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Optimal combination of MYCN
differential gene and cellular
senescence gene predicts
adverse outcomes in patients
with neuroblastoma
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Baocheng Gong1,2,3* and Qiang Zhao1,2,3,4*
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Cancer, Tianjin, China, 2Tianjin’s Clinical Research Center for Cancer, Tianjin, China, 3Key Laboratory
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Introduction: Neuroblastoma (NB) is a common extracranial tumor in children

and is highly heterogeneous. The factors influencing the prognosis of NB are not

simple.

Methods: To investigate the effect of cell senescence on the prognosis of NB and

tumor immune microenvironment, 498 samples of NB patients and 307 cellular

senescence-related genes were used to construct a prediction signature.

Results: A signature based on six optimal candidate genes (TP53, IL-7, PDGFRA,

S100B, DLL3, and TP63) was successfully constructed and proved to have good

prognostic ability. Through verification, the signature had more advantages than

the gene expression level alone in evaluating prognosis was found. Further T cell

phenotype analysis displayed that exhausted phenotype PD-1 and senescence-

related phenotype CD244 were highly expressed in CD8+ T cell in MYCN-

amplified group with higher risk-score.

Conclusion: A signature constructed the six MYCN-amplified differential genes

and aging-related genes can be used to predict the prognosis of NB better than

using each high-risk gene individually and to evaluate immunosuppressed and

aging tumor microenvironment.

KEYWORDS

neuroblastoma, cellular senescence, tumor microenvironment, COLD TUMOR, prognosis
Abbreviations: DLL3, delta-like 3; DEGs, differentially expressed genes; EFS, event-free survival; GEO, Gene

Expression Omnibus; ICIs, immune checkpoint inhibitors; NB, neuroblastoma; mAbs, monoclonal

antibodies; MHC-I, major histocompatibility complex I; OS, overall survival; SMs, senescence molecules;

SASP, senescence-related secretory phenotype; TME, tumor microenvironment.
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Introduction

Neuroblastoma (NB) is the most common pediatric solid

tumor, but it poses a challenge in terms of treatment.

Approximately half of the patients are diagnosed with high-risk

NB and undergo intensive multimodal therapy, yet the 5-year

overall survival (OS) rate remains below 20% (1). The occurrence

and development of most tumors are closely related to the MYC

gene family, and one of the well-known MYC genes is involved in

proliferation, apoptosis, and differentiation are also associated with

PD-L1 expression (2). MYCN, another member of the MYC gene

family, is mainly involved in nervous system development and

tumor formation (3). Prognosis in NB is known to be influenced by

factors such as age, tumor cell differentiation, and MYCN

amplification, but the MYCN gene itself is not easily targeted

therapeutically (4). While tumor-specific monoclonal antibodies

(mAbs) targeting GD2 have become a standard component of

therapy for high-risk NB patients, the risk of relapse remains

high. This highlights the potential for immunotherapeutic

approaches to reduce the risk of recurrence (5).

Immune checkpoint inhibitors (ICIs) therapy, which enhances

certain aspects of the immune system to recognize and eliminate

tumor cells, has shown efficacy in several solid tumors but has

limited curative effect in NB (6). In 2009, Camus et al. first classified

tumors into “cold” and “hot” based on the distribution of immune

cells, particularly T lymphocytes, and their differential responses to

immunotherapy (7). NB is considered a good experimental model

for studying immunotherapy resistance, as it is a cold tumor and

presents an opportunity to investigate strategies to transform it into

a hot tumor to improve the efficacy of immunotherapy (8). In our

preliminary study, we observed that Anlotinib, an orally

administered small-molecule multitarget tyrosine kinase inhibitor,

induced a T cell inflamed tumor microenvironment (TME) by

facilitating vessel normalization, thereby enhancing the efficacy of

PD-1 checkpoint blockade in NB (9). Additionally, NB tumor cells

have a low mutation load and lack major histocompatibility

complex I (MHC-I) expression, which contributes to their low

immunogenicity and prevents T cells from recognizing them (10).

The bromodomain and extra-terminal domain (BET) protein

family mediates T cell exhaustion and hinders proliferation and

differentiation of NB cells (11, 12). However, the above description

does not fully explain the immune escape mechanism of NB or

provide a comprehensive understanding of the differential

expression of multiple immunosuppressive receptors. Senescence

was first described by Hayflick and Moorhead in 1961 based on

observations of in vitro cultured human fibroblasts. It refers to the

loss of proliferative potential in cells after a defined number of

passages (13). Under normal circumstances, senescent cells undergo

a permanent cell-cycle arrest but remain metabolically active in the

G0 phase, with physiological implications for cellular metabolism.

However, recent observations have shown that senescent cells can

reprogram into a stem cell state and re-enter the cell cycle in tumor

mice (14). When chemotherapy-induced senescence therapy is

discontinued, tumor cells can exit the senescent state and even

resume enhanced growth (15). Cellular senescence is a complex

adaptive process that involves the expression of senescence-related
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secretory phenotype (SASP) and the release of cytokines and growth

factors, contributing to tumor immune escape and progression (16).

One crucial aspect of tumor immune escape and targeted cell cycle

drug killing is that tumor cells enter the G0 phase by expressing a

senescent phenotype to evade recognition and clearance by the

immune system and chemotherapy drugs (17). Importantly,

senescence-related genes are significantly associated with adverse

clinical outcomes in various cancers, providing valuable insights for

risk stratification and understanding the immunosuppressive tumor

microenvironment (18, 19).

In this study, we investigated the effects of senescence gene

combinations on outcomes and the immune microenvironment in

NB by screening differential genes between MYCN-amplified and

non-MYCN-amplified NB samples. Ultimately, we successfully

constructed a prognosis prediction signature of NB based on six

genes. Validation experiments revealed that the score calculated by

this signature closely predicted prognosis compared to the relative

expression of a single high-risk gene. Our findings were further

validated using NB cell line and in vitro co-culture experiments. The

results demonstrated that different tumor antigens influenced the

distribution of T cell subsets, with the depletion phenotype PD-1

and cell senescence phenotype CD244 overexpressed in CD8+T

cell subsets.
Methods

Data source

The gene expression profiles and clinical information from 498

primary NBs were obtained from the Gene Expression Omnibus

(GEO) database, specifically the GSE49710 dataset, using RNA-Seq

and microarrays. The GEO database can be accessed at https://

www.ncbi.nlm.nih.gov/geo/. To investigate cellular senescence in

NB, we utilized a list of 307 cellular senescence-related genes

downloaded from the Cell-Age database. This database can be

found at https://genomics.senescence.info/cells/. For external

validation of our signature, we utilized the E-MTAB-8248 dataset

from the ArrayExpress database. This dataset consists of 223

samples and can be accessed at https://www.ebi.ac.uk/

biostudies/arrayexpress.
Building and verification of the signature

The 498 samples from the GSE49710 dataset were used for

signature development, and samples from E-MTAB-8248 were used

for model validation. Firstly, we identified 476 differentially

expressed genes (DEGs) using the R package “limma”. Then, we

performed univariate Cox analysis to identify the intersection of

differential genes and cellular senescence-related genes. Next, we

analyzed the relationship between the selected overlapping genes

and the prognosis of NB patients using Kaplan-Meier (K-M)

survival statistics. To further screen the DEGs, we employed

random forest analysis and least absolute shrinkage and selection

operator (LASSO) regression analysis. Using mean decrease
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accuracy and mean decrease gini coefficients, we identified the top

six genes (TP53, IL-7, PDGFRA, S100B, DLL3, and TP63) with the

highest coefficients. LASSO assigned regression coefficients to each

gene and combined them into an algorithmic model. The predictive

performance of the model was assessed using Kaplan-Meier analysis

and the area under the curve (AUC) of the receiver operating

characteristic (ROC) curve. The above processes were shown in

Figure 1.
Analysis of immune microenvironment and
tumor cell stemness

To assess the level of immune infiltration, we employed four

algorithms: “Estimation of Stromal and Immune cells in Malignant

Tumors using Expression data (ESTIMATE)” (20), “Cell-type

Identification By Estimating Relative Subsets Of RNA Transcripts

(CIBERSORT) (21) ”, “Microenvironment Cell Populations-

counter (MCP-Counter) (22)”, and “xCell” (23). Then the

correlation between the risk score and tumor cell stemness was

analyzed. All the data analyzed in this study were obtained from the

GSE49710 dataset.
Cell culture system in vitro

Peripheral blood mononuclear cells (PBMCs) were isolated

using lymphocyte separation solution. First, the peripheral blood

of volunteers was diluted 1:1 with PBS, and then the diluted blood

was spread on 4ml lymphocyte separation solution and centrifuged

for 15 minutes at 1500rpm. Then, the cells in the suspended particle

layer were absorbed by a glue head dropper and transferred to a
Frontiers in Immunology 03
centrifuge tube equipped with PBS, mixed and cleaned, and

centrifuged at 1000rpm for 10 minutes. The PBMCs were then

plated in a petri dish at a concentration of 1x10^6 cells. The culture

medium consisted of a mixture of 1640 and 10% fetal bovine serum

at a ratio of 9:1. To activate the T cells, IL-2 (at a concentration of

1000u/mL) and CD3/CD28 antibodies were added to the cell

culture as per the instructions provided. SK-N-BE (2) (MYCN-

amplified) and SH-SY5Y (non-MYCN amplified) cell lines as

different tumor antigens were selected. DMEM/F12 was used as a

culture medium for cell lines, and 10% fetal bovine serum (FBS) and

1% Penicillin/Streptomycin were added, pre-heated to 37°C, and

sterilized by filtration under sterile conditions. The cell suspensions

are transferred to sterile cell culture vials, with enough medium

added to each vial to make the cell density appropriate (usually 70-

80% bottle surface coverage). The cell culture vial is placed in a cell

incubator at 37°C to provide the appropriate temperature and CO2

concentration (5%) and the medium is changed every two to three

days to maintain healthy cell growth. These cell lines were chosen to

ensure that T cells could be fully exposed to the tumor antigens and

evaluate the impact of the tumor microenvironment (TME) on T

cell responses.
Real-time quantitative PCR

The sequence of primers associated with each gene for qPCR is

provided in Supplemental Table 1 (submitted). SK-N-BE (2) cell

lines and SH-SY5Y NB cell lines were amplified using conventional

cell culture methods. Briefly, mRNA was extracted using a

commercial kit (Total RNA Purification Kit, NORGEN) and

quantified using the spectrophotometer (Thermo Fisher

Scientific). The mRNA was reverse transcribed in cDNA using
FIGURE 1

Schematic diagram of the study design. Gene expression and clinical information from 498 primary NBs were obtained from the GSE49710 dataset
and internal verification through the same database;308 cellular senescence-related genes were obtained from the Cell-Age database; 223 sample
data from the E-MTAB-8248 dataset were used for external validation. The internal verification included the relationship between 11 candidate genes
and NB prognosis, the relationship between the constructed signature and NB prognosis, and the relationship between age, INSS stratification,
clinical risk, and MYCN status; External validation focused on the relationship between signature and NB prognosis and the fit degree of prognosis
prediction.
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the High-Capacity RNA-to-cDNA™ Kit (Applied Biosystems™),

and qPCR was carried out using SYBR green PCR master mix

(Applied Biosystems™) in Bio-Rad CFX Manager.
Flow cytometry

To detect the proportional and phenotypic changes in T cell

subsets, cell surface staining analysis was conducted using multi-

colored fluorescent flow cytometry. The following antibodies were

used: CD3-FITC (clone HTT3a), CD8-Cy5.5 (clone SK1), CD244

(2B4)-PE (clone C1.7), CD4-APC-H7 (clone RPA-T4), PD-1-PE-

CY7 (clone A17188B), PE-CY7-isotype control (clone MPO-11).

These antibodies were ordered from BD Biosciences (San Jose,

USA) and Biolegend. First, PBMC after exposure to tumor antigen

were centrifuged for standby staining. Then, fluorescent

monoclonal antibodies were added to the cells and incubated in

the dark at room temperature for 15-20 minutes. The samples were

washed twice with 1x PBS to remove excess fluorescent antibodies

and broken cell fragments. Fully viable cells were acquired for

analysis using a BD FACS-CantoIIflow cytometer (BD Biosciences,

San Jose, USA), and subsequent analysis was performed using

Flowjo software (Flowjo LLC, USA). Prior to obtaining the target

cells, dead and sticky cells were subsequently excluded using FSC-

A/FSC-H.
Statistical methods

Statistical analysis and graphing were performed using the R

software (version 4.2.1) and GraphPad Prism 8. To compare

differences between two groups, we employed two-tailed unpaired

Student’s t-test and Wilcoxon test. The Fisher’s exact test was used

to compare differences in qualitative variables between the two

groups. Statistical significance was defined as P < 0.05.
Results

Screened target associated with NB
prognosis from MYCN amplified differential
genes and senescence molecules
(SMs) gene

MYCN amplification in NB patients has been identified as a

poor prognostic factor (4). Therefore, it is crucial to first screen for

MYCN-related differential genes. After downloading the GSE49710

dataset, we preprocessed the expression profile data and identified

differentially expressed genes (DEGs). The volcano plot for the

DEGs is presented separately in Figure 2A. 465 differential genes

met the criteria for further analysis (|log2 fold change (FC)| > 1.5

and adjusted p-value < 0.05). To identify the intersection between

MYCN-amplified differential genes and 307 SMs genes, we

identified eleven genes, as shown in Figure 2B. Subsequently, we

included these eleven identified genes in the univariate Cox

regression model to analyze their relationship with prognosis. The
Frontiers in Immunology 04
results demonstrated that all genes were significantly associated

with poor OS in NB patients in the GSE49710 dataset, as depicted in

Figure 2C (p-value < 0.001).
Construction of the six-gene signature

To further assess the significance of the 11 genes, we

incorporated them into the random forest algorithm. As depicted

in Figure 2D, we identified the top six genes (TP53, IL-7, PDGFRA,

S100B, DLL3, and TP63) to proceed with the subsequent step of the

LASSO regression model. The outcomes of the LASSO regression

model, including the inclusion of the 6 genes, are presented in

Figures 2E, F, with the corresponding coefficients assigned to each

gene displayed in Figure 2E. The expression patterns and levels of

these six genes are illustrated in Figures 3A, E. Based on the

“lambda.min” coefficient shown in Figure 2F, all coefficients

associated with the six genes are suitable for further analysis. The

risk score was calculated using the following formula:

risk score = (0.506 * expression of PDGFRA) + (0.472

* expression of DLL3) + (0.390 * expression of TP53) - (0.598 *

expression of S100B) - (0.363 * expression of IL7) - (0.360

* expression of TP63).
Internal verification of the signature

The predictive performance of the signature was assessed using

Kaplan-Meier survival analysis and the AUC of the ROC curve. The

results of the survival analysis demonstrated a close relationship

between the six genes included in the model and the prognosis of

NB patients, as shown in Figures 4A-C, E-G. This finding is

consistent with the coefficient trend of the constructed model.

Further analysis revealed that patients with low scores had

significantly better prognosis in terms of OS or event-free survival

(EFS), as depicted in Figures 4D, H. The results of the remaining

five genes that were not included in the signature are displayed in

Supplementary Figures 1A-E, respectively. The ROC curve

exhibited a high AUC value (AUC=0.968), indicating that the

signature possesses excellent predictive ability for OS and EFS

(Figures 3B, C). During the internal validation process using the

GSE49710 dataset, an interesting result emerged: regardless of the

3-year or 5-year EFS or OS, the signature we constructed appeared

to have a better fit for predicting the prognosis of NB patients

compared to evaluating the prognosis based on MYCN

amplification (AUC values of 3 years and 5 years EFS: 0.718 vs.

0.620; 0.709 vs. 0.603, AUC values of 3 years and 5 years OS: 0.824

vs.0.769; 0.793 vs.0.692, respectively), as shown in Figures 3B, C, F,

G). Another differential analysis revealed that among the 498 NB

samples, the group with MYCN amplification had a higher risk

score, as illustrated in Figure 3K (P<0.0001). This finding is

consistent with the differential expression of each gene in the

MYCN amplification and non-amplification groups included in

the signature, as shown in Figure 2G (P<0.0001).

Next, we assessed the relationship between risk scores and age,

INSS stages, tumor aggression, and clinical risk stratification. The
frontiersin.org
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results indicated that older NB patients had higher genetic ratings

for aging (p < 0.001), as depicted in Figure 3D. The INSS

classification, a commonly used prognostic assessment tool,

revealed a higher aging gene score in INSS stage 4 groups

compared to others (p < 0.001), as shown in Figure 3J. Detailed

risk score comparison results are presented in Figure 3I.

Additionally, clinical high risk and high aggression can be clearly

distinguished based on the risk score (p < 0.001), as illustrated in

Figures 3H, L.
External validation of the signature

To validate the signature, we utilized the E-MTAB-8248 dataset,

which included 223 NB patients. Consistent with the findings from

the GSE49710 dataset, the low score group in the E-MTAB-8248
Frontiers in Immunology 05
dataset exhibited a significantly better prognosis in terms of OS and

EFS compared to the high score group (p < 0.001), as shown in

Figures 5A, B). Furthermore, our signature demonstrated superior

predictive ability for the prognosis of NB patients compared to

evaluating prognosis based on MYCN amplification alone, as

evidenced by higher AUC values for 3-year and 5-year EFS (0.710

vs. 0.581; 0.698 vs. 0.576) and OS (0.813 vs. 0.581; 0.855 vs. 0.576),

as shown in Figures 5C-F).
Positive correlation between risk score,
tumor immune microenvironment, and
stemness in NB

Gene set enrichment analysis using ESTIMATE effectively

captured the presence of stroma in tumor tissue and analyzed
B C

D E

F G

A

FIGURE 2

Screening of candidate genes and construction of signature (A) The volcano plot for differentially expressed genes (DEGs) (|log2FC| > 1.5 and
adjusted p < 0.05), and the red, gray and blue circles indicate up- regulated, stable expressed and down-regulated of MYCN genes, respectively. (B)
The blue regions represent 465 MYCN-amplified differential genes, while the yellow regions represent 308 SMs genes. (C) Forest diagram displaying
the univariate Cox proportional hazard regression model for eleven genes and all candidate genes were associated with poor OS in GSE49710
datasets. (D) random forest algorithm results of 11 genes. (E, F) Results of LASSO regression analysis of the top six genes. (G) Differences between
the MYCN amplified and non-amplified groups of six candidate genes and the risk-score signature constructed based on the candidate genes.
***p < 0.01.
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immune cell infiltration. Through advanced machine learning

techniques, we observed that lower aging gene scores were

associated with higher matrix proportion in tumor tissue (p <

0.001), increased immune cell infiltration (p < 0.001), and
Frontiers in Immunology 06
consequently, lower tumor cell purity (p < 0.001), as shown in

Figure 6A). We further employed MCP (Microenvironment Cell

Populations)-counter to conduct a detailed analysis of immune cell

subpopulations in NB tissues. As depicted in Figure 6B), NB
B C D

E F G H

I J K L

A

FIGURE 3

Relationship of signature with age, MYCN-status, clinical prognosis, and INSS grading. (A, E), Expression trends and amounts of six genes included in
the model; (B, C, F, G): the ROC curve of the signature and MYCN status regarding EFS and OS; (D, H, I-L), The relationship between risk-score and
age, clinical prognosis stratification, INSS grading, MYCN status and disease aggressiveness were analyzed respectively. *p < 0.1; **p < 0.05;
***p < 0.01, respectively.
B C D

E F G H

A

FIGURE 4

K-M Curve for Prognostic Prediction in NB. (A-C, E-G) Survival curves of the relationship between TP53, IL-7, PDGFRA, S100B, DLL3 and TP63 genes
and the prognosis of NB patients, respectively. The blue curve indicates low gene expression, while the yellow curve indicates high gene expression.
(D, H) are the survival curves of EFS and OS of NB patients in the dataset. Blue is the low-risk score, and red is the high-risk score.
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B

C

D

E

F

A

FIGURE 5

External verification of the relationship between risk score and prognosis of NB patients. (A, B) The OS and EFS curves of 223 NB patients were
respectively presented, with the blue curve representing patients with low-risk score and the red curve representing patients with high-risk score;
(C, D) ROC curve shows the value of risk score in evaluating OS and EFS; (E, F) ROC curve shows the value of MYCN status in evaluating OS and EFS.
B

C

A

FIGURE 6

Aging gene score to evaluate immune infiltration in NB tumor microenvironment. (A-C) ESTIMATE Score, MICP-counter and CIBERSPORT were used
to evaluate immune cell infiltration. The red box represents low-risk score group, while the blue box represents high-risk score group. *p < 0.1;
**p < 0.05; ***p < 0.01, respectively.
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patients with lower aging gene scores exhibited higher infiltration of

T cells, NK cells, myeloid dendritic cells, and monocytes in tumor

tissues, with T cells primarily consisting of CD8+ T cells (cytotoxic

lymphocytes) (p < 0.001). Additionally, the CIBERSORT algorithm

identified four highly infiltrated immune cell subpopulations,

namely CD4 naïve T cells, CD4 memory resting T cells, CD4

memory activated T cells, and macrophages, in patients with low

scores (p < 0.01, p < 0.001, p < 0.01, p < 0.001, respectively)

(Figure 6C). Supplementary Figure 1G provides a more detailed

analysis of immune cell subsets. Tumor cell stemness is closely

associated with disease occurrence, drug resistance, recurrence, and

metastasis. Correlation analysis revealed a significant positive

correlation between aging gene score and tumor cell stemness

(R = 0.51, p < 0.001) (Supplementary Figure 1F).
High aging-related prognostic scores are
associated with T cell exhaustion and
phenotypic changes related to aging

In order to initially validate the impact of our aging-related

prognostic scoring system on major T cell subsets, we measured the

relative expression levels of six target genes in two NB cell lines with

different MYCN amplification, as depicted in Figures 7A–F. By
Frontiers in Immunology 08
applying normalization processing to our constructed model, we

calculated the aging prognosis score. The results demonstrated that

the SK-N-BE (2) group had a higher aging prognosis score

compared to the SH-SY5Y group (risk score: -5.12 vs. -57.45).

Next, we employed flow cytometry to assess changes in major T cell

subpopulations and phenotypic alterations in PBMCs following

contact with NB cells. The findings revealed that the proportion of

CD4:CD8 T cells in PBMCs exposed to SK-N-BE (2) was higher

than that in the SH-SY5Y group (1.29 vs. 0.85) (Figure 8). Further

phenotypic analysis indicated that CD8+ T cells exposed to SK-N-

BE (2) displayed a higher expression of the exhaustion phenotype

marker PD-1, while CD4+ T cells exhibited a higher proportion of

the aging phenotype marker CD244 (3.09% vs. 0.65%, 24.2% vs.

16.7%, respectively) (Figures 9A–D). Additionally, PBMCs exposed

to SK-N-BE (2) showed a higher proportion of the CD244+PD-1

+CD8+ T cell subset (3.36% vs. 1.67%) (Figures 8A–H).
Discussion

NB is the most common extracranial tumor in children, and

there is currently no standardized prognostic evaluation system,

which due to NB is a highly heterogeneous tumor (5, 10). Despite

the utilization of genetic testing techniques in clinical practice, only a
B C

D E F

A

FIGURE 7

Relative gene expression of 6 included genes A: The (A–F) shows qRT-PCR results of IL-7, TP63, DLL3, TP53, PDGFRA and S100B genes in two
neuroblastoma cell lines, SH-SY5Y and SK-N-BE (2), respectively. The black column represents the relative expression of gene in SH-SY5Y, and the
gray column represents the relative expression of gene in SK-N-BE (2). *p < 0.1; **p < 0.05; ***p < 0.01; ****p < 0.001, respectively.
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limited number of genes have established prognostic value in NB (24,

25). It is still unclear why some patients experience poor clinical

outcomes despite the absence of commonly detected high-risk genes,

while others exhibit positive clinical outcomes despite the presence of

individual high-risk gene expression. This discrepancy suggests that

there are additional factors beyond the currently recognized high-risk

genes that influence the prognosis of NB (25, 26). Redefining the

prognostic model of NB based on the expression levels of high-risk

genes combined with other mechanisms that may impact prognosis

holds significant value. This will ultimately enhance clinical decision-

making and optimize patient outcomes.

On the other hand, Prognostic evaluation needs to consider the

increasing use of immunotherapy over the past decade, which has

been altering the tumor’s prognosis (1, 4). In this study, we

constructed six gene composition evaluation models, specifically

targeting TP53, PDGFRA, S100B and TP63. These genes are widely

recognized as important prognostic indicators in clinical testing and

offer the advantages of universality and easy accessibility compared

to other pathway models (27–30).

Since the initial description of senescence by Hayflick and

Moorhead, our understanding of senescence has continuously

evolved (31). The traditional classical theory defines senescence as a

state where cells enter permanent cycle arrest while remaining

metabolically active in the G0 phase. However, recent studies have

challenged this notion and demonstrated that senescence is not

necessarily an irreversible state (31). Cells that enter quiescence can

still re-enter the replication cycle under certain growth conditions

(32, 33). A mouse model study on lymphoma has suggested
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that senescent cells can be reprogrammed to possess stem cell

properties and may re-enter the cell cycle when specific conditions

are restored (14). This concept aligns with the definition of tumor cell

stemness, which is strongly associated with tumor recurrence and

metastasis (14). Our study also found a positive correlation between

high senescence scores and tumor cell stemness. Additionally,

senescent cells secrete various bioactive cytokines known as SASP

(34). SASP may contribute to shaping the immunosuppressive TME,

by inducing immune cells to express high senescence phenotype, such

as CD244, and exhausted phenotype like PD-1, TIM-3, et al, aiding

tumor cell immune escape (11, 35–38). It is important to highlight

that senescent tumor cells, upon entering the G0 stage, have the

ability to evade the cytotoxic effects of traditional chemotherapy

drugs that primarily target actively dividing cells (14). This allows the

senescent cells to maintain their survival and potentially contribute to

disease progression (14). Considering these findings, it becomes

crucial to explore the link between cellular senescence and the

inefficacy of immunotherapy in NB.

In a study, cell senescence as an important feature was found in

NB samples with MYCN amplification, which is associated with poor

prognosis (39). This part of the results aligns with our findings, which

indicate a significant difference in the aging score between samples

with different MYCN status. Furthermore, we observed a strong

correlation between the aging score and prognosis. These findings

support the notion that the aging process plays a crucial role in NB

progression and can serve as a prognostic indicator (14, 17). The

association between MYCN status and aging score suggests that

MYCN amplification may contribute to accelerated aging processes
B C D

E F G H

A

FIGURE 8

T cell subpopulation distribution and phenotypic changesThe effect of different antigen stimulation on the distribution of T cell subsets and the co-
expression of PD-1 and CD244 in different T cell subsets were shown. (A, E) show the proportion of CD4+T cell distribution and CD8+T cell
distribution after stimulation by SH-SY5Y and SK-N-BE(2), respectively. (B–D) reflects the co-expression of CD244 and PD-1 in CD3+, CD4+ and
CD8+T cell subsets after SH-SY5Y stimulation. (F–H) reflects the co-expression of CD244 and PD-1 in CD3+, CD4+ and CD8+T cell subsets after
SK-N-BE(2) stimulation, respectively.
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in NB cells (40). This could potentially explain the aggressive behavior

and poor prognosis associated with MYCN-amplified tumors. Further

investigations are warranted to elucidate the underlying mechanisms

linking MYCN amplification, aging, and prognosis in NB.

In our subsequent analysis, we focused on examining the

correlation between the model constructed based on the six aging-
Frontiers in Immunology 10
related genes and the prognosis of NB patients. We conducted a

comparison of the relative expression levels of six genes in two groups

of cell lines with and withoutMYCN amplification (41). Interestingly,

we observed that the relative expression levels of these six high-risk

genes were lower in SK-N-BE(2) cells, which are derived from

patients with bone marrow metastasis and accompanied by MYCN
B

C

D

A

FIGURE 9

Tumor antigens on T cell exhausted molecules and aging phenotypesT cell exhaustion was shown by the expression ratio of PD-1 molecule, while
CD244 was used as the phenotype of T cell senescence. Differential expression of PD-1 and CD244 in CD3+, CD4+ and CD8+T cells were shown.
(A, C) showed the separate expression of CD244 and PD-1 in CD3+, CD4+, and CD8+T cell subsets after SH-SY5Y stimulation, respectively. (B, D)
showed the separate expression of CD244 and PD-1 in CD3+, CD4+, and CD8+T cell subsets after SK-N-BE(2) stimulation, respectively. The blue
crest comes from the Isotype control, the red crest comes from the fully dyed sample, and all the gates are set according to the Isotype control.
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amplification (41), compared to SH-SY5Y cell lines. This finding is

consistent with the clinical observation of lower high-risk gene

expression but poor prognosis. On the contrary, using the

predictive mode, the SK-N-BE (2) score is indeed much higher

than the SH-SY5Y score. This also reflects the fact that our model

seems to predict prognosis more accurately and closely to clinical

development than analyzing the relative expression of each gene

alone. However, further validation with additional clinical data is

necessary to confirm these results. It is worth noting that the higher

the clinical prognostic stratification of high-risk NB, as indicated by

INSS grading, the higher the calculated senescence score in the

subgroup with MYCN amplification, shown in Figure 3.

Studies on the TME have demonstrated that the formation of an

immunosuppressive TME contributes to the poor prognosis of NB

patients and the limited effectiveness of immunotherapy (42, 43). In

a previous study conducted by our group, we successfully

reconstructed normal blood vessels in a mouse model of NB

using a multi-target tyrosine kinase inhibitor (TKI) called

Anlotinib (9). This approach maximized the efficacy of

immunotherapy when combined with a PD-1 inhibitor,

highlighting the crucial role of the TME in immunotherapy (9).

NB has been recognized as an excellent model for studying cold

tumors, making the analysis of immune cell infiltration within NB

tumor tissues vital for understanding the TME (44). By analyzing

the composition of tumor tissues in different senescence score

subgroups, we observed that high-scoring NB tumor tissues

exhibited lower immune scores and stromal scores, indicating a

lower percentage of immune cells. Further subpopulation analysis

revealed significantly reduced infiltration of CD8+ T cells, NK cells,

myeloid dendritic cells, monocytes, and macrophages in high-

scoring NB tissues. These findings are consistent with studies that

decreased immune cell infiltration in the TME of NB patients with

poor prognosis and ineffective immunotherapy (45, 46). CD244

(2B4) binding to the ligand CD48 has been found to be a signaling

pathway for co-stimulation or negative regulation of multiple

immune cells in tumor, that currently considered to be an

important marker of immune cell senescence (47, 48). CD244+

CD8+ aging T cells exhibited features of exhaustion, including

lower levels of cytokine, impaired proliferation, and intrinsic

transcriptional regulation (49). Phenotype analysis showed that

the proportion of CD8+ T cells did not increase after PBMC

exposure to SK-N-BE (2) tumor antigen as it did after exposure

to SH-SY5Y tumor antigen. What’s even more interesting is that

CD8+ T cells exposed to SK-N-BE (2) displayed a higher expression

of the exhaustion phenotype marker PD-1, while CD4+ T cells

exhibited a higher proportion of the aging phenotype marker

CD244 were found. Additionally, PBMCs exposed to SK-N-BE

(2) showed a higher proportion of the CD244+PD-1+CD8+ T cell

subset. The increase in the proportion of CD244+PD-1+ T cells was

found in acute myeloid leukemia and non-Hodgkin’s lymphoma

significantly, that may be related to the occurrence and

development of tumor (50–52). This indicate that CD8+ T cells

exposed to SK-N-BE (2) antigen may enter a state of functional

exhaustion and cellular senescence.
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However, it is important to acknowledge the limitations of our

study. Firstly, considering the addition of cytokines and cell-

activating antibodies in our experiments, we did not specifically

measure cytokine levels. To address this limitation, we plan to use

plasma samples from NB patients in future experiments to

investigate the SASP. Additionally, the operability and prognostic

value of this model should be verified through extensive clinical

practice. By addressing these limitations and conducting additional

research, we aim to strengthen the validity and applicability of our

findings. Ultimately, our goal is to contribute to the advancement of

NB prognosis prediction and guide personalized treatment

strategies for improved patient outcomes.
Conclusion

In summary, this study focused on identifying MYCN-related

differential genes and senescence molecules in NB patients. The

researchers constructed a six-gene signature and validated its

predictive ability for the prognosis of NB patients. The signature

was also found to be associated with the tumor immune

microenvironment and stemness in NB.
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SUPPLEMENTARY FIGURE 1

The relationship between aging genes and prognosis, tumor cell stemness
and immune invasion. (A-E) The remaining five genes that were not included

in the signature was associated with poor OS in GSE49710 datasets. (F)
Correlation analysis between risk score and the stemness of NB tumor cell.
(G) xCell method was used to analyze the relationship between risk score and

immune cell infiltration in NB tumor tissue. *p < 0.1; **p < 0.05; ***p < 0.01;
****p < 0.001, respectively.
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