclined towards red, the greater the extent of chromosomal amplifications. (E) Heatmap of specific differential expression genes in seven B
cell subsets. (F) The correlation analysis of different B cell subtypes is presented. The color represents the strength of the correlation. (G) Gene
enrichment analysis was performed on the differentially expressed genes of the seven B cell subsets using the Hallmark gene sets. (H) UMAP
showing the expression of MKi67 and TOP2A in seven B cell subsets. (I) The trajectory analysis of the seven B cell subsets was conducted using
Monocle3. A lower value of pseudotime indicates a higher proliferative and differentiation potential. (J) Cell cycle analysis was performed on the
seven B cell subsets. In this analysis, the G1 phase is represented by red, the G2/M phase by green, and the S phase by blue.
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whereas cluster 3 and cluster 6 were indicative of a good prognosis

(Figure 3A, p < 0.05). Univariate Cox analysis further validated the

results of KM survival analysis (Figure 3B). However, after

eliminating interference factors such as gender, age, and staging,

multivariate Cox analysis suggested that only the infiltration

abundance of cluster 3 and cluster 4 had an impact on patients’

survival (Figure 3B, p < 0.05). Moreover, it is noteworthy that we
Frontiers in Immunology 07
performed ssGSEA scoring on the characteristic gene sets of clusters 4

in DLBCL patients (Table S4), and both univariate and multivariate

Cox analysis suggested its correlation with a poor prognosis in

patients (Figure 3B, p < 0.05). This further suggested that cluster 4

subgroup was associated with a poor prognosis in DLBCL patients.

We further analyzed MHC molecule expression levels in

different cell subsets to explore differences in antigen presentation
A

B

C

FIGURE 3

The prognostic effect and expression characteristics of MHC molecules in the seven B cell subsets. (A) Survival analysis for DLBCL derived B cell
subset infiltration levels in 230 tumor samples from the Genomic Data Commons Data Portal. The infiltration levels of the B cell subsets in the 230
samples were categorized into high infiltration group (represented by red color) and low infiltration group (represented by blue color). (B) Univariate
and multivariate Cox analysis for DLBCL derived B cell subset infiltration levels. Among them, cluster1, cluster2, cluster3, cluster4, and cluster6
represent the infiltration levels of B cell subsets in 230 samples. These levels were obtained through deconvolution using the CIBERSORTx algorithm
based on single-cell data. On the other hand, cluster4_gene represents the scores calculated using the ssGSEA algorithm for specific genes
associated with the cluster4 subset across the 230 samples. (C) Average expression of major histocompatibility complex (MHC) molecules in seven B
cell subsets. The color indicates the intensity of the expression.
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and immune activity. According to our results, cluster 4 and cluster

1, which were linked to a poor prognosis, exhibited lower

expression of MHC molecules, potentially contributing to

immune evasion (Figure 3C). Interestingly, in addition to the

analysis results showing high expression of MHC molecules in

benign cell clusters 0 and 2, we also observed high levels of MHC

expression in the malignant cell cluster, cluster 3 (Figure 3C). This

indicates that these malignant cells have an advantage in preserving

effective antigen presentation function, which may be an important

favorable factor for prognosis.
3.4 Identifying key transcription factor
regulatory networks of cancer stem cell-
like B cell subgroup

Transcription factors control gene expression by binding to

specific DNA sequences, either promoting or inhibiting the

transcription of target genes, thereby determining the functions

and characteristics of cells. Through the utilization of the

pySCENIC analysis (24), we obtained the particular transcription

factor regulatory networks operating within distinct cell subgroups.

In cluster 4, we found that the transcription factor regulatory

networks controlled by transcription factors SAP30, HGMB3, and

E2F8 exhibit higher levels of regulon activity scores (RAS)

(Figure 4A) (Table S2). Furthermore, through the calculation of

the regulatory specificity score (RSS), it has been determined that

these three transcription factors have the strongest degree of

regulatory specificity within cluster 4 (Figure 4B) (Table S3). This

observation underscores their pivotal role in governing cellular

functions and characteristics within cluster 4. Additionally, the

results revealed a strong positive correlation between the

expression levels of SAP30, HGMB3, and E2F8, and the

infiltration abundance and characteristic gene set scores of cluster

4 (Figures S3A-3C). However, these correlations showed a negative

or non-existent relationship with other subpopulations (Figures

S3A-3C). The results suggested that the transcription factors SAP30,

HGMB3, and E2F8 could potentially serve as dependable indicators

of the infiltration abundance and transcriptional characteristics of

cluster 4 to a certain extent. We conducted further exploration of

the expression patterns and activity of these three transcription

factors across different cell subpopulations and observed specific

expression of HMGB3 in cluster4 (Figures 4C, S3D-E).

Consequently, we selected HMGB3 as the specific marker for

identifying the cancer stem like-B cell subpopulation and

validated it by immunofluorescence staining (Figure 4D).

In our previous discussion, we identified similarities in terms of

transcriptional and function enrichment features between cluster 0

and cluster 2 (Figures 2F, G, S2B). Furthermore, we observed that

these two benign cell subpopulations also exhibited comparable

activities in their transcription factor regulatory networks

(Figure 4A). We speculate that cluster 2, as a benign B cell subset

containing cells from tumor samples, may possess unique

mechanisms to prevent malignant transformation and malignant

prol i ferat ion even under the influence of the tumor

microenvironment. Remarkably, our analysis revealed an
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intriguing finding regarding the transcription factor regulatory

network mediated by KLF2, which may exhibit a specific role in

governing the functional characteristics of cluster 2. We observed

the highest RAS of KLF2 in cluster 2, followed by the benign

subgroup, cluster 0 (Figure S3F). In contrast, cluster 4 and cluster 6,

which represent malignant cell subgroups, showed the lowest RAS

levels of KLF2 (Figure S3F). The downregulation of KLF2 in these

malignant cell subgroups may contribute to their increased

proliferative capacity. Previous studies have reported that KLF2

downregulation is a prerequisite for mature B cell activation and

proliferation (25). Together, these findings further supported the

notion that KLF2 expression may be a critical factor influencing the

maintenance of the benign characteristics of cluster 2 and the high

proliferative activity of cluster 4.
3.5 Crosstalk between B cell and tumor-
infiltrating T cells in DLBCL

The absence of MHC molecule expression in cluster 4 indicated

that they may evade T cells killing through immune escape. This may

be further demonstrated through an analysis of the cellular

communication between B cell and tumor-infiltrating T cell

subgroups. In this study, T cells constituted the major cell type in

each sample, with the highest proportion of cells. We employed

unsupervised clustering to re-aggregate T cells, resulting in ten T cell

subgroups (Figure 5A). Compared to B cells, different subgroups of T

cells displayed lower heterogeneity across tumor samples (Figures 5B,

C).Within CD8+ T cell subgroups, we further classified cells into four

cytotoxic CD8+ T cell subgroups (CCL4, CST7, PRF1, GZMA,

GZMB, IFNG, CCL3) and one naive T cell subgroup (CCR7, SELL,

TCF7, LEF1) (Figure 5D). Among these subgroups, CD8cyto-1 and

CD8cyto-4 cell subgroups showed higher exhaustion signs than

CD8cyto-2 and CD8cyto-3, indicating more severe exhaustion

states (Figure 5E). Additionally, we divided CD4+ T cells into CD4

+ naive T cells (CCR7, SELL, TCF7, LEF1) and CD4+ Treg cells

(IL2A, FOXP3) (Figure 5D). We performed pseudotime analysis

separately for CD4+ and CD8+ T cells, revealing that both cell

types originated from naive cells and underwent differentiation into

other cell subgroups (Figures 5F, G).

Through comprehensive analysis of cell communication between

B cells and tumor-infiltrating T cells, we have identified a significant

number of receptor-ligand pairs that were specific to subpopulations

(Figures 6A, B). Notably, we observed a high abundance of TNF/

TNFR ligand-receptor pairs between B cells and tumor-infiltrating T

cell subgroups (Figures 6A, B). When analyzing B cell subgroups as

ligands, we found specific expression of TNF and TNFSF13 ligands in

cluster 1, resulting in extensive cell interactions with T cell subgroups

(Figure 6A). Conversely, in the analysis of B cell subgroups as

receptors, we observed the specific expression of the TNFRSF14

receptor in the benign cluster 2, while the TNFRSF10D receptor

exhibited characteristic expression in the malignant cluster 6,

engaging in cell interactions with T cell subgroups (Figure 6B).

These results reveal that the TNF/TNFR member family may exert

specific effects on the formation of the tumor immune

microenvironment in DLBCL through distinct ligand-receptor
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combinations, thereby impacting tumor development and the

prognosis of DLBCL patients. On the other hand, our analysis

revealed the presence of HLA-E/KLRK1 and HLA-C/FAM3C

ligand-receptor pairs in cluster 2 and cluster 3, while cluster 1 and

cluster 4 exhibited no presence (Figure 6A), which closely correlated

with the loss of MHCmolecules in cluster 1 and cluster 4 (Figure 3C).
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4 Discussion

CSCs have been implicated in tumor aggressiveness and drug

resistance in various cancers, including DLBCL (5, 6, 8). In this

study, we revealed specific cancer stem cell-like B cell subgroup

exhibiting self-renewal, multilineage differentiation, and high
A B

D

C

FIGURE 4

Transcription factor regulatory networks in seven B cell subsets. (A) Top 50 transcription factor regulatory networks in seven B cell subsets. Color
indicates the value of RAS (regulon activity scores). (B) RSS (regulon specificity score) of transcription factor regulatory networks in seven B cell
subsets and the top 5 transcription factors were marked in the graph. A higher RSS value indicates greater specificity of the transcription factor
within that particular subset. (C) Expression and RAS of HMGB3 in seven B cell subsets. Here, RAS represents Regulon Activity Scores, calculated by
pySCENIC. On the other hand, binRAS stands for Binarized Regulon Activity Scores, where Z-score normalization is performed over all cells based
on RAS, and a threshold is set as a cutoff to convert the scores to 0 and 1. The threshold is calculated using the AUCell_exploreThresholds function
in the SCENIC R package. In comparison to RAS, binRAS allows for the differences in the activity of transcription factors between different cells to be
more pronounced. In addition, geneExpr refers to the transcriptional expression of genes. (D) Immunofluorescence staining of the characteristic
transcription factor, HMGB3 (green), and the marker gene, CD79A (red).
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proliferation capabilities in DLBCL by integrating scRNA-seq and

bulk RNA-seq analysis. Meanwhile, we found that the high-level

infiltration of cancer stem cell-like B cells was associated with a poor

prognosis, potentially due to immune evasion caused by low

expression of MHC molecules. Additionally, we identified the key

transcription factor regulatory networks regulated by HMGB3,

SAP30, and E2F8 that may play important roles in the functional

characterization of the cancer stem cell-like B cell subgroup.

Through cellular communication analysis, we uncovered the

interactions between malignant B cells and tumor-infiltrating T

cells. The study would provide an in-depth understanding of CSCs

and identify promising therapeutic targets for refractory or

recurrent DLBLC patients.
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DLBCL is a disease characterized by significant heterogeneity,

with B cells exhibiting diverse features and variations. Through in-

depth research and analysis on B cell subpopulations in DLBCL and

normal lymph tissues at the single-cell level, our study revealed a

specific cancer stem cell-like B cell subpopulation exhibiting self-

renewal and multilineage differentiation capabilities, referred to as

cluster 4. It displaying remarkable stem cell-like properties and

unique gene expression patterns, which is similarly to the CSCs

subpopulation in collecting duct renal cell carcinoma described by

Pan et al. (7). Cluster 4 mainly showed enrichment in cell

proliferation-related signaling pathways, including the E2F

targets, MYC targets v1 and v2, and G2M checkpoint. Notably,

these pathways were also significantly upregulated in groups with a
A B

D

E F G

C

FIGURE 5

Re-clustering of T cells in one normal lymph tissue and three DLBCL samples. (A) UMAP visualization of ten T cell subsets in four samples after
re-clustering T cells. Different cell populations are marked with different colors, with one dot representing one cell. (B) The panel displays the
overview of ten major cell clusters categorized by sample cases. (C) The average number (left panel) and cell proportion (right panel) of ten major
cell clusters in four samples. (D) The dot plot depicts the expression patterns of marker genes for each T cell type in the scRNA-seq data. The size of
the dots represents the percentage of gene expression within the cell subgroups, while the color indicates the intensity of expression. (E) The
comparison of exhaustion signature in four cytotoxic CD8+ T cell subsets. (F) The trajectory analysis for CD8+ T cell subsets based on Monocle3.
(G) The trajectory analysis for CD4+ T cell subsets based on Monocle3. A lower value of pseudotime indicates a higher proliferative and
differentiation potential.
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high stemness-related prognostic index for head and neck

squamous cell carcinomas (26). Among them, the MYC targets v1

pathway was also significantly upregulated in another malignant

cell subpopulation, cluster 1, which was associated with poor

prognosis along with cluster 4. MYC is one of the most common

proto-oncogenes with a wide range of roles in regulating cancer

cellular function, including proliferation, differentiation,

metabolism, apoptosis, autophagy, aggressiveness, angiogenesis,

and immune escape (27). More than half of tumors developed

dysfunction of MYC family gene/protein expression (28). As for

DLBCL, the prevalence of MYC gene amplification was almost

10.41% (27), and numerous studies showed that MYC

translocations or MYC protein overexpression was a strongly

adverse prognostic factor (29–31). Our study further emphasizes

the significant impact of the MYC pathway in DLBCL. Additionally,

our results demonstrated that the benign cell subgroups, cluster0
Frontiers in Immunology 11
and cluster2, were significantly enriched in antigen presentation

and interferon-related pathways, including interferon alpha and

gamma response. The cluster3 subgroup, associated with a better

prognosis, also exhibited significant enrichment in the interferon

alpha response pathway. Furthermore, in a study of B-cell acute

lymphoblastic leukemia (B-ALL) primarily driven by B-cell

malignant transformation, Kumar et al. (32) also reported a

deficiency in the secretion of type I interferon by B cells, leading

to immune suppression and promoting leukemia development in

MYC-driven B-ALL mice. Integrating previous reports with our

findings suggests that the interferon-related pathway may also play

a role in the immune homeostasis in DLBCL, providing new

insights for future treatments.

In addition to similar functional enrichment pathways and their

impact on poor prognosis, we also observed low expression of MHC

molecular in both cluster 1 and cluster 4. The results of our study
A

B

FIGURE 6

Cell crosstalk between T and B cell subsets. Bubble plot showing the significant ligand-receptor pairs between T and B cell subsets. (A) B cell subsets act
as ligands, while T cell subsets act as receptors. (B) T cell subsets act as ligands, while B cell subsets act as receptors. The color of the circles in the
legend represents the average expression intensity of the ligand-receptor pairs, while the size of the circles represents the magnitude of the p-values.
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infer the view that the poor prognosis may be associated with

immune escape. MHC molecules play a central role in the adaptive

immune system by presenting foreign peptides for recognition by T

cells (33). Low expression levels of MHC-II have also been proven

to be associate with poor prognosis through the same mechanism in

medullary thyroid cancer and serve as a prognostic biomarker for

tumor aggressiveness (34). There is a growing body of evidence

suggesting that many cancers can evade immune surveillance by

suppressing the expression of MHC-I complex on the cell surface,

including osteosarcoma (35), breast cancer (36), pancreatic cancer

(37), colorectal cancer (38), endometrial cancer (39), papillary

thyroid cancer (40), and lung cancer (41). Fangazio M et al. (42)

pointed out that 50% of DLBCL cases exploit immune evasion by

degrading MHC-I, thus avoiding the presentation of new tumor

antigens to the immune system. Patel N et al. (43) also showed

intravascular large B-cell lymphomas achieve immune escape

through the downregulation of MHC molecules. Further

exploration of the mechanisms leading to the downregulation of

MHC molecules may provide insights into ways to reverse this

situation and enhance the efficacy of immunotherapy approaches.

Transcription factors play a crucial regulatory role in gene

expression by recognizing specific DNA sequences and

controlling transcription initiation. Transcription factors and

mutations in their binding sites are the major factors contributing

to human disease (44). In our study, we identified highly specific

and active transcription factor regulatory networks in cancer stem

cell-like B cells subset that were predominantly regulated by the

three highly expressed transcription factors: SAP30, HGMB3, and

E2F8. Our results revealed that these transcription factors could

potentially serve as dependable indicators of the infiltration

abundance and transcriptional characteristics of cluster 4 to a

certain extent. Among them, HMGB3, a member of the high

mobility group protein family, has been shown to promote the

proliferation and invasion of CSCs in laryngeal squamous cell

carcinoma by recruiting E2F1 (45). HMGB3 has also been

identified as a specific regulator of the CSC cluster in collecting

duct renal cell carcinoma (7). Additionally, elevated levels of

HMGB3 have been linked to the activation of the Wnt/b-Catenin
pathway, promoting tumor progression (46, 47). SAP30 is an

integral component of the histone deacetylation complex, and its

high expression was associated with a poor prognosis in

hepatocellular carcinoma patients (48, 49). Hu et al. (50)

demonstrated that SAP30 can interact with UHRF1 to promote

the activation of the MYC signaling pathway and abnormal self-

renewal of leukemia-initiating cells, resulting in the occurrence and

development of acute myeloid leukemia and poor prognosis. The

E2F family affects cell cycle progression, apoptosis, differentiation,

and DNA damage repair (51–53). High expression of E2F8 was

related to tumor proliferation and a poor prognosis in a variety of

tumors (54–56). Remarkably, our analysis also revealed an

intriguing finding regarding the transcription factor regulatory

network mediated by KLF2, which may be a critical factor

influencing the maintenance of the benign characteristics of

cluster 2 and the high proliferative activity of cluster 4. KLF2, a

member of the KLF family of transcription factors, plays a crucial

role in regulating cellular growth and differentiation. The
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downregulation of KLF2 expression is closely associated with the

heightened proliferation and invasive capabilities observed in

various types of cancer (57). Our findings underscore the

importance of transcription factors as key regulators in cancer

stem cell-like B cell subpopulation, which may provide new

targets for the treatment of DLBCL.

Through the analysis of cell communication, we described the

interactions between different B cells and tumor-infiltrating T cells,

highlighting the potential role of receptor-ligand pairs formed by

members of the TNF/TNFR family. The TNF/TNFR superfamily

members, known for their crucial role in immune system function,

have been extensively studied in the context of autoimmune diseases,

inflammatory diseases, and tumors (58). The combinations of

receptor-ligand pairs among different TNF/TNFR family members

may have diverse effects on the tumor microenvironment, and these

interactions may play a critical role in mediating immune evasion,

immune activation, and immune surveillance. In our analysis, we

discovered the specific expression of TNF and TNFSF13 ligands in

the malignant cluster 1, leading to cellular interactions with T cell

subgroups. TNFSF13 was initially reported to be upregulated in

cancer cells, including hematologic and solid malignancies (59).

Aberrant expression of TNFSF13 may contribute to tumor

development through mechanisms such as promoting cell

proliferation, inhibiting apoptosis, and influencing signaling

pathways in tumor cells (60). The poor prognosis of malignant

cluster 1 may be associated with its immune escape mediated by

the aforementioned receptor-ligand interactions with T cell

subgroups. On the other hand, we found the specific expression of

the TNFRSF14 receptor in the benign cluster 2, interacting

specifically with T cell subgroups. Previous studies have shown that

TNFRSF14 plays a crucial role in the normal functions of humoral

and cellular immunity by interacting with ligands such as APRIL and

BAFF, thereby promoting the proliferation and activation of T and B

cells (61). Cluster 2, as a benign cell subgroup derived from both

tumor and normal tissues, may maintain immune homeostasis and

immune surveillance, and prevent malignant transformation by

interacting with T cells through the corresponding receptor-ligand

pairs. Although substantial evidence is still needed to validate our

speculation, these findings reveal the critical role of receptor-ligand

pairs formed by members of the TNF/TNFR family in DLBCL.

Furthermore, our previous discussion emphasized the association

between reduced MHC molecule expression and poor prognosis in

patients. Our cell communication study further supports this

observat ion by revea l ing insufficient MHC-mediated

communication in the highly malignant clusters 1 and 4.

Furthermore, our previous discussions highlighted the association

between decreased expression of MHC molecules and unfavorable

patient outcomes. This observation is further supported by our

cellular communication studies, which revealed insufficient MHC-

mediated communication within the highly malignant cluster 1 and

cluster 4.

In our study, we performed comprehensive researches on

understanding of the molecular characteristics of CSCs in

DLBCL, which may provide a considerable reference for the new

therapeutic targets for relapsed and refractory DLBCL. However,

our article still had certain limitations, and more research was
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acquired for further confirmation. Firstly, the sample size used for

scRNA analysis should be expanded to enhance the persuasiveness

of our conclusions. Meantime, refractory or relapsed DLBCL

samples should be included for further analysis. Secondly, as a

cancer of B cell origin, analysis of the corresponding BCR library

will allow us to determine clonal relationships between different

cancerous B cells at different stages of differentiation. Lastly, further

validation of our conclusions at animal and cellular levels will make

our conclusions more reliable. These limitations emphasize the

need for future research to address these issues, such as performing

BCR repertoire analysis, and validating the molecular

characteristics and function of cancer stem cell-like B cells by in

vivo and in vitro experiments, to enhance the robustness and

generalizability of our findings.
5 Conclusion

In conclusion, cancer stem cell-like B cell subgroup in DLBCL is

associated with poor prognosis, potentially due to immune escape,

and specific transcription factors in CSCs may become new

therapeutic targets for DLBCL patents.
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