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Exosomes are natural extracellular vesicles that play a key role in inter- and

intracellular communication. Currently they are considered as a promising

therapeutic strategy for the treatment of various diseases. In

osteoimmunology, exosomes can serve as biomarkers of bone

homeostasis disorders and, at the same time, promising therapeutic agents

with high stability in the biological environment, low immunogenicity and

good bioavailability. In this review, we attempted to examine exosomes as

natural mediators of intercellular communication, playing an essential role in

the interaction of the immune system and bone tissue, based on an analysis

of the PubMed database up to October 2023.
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1 Introduction

Osteoimmunology is a field of research that studies the interaction between

immune system cells and bone tissue, including various types of cells and associated

signaling pathways. The term was introduced by Aaron and Choi in 2000 (1). Immune

cells play a key role in the development, formation, and resorption of bone tissue,

thereby regulating bone homeostasis. Consequently, imbalance in the interaction of

immune cells can lead to the development of bone diseases (2). Osteoporosis is one of

the most common systemic diseases characterized by bone mass loss due to bone

remodeling performed by osteoblasts, osteoclasts, osteocytes, and their precursors. In

turn, extracellular vesicles, including exosomes, play a significant role in the

development of osteoporosis. Exosomes are crucial for inter- and intracellular

communication and act as regulatory molecules and potential biomarkers for bone

mass loss (3, 4). The role of exosomes in osteogenesis with the involvement of
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exosomal microRNAs and proteins was demonstrated in several

studies. In an LPS-induced model of bone mass loss in mice, an

increase in circulating exosomes and a change in exosomal

microRNA expression were observed, which significantly

inhibited osteogenic differentiation (5). In this review, we

attempted to examine exosomes as natural mediators of

intercellular communication, playing an essential role in the

interaction of the immune system and bone tissue, based on an

analysis of the PubMed database up to October 2023.
2 The role of the immune system in
the pathogenesis of bone diseases

2.1 Cellular mechanism of
bone remodeling

During growth and development, the mineralized bone matrix

is continuously destroying and new intercellular substance is being

synthesized by osteoblasts, followed by osteocyte differentiation and

mineralization. Continuous bone remodeling allows bones growing,

leads to damage repair and better adaptation the bone structure to

physical loads by orienting the bone trabeculae according to the

load vector. Trabecular alignment according to physical loads leads

to anisotropy of bone, increasing strength in the direction of these

loads. This remodeling results in a significant increase in strength

without increasing bone mass, thus increasing the efficiency of the

bone structure (6). Remodeling is accomplished by two

mechanisms, bone resorption and formation of new bone tissue

in place of resorbed matrix. Osteoclasts are macrophage-like cells

responsible for the resorption of bone tissue that induces bone

remodeling. Normally, there is a balance between osteoblasts

proliferation with production of an extracellular matrix for bone

formation and bone resorption by osteoclasts (7, 8). Osteoclasts

move through the bone tissue, making “tunnels”, breaking down the

mineralized matrix with the help of hydrolytic enzymes - acid

phosphatase and tartrate-dependent acid phosphatase. Following

osteoclasts, osteoblasts move in bone tunnels and produce

extracel lular matrix . Osteoblasts and osteoclasts are

interconnected and their joint movement through bone is called

bone remodeling unit (BMU). The proliferation and maturation of

osteoclasts are mainly regulated by receptor activator of nuclear

factor-kappaB (NF-kB) ligand (RANKL) from the TNF family (9).
2.2 Estrogen deficiency reveals the
interconnectedness of the bone and
immune systems

Inflammation is characterized by the activation of immune cells

and an increased production of pro-inflammatory cytokines. In

acute inflammation, there is a short-term increase in the secretion

of inflammatory mediators by activated immune cells, but in

chronic inflammation, the persistent activation of immune cells is

observed. In chronic inflammatory conditions, the number of
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circulating monocytes and T-cells increases along with elevated

concentrations of interleukins IL-1, IL-6, IL-8, INF-g, tumor

necrosis factor- a (TNF-a), and other pro-inflammatory

mediators, which activate immune cells. During chronic

inflammation, elevated TNF-a levels induce osteoclast

proliferation and activation, although RANKL is the major

mediator for osteoclasts (9). The effects of factors of the TNF

family, to which RANKL belongs, may partially overlap due to

similar binding domains; moreover, macrophages activated by

TNF-a and osteoclasts activated by RANKL are differentiated

from monocytes. Therefore, osteoclasts are sensitive to TNF-a,
whereas RANKL is involved in maintaining dendritic cell survival

and immune system functioning (10, 11). Prolonged changes in the

cytokine profile alter the functioning of many cells outside the

immune system, especially osteoclasts (12). Effector T-cells,

especially Th-17 cells produce IL-17 that play a crucial role in

osteoclast activation. Experiments on thymus-less mice with a T-

cell deficit have shown that T-cell deficiency provides the protection

from bone mass loss and increased bone tissue metabolism caused

by ovariectomy, highlighting the key role of the T-cell component of

osteoimmunity (13). Osteoclast activation and disruption of bone

homeostasis are especially pronounced during estrogen deficiency

in postmenopause, that stimulates the development of osteoporosis

through activation of immune system. The immune mechanisms in

the development of osteoporosis are presented at Figure 1.

Among multiple effects in organism, estrogens limit the lifespan

of T-cells and the antigen-independent activation of memory T-

cells producing TNFa and IL-17A (14). Estrogens also suppress

RANKL production and increase the production of osteoprotegerin

(OPG), a RANKL antagonist, by osteoblasts and lymphocytes,

maintaining the RANKL/OPG ratio essential for balanced bone

remodeling (15–17). It’s also shown that estrogen sustains the

vitality of early osteoblasts by enhancing the Wnt signaling

pathway, while TNF-a increased in estrogen deficiency

conditions, inhibits osteoblast differentiation by reducing RUNX2

expression (18, 19). Prolonged inflammation adversely affects

maintaining bone tissue structure, especially against the backdrop

of estrogen deficiency, that is why the postmenopausal state is so

closely linked to osteoporosis.
2.3 Proinflammatory activation of the
immune system in aging

The second pro-inflammatory “blow” of the immune system on

bone tissue occurs due to changes in the ratio of immunocompetent

cells. With age, the adaptive component of immunity weakens and

the number of T- and B-lymphocytes decreases, while the innate

component of immune system increases, leading to chronic

inflammation. Weakening of the adaptive component of the

immune system results in decreased resistance to new infections

and response to vaccines. Thymus involution occurs partly due to

loss of antigen-dependent priming of T-lymphocytes by dendritic

cells; in addition, lymphocyte production in the bone marrow

decreases due to a reduced pool of hematopoietic stem cells (20).
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Despite the decrease in the number of B-lymphocytes, the level of

immunoglobulins circulating in the blood increases, but these

antibodies are characterized by lower affinity, high polyspecificity

and autologous reactivity. As a result, autoimmune diseases

associated with systemic inflammation such as rheumatoid

arthritis, vasculitis, and systemic lupus erythematosus are more

common in the elderly and correlate with osteoporosis as a

consequence of increased production of proinflammatory

mediators such as IL-1, IL-6, CRP, and TNF-a (21). IL-17

production also increases due to a shift in CD4+ T cell

differentiation to Th17 instead of Th1 and Th2, and IL-17 is

known to be able to activate osteoclasts. To attempt to reverse the

aging of thymus and increase the pool of T cells, antioxidants and

blockers of cyclin-dependent kinases are of considerable interest,

somatotropin, IGF-1, IL-7 and FGF7 have also been studied in this

regard (22).
3 Exosomes in osteoimmunology

3.1 Characteristics of exosomes

Exosomes are natural membrane-bound nano-sized structures

secreted by almost all living cells and transport various biologically

active molecules to recipient cells. The size of exosomes ranges from

30-150 nm, in contrast to apoptotic bodies (500-2000 nm) released

from the plasma membrane during apoptosis, and microvesicles

(100-1000 nm), which are also secreted by cells (23, 24). Exosomes,

like cells, are covered with a lipid bilayer and are released into the

extracellular space after the fusion of multivesicular bodies with

plasma membranes (25). Exosomes are secreted by many types of
Frontiers in Immunology 03
cells, including hematopoietic cells (B cells, T cells, dendritic cells,

mast cells, platelets), glandular cells, immune, endothelial, and

mesenchymal stem cells (MSC), among others (26). Exosomes

can be detected in almost all types of body fluids, such as blood,

saliva, urine, synovial fluid, pleural effusions of ascites,

bronchoalveolar lavage fluid, amniotic fluid, and breast milk (27).

The main known natural functions of exosomal vesicles within the

body are the removal of unnecessary cellular materials and

facilitating intercellular communication through the transfer of

macromolecules (28). The content of exosomes depends on the

type of cell, as well as on signaling regulatory mechanisms. Various

proteins, such as receptors, enzymes, transcription factors, as well as

nucleic acids (mRNA, miRNA) and lipids can be found both on the

membrane and inside the exosomes. Some of these components are

common to different types of exosomes, while others depend on the

source tissue (29).

Endocytosis leads to the creation of early endosomes, which

capture cellular proteins and genetic materials found in the

cytoplasm, then transform into late endosomes, from which

multivesicular bodies are generated (30). Multivesicular bodies

then either break down with lysosomes or fuse with the plasma

membrane, releasing nanovesicles into the extracellular space (31).

Exosomes can carry antibodies and other membrane-bound

signaling molecules on their surface. After secretion from parent

cells, exosomes can initiate downstream signaling cascades through

receptor-ligand interaction with cell surface proteins or release their

contents through endocytosis after merging with the plasma

membrane of recipient cells, thus facilitating the transfer of

intercellular signals. Some types of extracellular vesicles are

capable of transporting organelles, such as mitochondria and

ribosomes (32, 33).
FIGURE 1

Immune mechanisms in osteoporosis development. RANKL, receptor activator of nuclear factor kappa-B ligand; Th-17, T helper 17.
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3.2 Potential for therapeutic applications
of exosomes

The therapeutic application of exosomes is of interest to many

scientists since exosomes can stably exist in various body fluids,

carrying specific biomolecules and protecting them from

degradation (34, 35). Exosomes can be used as biomarkers in

diagnostic of various diseases, as drug delivery vehicles or

therapeutic agents, and as immunomodulators that stimulate or

suppress the immune system (36). The use of exosomes as natural

carriers for delivering drugs or nucleic acids to target cells is

considered as a promising direction in the development of

treatment approaches in various diseases. Exosomes can express

specific surface proteins or be loaded with a therapeutic agent,

ensuring targeted delivery to affected tissues and minimizing off-

target effects (37, 38). The structure of exosomes allows

encapsulating hydrophilic active therapeutic agents in the core

and hydrophobic compounds in the lipid bilayer, though this

remains one of the significant challenges in their development

(39). Moreover, the use of exosomes as therapeutic agents avoids

the major limitations of cell therapy (40). Advantages of exosomes

also include their stabil ity, low immunogenicity, and

biocompatibility (41). The absence of the risk of immune

rejection and malignancy, stability, long-term maintenance, and

the ability to overcome biological barriers are distinctive features

characterizing exosomes (42). These unique properties of exosomes

provide new therapeutic strategies for treating various diseases. It’s

well-known that drug delivery across the blood-brain barrier is

challenging as it’s impermeable to most therapeutic agents. It has

been proven that cell-derived exosomes or bioengineered exosomes

loaded with drugs can penetrate the blood-brain barrier and can be

stable in peripheral circulation (43). Moreover, exosomes can cross

the maternal-placental barrier, making them an attractive treatment

medium for various diseases (44).
3.3 Exosome effects on bone remodeling

As previously mentioned, the most common bone tissue disease

is osteoporosis. The fundamental factor in the pathogenesis of

osteoporosis is the aberrant differentiation of osteoclasts (45).
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Osteoporosis is a metabolic bone disease characterized by a

deterioration of bone tissue structure, a reduction in bone mass,

and a predisposition to fractures (46). Exosomes have great

potential for clinical use due to their immunocompatibility (47).

The therapeutic potential of exosomes obtained from osteoblast

cultures is currently of great interest. It was shown that adding

exosomes, derived from other osteoblasts and stem cells, to an

osteoblast culture enhances their differentiation and viability. The

beneficial effects of application of exosomes on bone morphology

were demonstrated in experimental animals. The positive effect of

using osteoblasts, MSCs, and exosomes has been demonstrated in

the treatment of induced osteoporosis in rabbits. However, this

study had some limitations, such as the non-equivalent number of

exosomes compared to cells, which did not allow to evaluate

objectively the therapeutic effect of exosomes (48). The

composition and functionality of exosomes depending on their

cellular origin has been demonstrated in some studies through their

effects on rat bone density and osteoblast differentiation. Exosomes

from umbilical cord blood stem cells and exosomes from the same

cells in an osteodifferentiated state had different effects on the

differentiation of rat skull osteoblast cultures. Exosomes obtained

from native cells stimulated osteoblast proliferation, while

exosomes obtained from cells in osteogenic conditions promoted

osteoblast differentiation to a greater extent. However, in mice with

osteoporosis induced by ovariectomy, both types of exosomes

improved the density of the tibial bone and reversed osteoporosis

in vivo (49). Studies demonstrating the efficacy of exosomes’ action

on the mechanisms underlying osteoporosis and osteopenia are

associated with the detection of active microRNA or its inhibitor.

For example, microRNA-133 can inhibit the differentiation of

MSCs into osteoblasts by reducing the expression of Runx2 (50).

lncRNA MALAT1 (metastasis-associated lung adenocarcinoma

transcript 1) stimulates the expression of osterix and the

osteogenesis of MSCs by absorbing miRNA-143 (51). Runx2 is

the primary transcription factor responsible for the osteogenic

differentiation of precursors, functioning through the

transcription factor osterix. Donor MSC exosomes transferred

microRNA-151-5p to the bone marrow of recipient mice,

activating the osteogenic differentiation of bone marrow MSCs

and thus alleviating osteopenia in mice. The same effect is

achieved by systemically introduced miR-151-5p (52). In addition
FIGURE 2

The mechanisms of exosomes effects on bone remodeling in osteoporosis.
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to influencing the viability, proliferation and differentiation of

osteoblasts, exosomes may be effective on the opposite side of

bone tissue homeostasis, namely, osteoclastogenesis. The potential

mechanisms of exosome effects on bone remodeling are presented

at Figure 2. Exosomal miRNA-214-3p from osteoclasts inhibits

osteogenesis, and inhibiting miRNA-214-3p with antisense

microRNA reverses the effect (53). Overall, exosomes appear to

be an attractive tool for the safe and effective delivery of RNA-based

drugs. In addition to protecting RNA from the aggressive internal

environment of the body, they reduce toxicity and immunogenicity

and also demonstrate high stability in blood plasma (54).

It was shown in some studies that exosomes derived fromMSCs

subjected to cyclic stretching inhibited RANKL-induced

osteoclastogenesis of macrophages by suppressing the NF-kB
signaling pathway (55). Exosomes derived from tumor cells have

been shown to activate osteoclastogenesis, explaining some

mechanisms of osteoporosis onset in oncology (56–59). Research

data indicates that microRNAs such as miR-935, miR-21-5p, miR-

27a-5p, miR-31a-5p, miR-29a, and miR-146a, which are

encapsulated in exosomes in vivo, participate in bone tissue

remodeling (60). Exosome-encapsulated miR-21a-5p was used in

the design of an experimental bone implant and contributed to its

osteointegration, as well as macrophage polarization towards the

anti-inflammatory M2 phenotype, enhancing osteogenesis in a rat

femoral bone drilling model (61). Macrophage polarization was

observed in a similar experimental implant model but without

microRNA detection. Exosomes from bone marrow MSCs,

introduced into the polyetheretherketone implant possessed the

osteoimmunomodulatory effect (62). Thus, exosome functionality

can be explained in the context of bone and immune system

interaction. The addition of exosomes from T-cells of patients

with osteoporosis to osteoblasts, reduced the expression of genes

associated with osteogenic differentiation - RUNX2, COL1, OC, OP

(63). In mice, in a model of bone mass loss induced by

lipopolysaccharides, an increase in the number of exosomes

loaded with miRNA-125b-5p, miRNA-132-3p, and miRNA-214-

3p inhibited the osteogenesis of progenitor cells was observed (5).

Exosomal regulation was identified in the functioning of myeloid

suppressors, cells responsible for macrophage polarization fromM1

to M2 and weakening Th1 and Th17 immune responses, which is

important for the suppression of osteoclastogenesis and bone

resorption. In the presence of exosomes from myeloid

immunosuppressors, CD8+ T cells demonstrate anergy,

moreover, they have found significant accompanying factors of

osteogenesis - TGF-b and IL-10 (64).

According to some research, exosomes from immune cells (e.g.,

dendritic cells, T cells, B cells, and natural killers) can be considered

as promising immunomodulators. Today, the immunomodulatory

properties of exosomes are of great interest as a potential therapy for

bone diseases. It was shown in some studies that MSC-derived

exosomes possess a strong effect on the immune system through

increased microRNA expression, modulation of angiogenesis, and

anti-inflammatory action (65, 66). In addition, exosomes have an

immunomodulatory secretome which is capable to reduce the

proliferation of synoviocytes and macrophages, as well as to

produce the pro-inflammatory cytokines upon in vitro
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stimulation. In a model of acute inflammation of the synovial

membrane/IFP (the infrapatellar fat pad) in rats, therapeutic

treatment with exosomes from MSCs led to stable polarization of

macrophages towards an anti-inflammatory therapeutic M2

phenotype in the tissues of the synovial membrane/IFP (66).

In the context of age-related changes, chronic inflammation

accompanied by insufficient repolarization of M1 macrophages to

M2 leads to increased activation of osteoclasts and decreased

formation of osteoblasts, thereby increasing bone resorption.

MSC-derived exosomes are able to modulate the immune

response and polarize macrophages to an anti-inflammatory M2

phenotype. Exosomes contain cytokines of various origins that are

involved in bone repair processes and also stimulate the expression

of osteoblast differentiation genes, accelerating the resolution of

inflammation (67). The modulatory effect of exosomes is to alter

macrophage polarization by influencing nuclear factor-kB (NF-kB),
a key transcription factor in macrophages (68). In addition,

exosomes isolated in monocytes transport arachidonic acid, a

precursor of the inflammatory factor PGE2, which enhances the

secretion of IL-10 and stimulates the polarization of M2

macrophages, thereby exerting an anti-inflammatory effect (69). It

is worth noting that exposure to NF-kB can also have a negative

effect since its activation leads to the expression of inflammatory

cytokines IL-1b and TNF-a, which can aggravate the inflammatory

process in bone (70). Thus, exosomes play an important role in the

regulation of inflammatory bone diseases, but the full spectrum of

inflammatory cytokines associated with exosomes is not

fully known.

In addition to immunomodulating properties through the

influence of various cytokines, exosomes can inhibit the processes

of cell apoptosis. Studies have shown that exosomes secreted by

bone marrow-derived mesenchymal stromal cells (BMSCs)

attenuated TNF-a-induced cytotoxicity and apoptosis in cells

MC3T3-E1 osteoblast is the most commonly used in vitro model

of bone matrix mineralization (71). Other studies have also shown

that BMSC exosomes lead to attenuation of osteoporosis by

reducing the expression of miR-150-3p, which promotes

osteoblast proliferation and differentiation, and inhibits

apoptosis (72).
4 Limitations and future prospects for
the use of exosomes

The role of exosomes in the body has been repeatedly confirmed

experimentally, but active research is being conducted to clarify

their specific functions in certain physiological and pathological

conditions. Unlike traditional therapy for bone diseases, exosome

therapy has several advantages. In particular, this is the absence or

low immunogenicity of these molecules. In addition, it was shown

in several studies that exosomes derived from MSCs promote bone

formation, and their use is accompanied by the absence of side

effects and low toxicity (73). It is worth noting that exosomes have

good bioavailability and the potential to target specific cells and

tissues. For example, osteoclast exosomes are able to target
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1309015
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhivodernikov et al. 10.3389/fimmu.2023.1309015
osteoblasts using one of the bone cell interaction mediators

EphrinA2 (74).

However, despite the promising prospects for using exosomes

as therapeutic agents, there are a number of limitations and

challenges. To date, there are no clinically approved therapies

using exosomes (73). Since exosomes carry a group of signaling

molecules, the administration of exosomes may trigger various

immune responses (75, 76). In addition, another important

parameter is the sample from which exosomes are obtained,

which determines their regulatory potential. In this regard, the

main challenge currently is to evaluate the immunogenicity,

increase the bioavailability and target exosomes to specific tissues

and organs, in particular bone tissue (76, 77). In general, exosomes

are representative of the state of the cells from which they are

synthesized and play a crucial role in stabilizing this state. Exosomes

derived from MSCs and other stem cells are of interest because they

often exhibit anti-inflammatory effects by polarizing macrophages

towards the M2 phenotype, increasing the number of regulatory T

cells, increasing cell viability and activating osteogenesis (78). In

addition, exosomes containing microRNAs are promising. Of all the

regulatory molecules, microRNA is the least stable in the internal

environment of the body; the effectiveness of exosomes against a

specific disease is determined by the content of specific

microRNAs (79).

Summarizing the above, it’s worth noting that the prospects for

the use of exosomes are not only in the treatment of bone diseases,

but many other diseases, the key factor of which is inflammation.

However, before clinical use of exosomes, it is necessary to select

their stable characteristics, efficiency, precise targeting, safety,

routes of administration, taking into account cost-effective

approaches to their production.
5 Conclusion

Currently exosomes are considered not only as natural

extracellular vesicles that play a key role in inter- and intracellular

communication but also as a promising therapeutic strategy for the

treatment of various diseases. The disruptions in the regulation of

bone homeostasis by immune cells lead to the development of bone

t issue diseases , including osteoporosis . Exosomes in

osteoimmunology serve as biomarkers for bone mass loss and, at

the same time, as promising therapeutic agents, possessing high

stability in the biological environment, low immunogenicity, and

good bioavailability. Experimental studies have demonstrated the
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therapeutic effects of exosomes, derived from various sources, on

the functioning of bone tissue cells. On the one hand, the use of

exosomes promotes proliferation, improved viability and

differentiation of osteoblasts, providing a beneficial effect of

exosomes on bone formation; on the other hand, exosomes are

shown to be able to suppress the immune mechanisms of

osteoclastogenesis, accompanied by bone resorption. However, for

the direct clinical application of exosomes, many issues still need to

be addressed. Standardization, the choice of extraction source,

manipulating composition, specific characteristics, stability,

biodistribution, and targeting of exosomes will contribute to

enhancing their therapeutic potential and effective personalized

therapy for various diseases.
Author contributions

IZ: Visualization, Writing – original draft. YM: Writing –

original draft, Writing – review & editing. TK: Visualization,

Writing – review & editing. MP: Writing – review & editing.

AM: Funding acquisition, Supervision, Writing – review & editing.
Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. This work

was funded by the Russian Science Foundation, Grant # 22-65-

00089, https://www.rscf.ru/en/project/22-65-00089/.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.
References
1. Ye Z, Wang Y, Xiang B, Wang H, Tao H, Zhang C, et al. Roles of the Siglec family
in bone and bone homeostasis. Biomed Pharmacother (2023) 165:115064. doi: 10.1016/
J.BIOPHA.2023.115064

2. Ye K, Zhang X, Li S, Liu X, Nie X, Qiao Y. Manganese-implanted titanium
modulates the crosstalk between bone marrow mesenchymal stem cells and
macrophages to improve osteogenesis. J Funct Biomater (2023) 14:456. doi: 10.3390/
JFB14090456/S1
3. de Oliveira MC, Heredia JE, da Silva FRF, Macari S. Extracellular vesicles in bone
remodeling and osteoporosis. Adv Exp Med Biol (2023) 1418:155–68. doi: 10.1007/978-
981-99-1443-2_11/FIGURES/2

4. dos Anjos Pultz B, Andrés Cordero da Luz F, Socorro, Peixoto Ferreira de Souza L,
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