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Oncolytic viruses (OVs) are emerging cancer therapeutics that offer a

multifaceted therapeutic platform for the benefits of replicating and lysing

tumor cells, being engineered to express transgenes, modulating the tumor

microenvironment (TME), and having a tolerable safety profile that does not

overlap with other cancer therapeutics. The mechanism of OVs combined with

other antitumor agents is based on immune-mediated attack resistance and

might benefit patients who fail to achieve durable responses after immune

checkpoint inhibitor (ICI) treatment. In this Review, we summarize data on the

OV mechanism and limitations of monotherapy, which are currently in the

process of combination partner development, especially with ICIs. We discuss

some of the hurdles that have limited the preclinical and clinical development

of OVs. We also describe the available data and provide guidance for optimizing

OVs in clinical practice, as well as a summary of approved and promising novel

OVs with clinical indications.
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Introduction

Oncolytic virotherapy is a promising emerging class of anticancer approaches (1). The

foundation of oncolytic viruses (OVs) is that they infect and lyse tumor cells but leave

normal cells intact (2). From the original natural virus to a gene-edited virus, the oncolytic

virus has developed from herpes virus to more than ten commonly used viruses, including

herpes simplex virus (HSV), adenovirus, vaccinia virus (VV), Newcastle disease virus

(NDV), measles virus (MV), reovirus, coxsackie virus, poliovirus, and vesicular stomatitis

virus (VSV). Oncolytic virus species span from single strand to double strand, from RNA to
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DNA, and from natural to gene editing, greatly improving the

flexibility of this therapy in clinical treatment (3, 4).

OVs provide novel and promising treatment options for tumor

patients resistant to traditional therapies. Currently, several viruses

have already been approved, and some are being extensively

investigated and are undergoing clinical trials in various types of

advanced cancers. Despite the antitumor potential of OVs, there are

still some unique limitations for developing OVs into a new class of

anticancer drugs, including inadequate OV penetration and spread,

host antiviral immunity, patient selection, and low or moderate

efficacy when used as single agents. More studies are needed to

overcome the preclinical and clinical challenges.

Therefore, in this review, we will discuss the mechanism and

limitations of monotherapy. In particular, we will delve into the

process of combination therapy, especially with ICIs. Ultimately, we

will discuss the challenges and optimization strategies of oncolytic

virotherapy to overcome these barriers.
Mechanism of OV

OVs directly lyse tumor cells

Normal host cells can clear viruses by activating signaling

pathways. However, tumor cells lose antiviral ability and allow

the replication of viruses (5, 6). OVs target tumor cells to selectively

infect, replicate, and lyse cancer cells, leaving normal cells

unharmed. OVs also release progeny virions that spread to

uninfected cells, resulting in amplification of oncolytic activity (7,

8). OVs can be classified into naturally occurring viruses and

genetically modified viruses, while most oncolytic viruses are not

naturally but rather genetically modified for oncolytic activity.

Naturally occurring OVs, such as reovirus, NDV, enteroviruses,

and MV, were mainly used in their native forms. However, human

pathogenic viruses such as HSV and adenovirus have been

genetically modified (3). There are novel methods to genetically

modify OVs instead of traditional time-consuming and labor-

intensive methods. The Cerullo group described a new method

called GAMER-Ad to genetically modify adenovirus genomes

within 2 days, which consisted of using the well-described cloning

method Gibson Assembly to replace the gp19k region with a gene of

interest (9). The Zhang group also showed the “plug-and-display”

decoration strategy by using SpyTag/Catcher synthesis for the

design of virus-like particle (VLP)-based modular vaccines (10).

Several factors enhance OVs targeting tumor cells but sparing

normal cells. This is due to aberrant signaling pathways in cancer cells

that have effects on the loss of viral defense mechanisms, including

the interferon (IFN), p53, and retinoblastoma (Rb) pathways and the

induction of RAS/RAF/MEK/ERK pathways (11, 12).

First, viruses such as NDV, VSV, MV, and VV use the interferon

(IFN)/protein kinase R (PKR) pathway for their natural oncotropism.

In normal infected cells, IFN production activates the downstream

Janus kinase signal transducer and activator of transcription (JAK/

STAT) signaling pathway, leading to upregulation of PKR. The

autophosphorylation of PKR and phosphorylation of the alpha

subunit of eIF-2 inhibit protein synthesis and viral replication.
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However, most tumor cells deregulate the IFN pathway; thus, PKR

remains unphosphorylated, and viral protein synthesis and

replication continue (13, 14).

Additionally, the hyperactive RAS signaling pathway in tumor

cells is another common feature leading to inhibition of PKR and

allowing replication of OVs such as reovirus, HSV, and VV (15).

On the other hand, cancer cells that harbor the retinoblastoma

(Rb) pathway and deregulated E2F activity will enable OVs such as

adenovirus, reovirus, VV, and HSV to replicate (16). Viruses such

as adenovirus and reovirus prefer to replicate in p53-deficient

cancer cells (17). Adenovirus enters the cell cycle of host cells via

E1A and E1B expression for replication, while E1A interacts with

Rb and blocks the E2F transcription factor, allowing viral

replication. Adenovirus prefers to replicate in Rb-deficient cells,

and a 24-base pair deletion in E1A makes them conditionally

replicate in tumor cells while leaving healthy cells intact (18).
OVs induce antitumor immunity

OVs stimulate innate immune responses. After administration,

viral elements, known as pathogen-associated molecular patterns

(PAMPs), including proteins, DNAs, RNAs and viral capsids, are

exposed to the host immune system (13), which induces

immunogenic cell death (ICD). ICD is the basis for OVs to elicit

antitumor immunity, which includes not only immunogenic

apoptosis but also necroptosis, necrosis, autophagic cell death,

and pyroptosis of cancer cells (19–21).

Furthermore, immunogenic cell death (ICD) caused by OV

exposure leads to the release of tumor-associated antigens (TAAs),

tumor-associated neoantigens (TANs), and damage-associated

molecular pattern molecules (DAMPs) (22, 23). PAMPs/DAMPs

then trigger the overexpression of cytokines and chemokines such

as type I interferons (IFNs), TNF-a, IL-6, IL-1, CCL2, CCL3, CCL5,

and CXCL10 (24). Chemokines and cytokines take part in

recruiting neutrophils and macrophages infiltrating infection sites

as well as stimulating the activity of NK cells and DCs, which

further activates the innate response and turns immunologically

“cold” tumors into “hot” tumors (25).

OVs also induce adaptive immunity against tumor cells mainly

through the tumor-specific T-cell response. After tumor cells are

infected by OVs, type I IFNs activate MHC class I and II molecules

(26) and costimulatory molecules on the surface of DCs, including

CD40, CD80, and CD86 (27–29), which contribute to APC

maturation for recruiting and reactivating T cells. Activated CD8

+ T cells and B cells clear newly grafted tumors as well as distant

tumors in an OV-independent manner (30, 31). Many OVs can

generate specific T-cell immunity in an antigen-specific manner

against cancer, including HSV-1 (32), oncolytic VV (OVV) (33)

vesicular stomatitis virus (VSV) (34), MeV (35), and OAd (36).
OVs affect the tumor extracellular matrix

The extracellular matrix (ECM) is formed by activated cancer-

associated fibroblasts (CAFs) and constitutes a solid tumor mass
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(37). The rigid ECM made by excessive accumulation of

collagenous matrix, proteoglycans, and hyaluronan forms a

physical barrier that hundles OVs to effectively arrive at the

whole tumor mass (38). At the same time, tumor cells can

produce high levels of fibroblast growth factor 2 (FGF2) to render

them sensitive to viral infection (39). Many gene-editing OVs are

focused on enhancing crosstalk between CAFs and cancer cells (39,

40), such as OAd targeting glioblastoma−associated stromal FAP+

cells as well as glioblastoma cells (40).
OVs affect tumor vasculature

OVs are capable of infecting and lysing vascular endothelial

cells (VECs) to affect tumor vasculature. OV HSV-1716 was first

reported to exert direct antiangiogenic effects and contribute to the

overall therapeutic efficacy in ovarian carcinoma (41). Vascular

endothelial growth factor (VEGF) enhances the sensitivity of tumor

vessels to VV infection, depresses the antiviral response by Erk1/2

and Stat3 signaling and upregulates the expression of PRD1-BF1/

Blimp1 in the tumor vasculature (42). Engineered OVs can

selectively target and disrupt the tumor vasculature (43). VSV

was shown in a murine colon cancermodel replicating in the

tumor neovasculature as well as spreading throughout the tumor

mass through three-dimensional imaging (44).
Limitations of monotherapy and
advances in combinatorial therapy

Limitations of monotherapy

Although many tumor-selective mechanisms were validated for

OVs preclinically (45, 46) and clinically (47–50), their efficacy was

limited when administered as monotherapies (2). There are several

potential reasons for the modest activity of systemic OV

monotherapy. First, neutralizing antiviral antibodies induced by

treatment or preexisting antibodies may hinder OVs from

replicating in and lysing tumors (51, 52). Second, antiviral

resistance mechanisms, which include complement activation,

antiviral cytokines, and macrophages, might promote the rapid

clearance of OVs (53, 54). These antiviral immunities may present a

major hurdle for OVs, although the effects of antiviral immunity are

not well defined, and intratumoral OV therapy might overcome this

problem with local and abscopal effects. Interestingly, while

preexisting immunity to NDV limits its replication in tumors,

tumor clearance, abscopal antitumor immune effects, and survival

are not compromised but are superior in NDV-immunized mice

with repeated therapeutic dosing. These studies provide a clinical

rationale for repeated dosing therapy (51). Third, the extracellular

matrix, fibrosis, necrosis, and interstitial hydrostatic pressure may

act as an insuperable physical barrier to prevent OVs from entering

cellular receptors expressed in tight junctions, which has attracted

the attention of many scholars to overcome this challenge (52, 55,

56). Fourth, transgene expression or engineering for tumor

selectivity may cause loss of viral fitness and reduce replication
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competence and oncolytic activity (57, 58). Fifth, the expression of

transgenes may induce clearance of OVs from the substantial

immune response, which promotes continuous optimization and

updates of transgenes (59). Based on the lack of durable response

with monotherapy, research efforts have largely focused on selecting

both a virus and a combination partner.
The basis of combination therapy

Given this, combinatorial therapy with OVs has become an

attractive option. Furthermore, the mechanisms of OVs are

distinctly different from those of other anticancer therapies, and

the toxicity profiles generally do not overlap with those of other

treatments (60, 61); at the same time, OVs can be administered

repeatedly if needed. These features make OVs a rational candidate

for inducing personalized immune responses and combining them

with most other treatment modalities, including chemotherapies,

radiotherapy, targeted therapies, and immunotherapies such as

immune checkpoint inhibitors (ICIs), chimeric antigen receptor

(CAR) T-cell and adoptive T-cell therapies. When deciding the

relative merits of combining the OV with another agent, several

factors must be considered, such as understanding the intrinsic lytic

as well as immune-modulatory properties of the virus, and factors

including the site of action, duration of therapy needed and cost of

goods should also be considered (62). The synergistic effects have

been tested for OVs combined with chemotherapy or radiotherapy

in many studies (3, 63, 64). One recent review (65) summarized the

key molecules in relevant signaling pathways, such as EGFR-KRAS

(e.g., KRASG12C), PI3K-AKT-mTOR, ERK-MEK, JAK-STAT, p53,

PD-1-PD-L1, and epigenetic or immune pathways (e.g., histone

deacetylases, cGAS-STING), which are currently under

investigation and have the potential to be combined with OV. On

the other hand, the induction of a systemic immune response by

OVs to turn ‘cold’ tumors into ‘hot’ tumors could increase

susceptibility to immunotherapy approaches such as ICIs (66).

The combination of CAR-T-cell therapy with genetically modified

OVs can significantly induce CAR-T cells to recognize and

penetrate tumors (67). These combinations might be effective in

overcoming the flaws of each component to further enhance the

outcome (Figure 1).
Combination of OVs and immune
checkpoint inhibitors

The most advanced combination regimens in the clinic are

those with ICIs, with initial data suggesting promise (68). Advances

in the development of ICIs have changed the frame of current

cancer treatment. OV infection can lead to the upregulation of

immune cells as well as immune checkpoint molecules in the TME.

Liu et al. armed OVV with IL-2 to effectively modify the cancer-

immune set point, and combination with an anti-PD-1/PD-L1

antibody could cure most late-stage tumors in mice (69). Bo et al.

revealed that oncolytic HSV2 upregulates PD-L1 expression in the

TME (70). In addition to immune checkpoint molecules expressed
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on T cells and tumor cells, OVs have also been shown to upregulate

immune checkpoint molecules primarily located on NK cells. Wang

et al. reported that oncolytic HSV2 upregulates NKG2A expression

on NK cells and that anti-NKG2A antibodies enhance the

antitumor effects of UV light-inactivated oHSV2-stimulated

NK92 cells in vitro and in vivo (71). Nakao et al. reported that

intratumoral expression of IL-7 and IL-12 using an oncolytic virus

increases systemic sensitivity to immune checkpoint blockade (72).

The upregulation of immune checkpoint molecule expression can

provide targets for subsequent combination therapy with immune

checkpoint inhibitors in clinical studies. Large-scale phase III trials

have established the role of oncolytic viruses, which not only lyse

cells to obtain cancer-killing effects but also cause attractive

alterations in the tumor immune microenvironment. “Priming”

by viral infection can change the ‘cold’ TME into ‘hot’ with a

multitude of immune cells and cytokines, which directs the phase

for subsequent ICI delivery. The number of clinical trials studying

combinations of OVs and ICIs continues to rise, and some with

initial data from these trials have suggested promising therapeutic

potentials with good safety profiles (68).

T-VEC is leading this promising combination immunotherapy.

The phase Ib stage of MASTERKEY-265 showed promising tumor

responses with the combination of T-VEC plus pembrolizumab

(73). Another phase 1b clinical trial also showed a confirmed

objective response rate of 62%, with a complete response rate of

33% with the combination of T-VEC and pembrolizumab (74),

which suggests the impact of T-VEC on cytotoxic T-cell infiltration

as well as enhancing the efficacy of ICI therapy by modifying the

TME (74). Sun et al. reviewed a case series and showed an overall

response rate of 90% when T-VEC was combined with ICIs
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(including pembrolizumab, ipi l imumab/nivolumab, or

nivolumab) for unresectable stage III IV melanoma treatment,

which suggested that the combination could provide synergistic

effects for patients (75). ONCOS-102, an oncolytic Ad5 armed with

GM-CSF, has also shown promising antitumor effects in

combination with pembrolizumab in advanced or unresectable

melanoma (NCT03003676). Some ongoing clinical trials

combining OVs with ICIs are shown in Table 1. This therapy has

great potential to improve cancer treatments in the near future, with

growing numbers of OVs and ICIs entering clinical development.

There are still some noteworthy issues in the combination of OVs

with ICIs, such as different dosing sequences. This includes alternate

administration modes (NCT05228119, NCT05644509), sequential

administration (73) (NCT02798406), and simultaneous administration

of OVs and ICIs [NCT02263508 (74), NCT03647163 (76)]. Based on the

characteristics of OVs and immune checkpoint inhibitors, different

dosing sequences may significantly impact the results of clinical trials.

The influence of the dosing scheme is also evidenced by clinical

studies involving T-VEC and PD-1 inhibitors in melaloma. Though

the phase Ib stage of MASTERKEY-265 showed promising tumor

responses with the combination of T-VEC plus pembrolizumab

(77). The later phase III trial of MASTERKEY-265 combining T-

VEC with pembrolizumab did not yield significant improvements

in PFS or OS compared to the placebo-pembrolizumab

combination (74), which might be due to different dosing

schemes and the subsequent influence on the TME. Notably, the

combination therapy strategies in phase 1b and phase 3 trials

exhibited discrepancies, encompassing variations in the timing of

the initial administration of pembrolizumab in conjunction with

OVs and the intervals between each combination therapy session.
FIGURE 1

OV potential combination strategies in the clinic. Mostoncolytic viruses (OVs) directly lyse tumor cells, increasing the release of DAMPs, PAMPs and
cytokines and promoting the accumulation of CTLs in tumor beds and retention of their killing capability. Cytotoxic chemotherapy (A) and
radiotherapy (B) complement virotherapy through various mechanisms, such as hindering antiviral immune responses, improving tumor cell
immunogenicity via ICD and directly killing cancer cells. Targeted therapies (C) often interrupt abnormal signaling pathways and cause tumor cell
death, which induces weak or moderate immune responses. The infection of OVs leads to overexpression of immune checkpoint molecules such as
PD-L1 and CTLA-4 from cancer cells and promotes a “hotter” immune microenvironment, which provides synergistic effects on the combination of
ICIs (D). Chimeric antigen receptor (CAR) T cell therapy (E) involves T cells expressing genetically modified CARs, which enables them to kill tumor
cells with corresponding specific antigens. The combination of CAR-T-cell therapy with genetically modified OVs can greatly attract CAR-T-cell
penetration into the tumor mass through the overexpression of cytokines in the tumor microenvironment and enhance the treatment effect of CAR-
T cells in cancers.
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Challenges of oncolytic virotherapy

Preclinical challenges

Mouse models
There are several limitations that might influence the evaluation

of OVs with currently available mouse models. First, the highly

restrictive cell tropism of many mammalian viruses that are

designed to be applied to humans hinders their activation in

mouse models. Vaccinia virus is generally tropic for most cell

lines, including mouse- and human-derived cancer, whereas most

mouse cells are resistant to HSV1, with a few notable exceptions,

including A20 lymphoma and D4M melanoma cell lines (32).

Productive infection of human adenoviruses in murine cells is

significantly lower than in human cells (78), although infection

and some replication can be seen (79). That is why most work on

adenovirus immunology has utilized replication-defective vaccine

vectors, and knowledge on the role of immune responses to

replicating adenoviruses is very limited (80). The Syrian hamster

model is both immunocompetent and replication-permissive, with

which human adenovirus replicates well and confirmed replication,

and has become a valuable tool for the field of oncolytic adenovirus

(81). However, in most accasions, immunocompromised mouse

strains, immunocompetent hosts with intact adaptive immune

systems, or even humanized mouse models might be needed
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under certain circumstances. However, they might lack specific

cell types or molecules for understanding the interaction of OVs

with the human immune system (32). In addition, subcutaneous

tumor models cannot reflect the disease features of multiple

metastatic lesions and do not provide an accurate status of the

TME. Orthotopic mouse models are available to provide a

comparable microenvironment, but leading the virus into the

tumor site is more challenging. Patient-derived xenograft mouse

models often have long latency periods, although they can provide a

genetic landscape more accurately (82). Patient-derived organoid

(PDO) models, which maintain the heterogeneity, hypoxic

microenvironments, and diversity of differentiated states seen in

primary tumors, can serve as viable tools for testing OVs (83, 84).

The response of oncolytic adenovirus in renal cell carcinoma

patient-derived organoids (85) and pancreatic patient-derived

organoids (PDOs) (86) indicates that PDO sensitivity to OVs

could be informative.

Balance between antiviral and antitumor
immune responses

The balance between antiviral and antitumor immune

responses to achieve optimal tumor regression is another

challenge for OVs (87, 88). Especially for HSVs or adenoviruses

derived from endemic viruses, cross-reactive antibodies might exist

and impair effective viral replication when previously exposed to
TABLE 1 Clinical trials of OV combined with ICIs.

ClinicalTrials.
gov identifier

OV Checkpoint
inhibitor

Indication N Response data

NCT01740297 T- VEC Ipilimumab Melanoma 198 ORR 39% (T- VEC + ipi) versus 18%
(ipi); P = 0.002

NCT02263508 T- VEC Pembrolizumab Stage IIIB–IV melanoma 21 48% ORR

NCT03153085 HF10 Ipilimumab Melanoma 28 N/A

NCT02272855 HF10 Ipilimumab Melanoma 46 BORR at 24 weeks 41%; median PFS 19
months; median OS 21.8 months

NCT02565992 CAVATAK Pembrolizumab Melanoma 50a N/A

NCT03003676 ONCOS-102 Pembrolizumab Advanced or unresectable melanoma 12a N/A

NCT02626000 T- VEC Pembrolizumab HNSCC 36 ORR 16.7% and disease control
rate 38.9%

NCT02636036 Enadenotucirev Nivolumab Metastatic or advanced- stage epithelial tumors
(CRC, bladder, HNSCC, salivary gland cancer)

30a N/A

NCT02509507 T- VEC Pembrolizumab HCC,liver metastases 244a N/A

NCT03071094 Pexa- Vec Nivolumab First- line HCC 30a N/A

NCT03647163 VSV-
IFNb-NIS

Pembrolizumab NSCLC and HCC 23a N/A

NCT02879760 MG1-
MAGEA3 +
Ad MAGEA3

Pembrolizumab NSCLC 61 N/A

NCT02043665 CAVATAK Pembrolizumab NSCLC and bladder cancer 90 N/A
T- VEC, talimogenelaherparepvec; VSV- IFNb-NIS, vesicular stomatitis virus encoding the interferon-b transgene and sodium–iodide symporter; MG1-MAGEA3, Maraba virus expressing
melanoma-associated antigen A3; Ad MAGEA3, adenovirus vaccine expressing melanoma-associated antigen A3; HNSCC, head and neck squamous cell carcinoma; CRC, colorectal cancer;
HCC, hepatocellular carcinoma; NSCLC, non-small cell lung cancer; ORR, objective response rate; ipi, ipilimumab; BORR, best objective response rate; OS, overall survival; N/A, not available;
PFS, progression-free survival; a Estimated enrollment.
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viruses of the same family (89, 90). Furthermore, advanced-stage

tumors might require repeated OV injections, which might

promote the appearance of neutralizing antibodies. Several

strategies are attempting to reduce antiviral immunity. Some

approaches using protective coatings with chemical polymers,

liposomes, or cell-derived nanovesicles to physically protect OVs

against immune factors are being investigated (91–93), although

these protectively coated OVs are difficult to store and have higher

manufacturing costs.

Ex vivo OV-loaded cells are one strategy for limiting early viral

clearance. Tumor-infiltrating immune cells, including mesenchymal

stem cells, macrophages, dendritic cells, and T cells, can infiltrate

tumor sites and are available as cellular carriers for OVs (94, 95).

Delivering OVs to the brain through certain cellular carriers is a good

method for treating tumors of the central nervous system. For

example, adeno virus-based OV ICOVIR17 carried by tumor-tropic

mesenchymal stem cells demonstrated extended survival in

glioblastoma models as well as amassing of OV in brain lesions (96).

Biomarkers
Furthermore, investigating potential predictive biomarkers for

OV therapy is another challenge and is at a very early stage of

development. There are several directions for biomarkers to assess

the efficacy of OVs. Using viral DNA or protein expression as

biomarkers or using imaging can assess whether OVs have reached

the target tumor. Alternatively, lysis can be evaluated to assess

tumor killing or tumor shrinkage through imaging techniques.

Furthermore, by detecting evidence of a transition from

immunologically cold to hot, biomarkers can assess whether OV

modulates the TME.

Some potential biomarkers to assess the pharmacodynamic

activity of OVs are also under way, which include assessing

specific gene expression in cancer or assessing specific viral gene

expression (97)(29164063). Cathepsins B and L are useful

biomarkers for the efficacy of reovirus-mediated tumor cell killing

(98), and serum high-mobility group box 1 (HMGB1) protein was

reported to be a potential predictive and prognostic biomarker for

adenoviruses combined with immunotherapy (99).

Studies in preclinical models suggest that JAK deficiency might

be associated with the antiviral immune response and viral

replication in HSV1 and VSV (100). Studies of melanoma models

show that STING deficiency improves OV replication and lysis by

T-VEC (101). One example of an imaging technique to track a virus

noninvasively was a measles virus engineered to express the human

thyroid NIS (102).

Other potential molecular and/or cellular characteristics for

predicting clinical benefit are under consideration, including

systemic characteristics, immune-related characteristics, and

tumor-intrinsic characteristics (103). Systemic features include

circulating tumor DNA and exosomes, mainly in the peripheral

circulation. Immune-related features refer to the activation of

innate immunity as well as the induction of infiltrating tumor-

reactive lymphocytes. Tumor-intrinsic characteristics include

tumor mutational burden, tumor cell PD-L1 expression,

inflammatory/antiviral gene expression, and factors related to the
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TME. Further research is necessary to clarify potential biomarkers,

which should be acknowledged in future clinical trials (103).
Clinical challenges

Delivery challenge
Intratumoral administration of oncolytic viruses remains the

predominant delivery method to date. In preclinical and clinical

trials, following intratumoral administration of oncolytic viruses, a

reduction in both injected and noninjected tumor sites suggests that

intratumoral viral delivery exhibits distant effects. The conflict

between the clinical demand for intravenous delivery and the

need for intratumoral injection is the major challenge to the

clinical application of OVs. Intravenous delivery enables

widespread OV infection to all lesions and avoids the need for

localization technicians, especially when tumors are physically

inaccessible. Intravenous delivery offers many advantages, but

several drawbacks should also be considered. First, viral particles

could be precociously cleared by neutralizing antibodies, further

limiting the effect. In addition, the optimal dose is undetermined

after the virus is diluted in peripheral circulation, which makes

bioavailable titers at the tumor site unpredictable. Thus, innovative

strategies for evading neutralization must be developed. Various

approaches, including retargeting (104, 105), the use of cell carriers

(106, 107), coating with polymers (108, 109), and encapsulation in

liposomes (110, 111), have been explored to shield oncolytic viruses

from neutralizing antibodies.

Some early-phase clinical trials are investigating the intravenous

delivery method of OVs. One study of enadenotucirev, a chimeric

oncolytic adenovirus, confirmed that viral particles were

consistently detected on resected tumors after the virus was

administered intravenously before surgery (112). Another study

of the oncolytic vaccinia virus Pexa-Vec, which was given

intravenously to melanoma and colorectal cancer patients prior to

surgery, showed a tolerable safety profile and confirmed the

existence of OVs in resected tumor specimens (113). Recent

advancements in nanotechnology and its application in delivering

nucleic acids are paving the way for novel carrier systems to

overcome the challenges associated with intravenous (IV)

administration of oncolytic viruses. Kennedy et al. pioneered a

nanoparticle-based delivery platform capable of facilitating repeated

IV administration of viral immunotherapies (114).

Safety concerns
OVs are vigorously replicating viruses and need attention related

to the risks of unconscious transmission from patients to other

contacts and the environment when used in the clinic. Guidelines

and protocols for storage, handling, and administration, processes to

operate accidental spills and overdoses, and suitable sterilization of

contact areas are all needed, and several guidance protocols are now

available (115–117). To date, no reported transmission to contacts or

exposures has been presented. One study showed that 8.4% of

household exposures with T-VEC reported cold sores, who were

not confirmed to have infections and had clinically mild symptoms
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(112). Concerns also exist regarding viral shedding, especially in

immunosuppressed patients, and the potential of OVs containing

recombinant DNA elements to recombine with naturally occurring

wild-type viruses. In a study of 97 clinical trials (118), no reported

transmission of OVs to contacts or exposures was presented. The

presence of viruses in tissue was studied to understand the biodelivery

of viruses to tumor sites and to search for tissues and/or fluids that

may be reservoirs or sites of viral shedding. The most common site

evaluated for OV shedding was blood or serum, followed by urinary

shedding and tumor biopsy specimens. Salivary fluid, oral swabs, and

other fluids or tissues, including cerebrospinal fluid, peritoneal

washings, and injection sites, have also reported viral shedding.
Optimizing oncolytic virotherapy

Arming strategies

A dramatic feature of OVs is that they can express transgenes

through genetic modification, which further increases their

functionality. Backbone virus properties of intrinsic lytic and

immune-modulatory features, the site of virus action, duration of

therapy, and cost of goods should be taken into consideration when

gene modification occurs (62).
OVs armed with antigens

OVs can generate vaccine-like responses through the expression

of a TAA in cold tumors, such as oncolytic vaccinia virus expressing

ERBB2 (119) or Maraba MG1 rhabdo virus encoding melanoma-

associated antigen 3 (MAGEA3) (120). Furthermore, OV

replication and spread can induce T cells (121, 122), and this

property could be augmented by transgenes involved in the

homing of T cells (such as the expression of chemokines such as

CCL19) (123). Armed OVs could express specific antigens on

infected tumor cells and be specifically recognized by CAR-T

cells, which enabled OVs to be a good combination with chimeric

antigen receptor (CAR)-T therapy (124–127).

OVs armed with bispecific (CD3 and TAA) T-cell engager

(BiTE) molecules could overcome the shortcoming of BiTE, which

has a short half-life in serum, but OV replication could prolong the

expression of BiTE. This strategy was first reported in VV, which

encodes a secretory bispecific T-cell engager consisting of two

single-chain variable fragments specific for CD3 and the tumor

cell surface antigen EphA2 (EphA2-T-cell engager-armed VV

(EphA2-TEA-VV)), and showed potent antitumor activity in

comparison with control VV plus T cells in a lung cancer

xenograft model (128). OHSV2 armed with BsAb molecules

targeting PD-L1/CD3 could enhance T-cell-mediated tumor lysis

in vitro regardless of PD-L1 high/low expression on tumor cells

(129). OVs armed with BiTEs have shown activation of cytotoxic T

cells as well as oncolysis to produce immune-mediated destruction

of tumors not only in primary ex vivo patients but also in in vivo

xenograft models (130, 131).
Frontiers in Immunology 07
OVs armed with Th1-stimulating cytokines

Armed OVs expressing Th1 cytokines could activate T-cell

migration, proliferation, and homing to the TME and enhance

the antineoplastic immune response (132), as well as successfully

combine with CAR-T-cell therapies in xenograft tumor models

(133). Cytokines, such as GM-CSF, IL-2, IL-12, and IFN-a, play
very important roles in cancer treatment, but cytokines generally

have short half-lives, act over short distances, and need to be

repeatedly administered in short intervals to maintain efficient

bioavailability, which limits their widespread clinical use.

Scientists are making efforts to ensure that cytokines are locally

expressed in tumors and to thus enhance OV antitumor activity as

well as control side effects. Using OVV as an example, Liu et al.

generated several membrane-bound vaccinia virus-armed

cytokines, such as IL-2 (69), IL-12 (134), or IL-23 (135), to avoid

potential systemic toxicity and can also induce potent antitumor

effects, especially when combined with an anti-PD-1/PD-L1

antibody, by curing most late-stage tumors in mice. Other Th1-

cytokine-armed OVVs, such as IL-7, IL-12 (72), IL-10 (136), IL-15

(137), IL-21 (138), IL-24 (139), and IL-36g (140), have also been

developed and shown to be effective and safe in a variety of

tumor models.
OVs armed with ICBs to alleviate
immune suppression

Armed OVs with ICBs engineered to express checkpoint

inhibitor antibodies with viruses to block PD-L1 or CTLA-4

could obtain even better antitumor activity than OVs combined

with ICB therapy. Various studies have demonstrated the benefits of

these armed OVs expressing ICB molecules (141–144).

These schemes also have limitations. First, armed OVs express

tumor-localized ICB, while the maximum benefit of ICB requires

immune cells in the periphery but not only within the tumor. In

addition, the immune response might require ICB and OV on

different schedules.

One study of measles viruses engineered to express anti-CTLA-

4 showed a better effect in controlling tumor growth, while the

survival effects were similar between viruses expressing anti-CTLA-

4 or anti-PD-L1 antibodies and the control group (143). Variability

might be due to different antitumor immunity cycles for CTLA-4 in

the generation stage of T-cell responses but PD-L1 in the

effector phase.

Arming strategies to enhance the effects of ICBs include

molecules that influence the early stage of immune responses.

One study showed that a Newcastle disease virus armed to

express inducible T-cell costimulator (ICOS) ligand, which is

necessary for the survival and function of T cells (145), not only

induced T-cell infiltration in tumors but also enhanced antitumor

efficacy when combined with a CTLA-4 blocking antibody (146).

One other agent, OX40 or its ligand (OX40L), a costimulatory

molecule that activates T cells (147), has been explored in

combination with OVs (148, 149), but an increased T-cell
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response was not transferred to corresponding tumor inhibition

when an OX40 agonist was combined with VSV-IFNb (149). These

studies suggested that research on armed OVs needs to identify the

stage and schedule, not only combination strategies.
Overcoming in vivo barriers to response

Substantial barriers, including physical and immunological

factors, limit the clinical benefits of OVs. Approaches other than

arming and combination factors should be undertaken to overcome

in vivo barriers and enhance treatment responses.

The TME, similar to cancer-associated fibroblasts, can cause the

deposition of extracellular matrix, which hinders the distribution of

OVs, results in small loci of replication, and restricts immune cell

migration into cancers (150). Armed OVs with transgenes to

change the extracellular matrix components, including

hyaluronidase, decorin, or relaxin, by degrading the ECM might

improve viral spread, normalize the vasculature, and induce

immune cell infiltration (151–153).

Poor penetrance for mislocalization can negatively influence the

delivery of OVs. Inhalers for aerosol delivery offer a noninvasive

method for delivery to the lung (154). OV delivery with ultrasound

cavitation, a technique using ultrasound with microbubble

formulation, can increase replication and spread (155), as well as

intratumoral uptake of systemically delivered vaccinia virus (156).

The application of cationic lipids (157) or pegylation (PEG) (158)

might weaken the liver sequestration and toxicity of OVs.

In most accasions, anti-viral immunity presents a major hurdle

for systemically administered OVs, and studies are trying to reduce

vector neutralization and promote the T-cell response to overcome

immunological barriers. Strategies to evade this, including cell carrier

tropism for tumor tissues, such as peripheral blood mononuclear

cells, which act as carriers for oncolytic reoviruses (159), can enable

OVs to be shielded intracellularly. Moreover, antibody-blinded

viruses, where nAb epitopes on viruses have been preidentified and

mutated, can overcome the influence of OV delivery even with

preexisting immunity (160). On the other hand, the effects of anti-

viral immunity can also be a double-edged sword. Zamarin’s group

demonstrated that preexisting immunity to NDV may increase its

therapeutic efficacy through the potentiation of systemic antitumor

immunity (51). Another study also showed that the anticancer

efficacy of an HSV-1 OV can be enhanced by preimmunization

and multicycle administration (161). The Cerullo‘ group also showed

that preexisting antiviral immunity might enhance OV-induced

antitumor immunity in oncolytic adenovirus (162).

Poor T-cell priming can lead to a lack of viral recognition and a

lack of lysis. Homologous (repeated doses of the same virus) and

heterologous (multiple doses of different viruses) prime-boost

regimens can enrich the T-cell response and promote priming by

OVs. One study reported in 2017 showed that the combination of

three different treatments (priming with systemically delivered

Reovirus, followed by double boosting with systemic VSV-ASMEL

and anti-PD-1) significantly enhanced survival, with long-term cures,

compared to any individual, or double, combination therapies,

associated with strong Th1 and Th17 responses to tumor antigens,
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which indicated that it is possible to generate fully systemic, highly

effective antitumor immunovirotherapy by combining oncolytic virus

therapy (163).
Approved and promising novel OVs in
different cancers

Numerous OVs are currently in clinical progress. Different

tumors, including melanoma, liver cancer, head and neck cancer,

glioma, bladder cancer, pancreatic cancer, nasopharyngeal cancer,

and lung cancer, are treated by OVs registered for clinical trials.

One review (118) included 97 studies reporting data in 119 papers

from 2000 to 2020 regarding OVs and showed that adenovirus is the

most popular OV in clinical trials and that the most common tumor

studied was melanoma. Here, we describe several OVs already

approved (Table 2) and those in the later phase of clinical

progress with hopeful clinical indications.
Melanoma

Melanoma is a good candidate for the treatment of OV.

Talimogenelaherparepvec (T-VEC), an engineered oncolytic herpes

simplex virus type 1 (HSV1), was evaluated in a prospective

randomized trial in patients with accessible and unresectable

melanomas. The durable response rate (DRR) was 16.3% in

patients receiving T-VEC versus 2.1% in those receiving GM-CSF,

as well as improvements in overall survival (OS) (23.3 months versus

18.9 months), which led to full FDA approval in 2015 (48). T-VEC

has since also been approved for use in Europe, Australia, and Israel.

ECHO-7, a genetically nonmodified, oncotropic and oncolytic

echovirus, was first approved in 2004 in Latvia and then in Georgia

and Armenia for the decreased risk of disease progression relative to

other experimental immunotherapies, HR 6.67 (P < 0.001) (164).

There are still some ongoing trials for the therapy of melanoma

with OVs. HF10, an HSV1-based OV, is being assessed with

metastatic or unresectable melanomas combined with ipilimumab

(165) or as monotherapy in advanced-stage cutaneous solid tumor

patients (166). Preliminary reports showed that the ORR at 24

weeks was 41%, 68% of patients had stable disease, the median PFS

was 19 months, and the median OS was 21.8 months with good

tolerance (165).
Nasopharyngeal carcinoma

The oncolytic adenovirus H101, with E1B-55KD and partial E3

deletion, was the first approved OV in China to treat head and neck

cancer in 2005 (167). In a phase III randomized clinical trial, H101

was given intratumoral injection and combined with chemotherapy

for treating squamous cell cancer of the head and neck or

esophagus, and the ORR was 72.7% in the combination group

versus 40.3% with chemotherapy alone. Injection site reactions were

observed in 28.3% of patients, and 9.8% of patients had influenza-

like symptoms (168, 169).
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Malignant glioma

Malignant glioma is aggressive, with a median OS of

approximately 15 months (170). Glioma is restricted to the CNS,

and local approaches, such as OVs, are an available therapy,

including HSV1, adenoviruses, and polioviruses.

A single-arm phase II trial showed that a third-generation HSV1-

based OV, Teserpaturev (G47D), demonstrated a 1-year OS of 84.2%

in recurrent and/or residual glioblastoma patients with tolerable

adverse events, such as fever, vomiting, nausea, and leukopenia and

was approved in Japan for malignant glioma patients (2, 171). At the

same time, G207, the oncolytic HSV1 strain, was assessed in pediatric

glioma patients with high-grade glioma, and benefits were shown in

nearly all patients (11/12) with a median OS of 12.2 months (172,

173) and only resulted in grade 1 adverse events.

Tasadenoturev, an adenovirus type 5-based OV, was assessed in

12 pediatric glioma patients with diffuse intrinsic pontine, and

measurable shrinkage was observed in 75% of patients with a

median OS of 17.8 months, but three events showed muscle

weakness and headaches, grade 3 (174). Then, the tolerability and

efficacy of tasadenoturev were evaluated in 37 adult recurrent

glioma patients (174), and 20% of patients were still alive at 3

years after therapy, including 3 patients who had nearly complete

responses (with ~95% tumor material loss) (175), with only 2

patients with treatment-related adverse events.

In addition to DNA viruses, RNA viruses, including poliovirus,

are also being evaluated in clinical studies. PVS-RIPO, a recombinant

attenuated poliovirus, was evaluated in a phase II study in patients

with recurrent glioblastoma who received intratumoral PVS-RIPO

and had a 1-year OS of 21% but with grade 3–5 adverse events in 19%

of patients (including 1 treatment-related death) (176, 177).
Bladder cancer

Nonmuscle invasive bladder cancer (NMIBC) is another

indication for OV treatment, with most tumors arising in the

urothelium of the bladder and are available for direct injections

through intravesical infusions.

An adenovirus serotype 5-based OV, CG0070, encoding GM-

CSF, was evaluated in a phase I/II trial and showed a complete
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response rate of 48.6% in a dose-dependent manner among 35

patients with a 10.4-month median duration of response (178).

CG0070 demonstrated a 47% 6-month CR rate in another phase II

trial in 45 patients with bacillus Calmette–Guerin (BCG)-refractory

NMIBC with good toleration, and the most common therapy-related

adverse reactions were bladder spasms, hematuria and dysuria (179).

CG0070 in combination with ICIs, including pembrolizumab, was

investigated with promising results (180) (NCT04387461).
Pancreatic adenocarcinoma

Pancreatic adenocarcinoma is aggressive with a poor prognosis,

with 1- and 5-year survival rates of ~18% and 7%, respectively. OVs are

available therapies combined with traditional therapy in pancreatic

tumors. Reovirus is a kind of ubiquitous double-stranded RNA virus to

which most people have preexisting antibodies, but cancer cells with an

activated RAS signaling pathway aremore susceptible to reovirus (181).

Reolysin, an oncolytic reovirus, has been assessed in clinical trials to

evaluate its effect when combined with radiotherapy, immunotherapy,

or chemotherapy (182, 183). In a phase Ib study with advanced-stage

pancreatic adenocarcinoma patients, the combination of reolysin with

immunotherapy (pembrolizumab) plus chemotherapy showed a 30%

disease control rate (3 of the 10 evaluable patients), with 1 partial

response lasting 17.4 months (184). In a phase II study in pancreatic

adenocarcinoma patients receiving reolysin in combination with

gemcitabine, the median OS was 10.2 months (182).
Other solid tumors

There are studies on the use of OVs to treat other solid tumors,

such as lung cancer and colorectal cancer. Seprehvir, an HSV1716-

based OV, was assessed in a phase I/II trial with advanced-stage solid

tumor patients involving children and young adults (11–30 years of

age) and showed that two patients had stable disease in response to

seprehvir (185). ONCR-177 was tested in phase I trials in advanced-

stage and/or metastatic solid tumor patients as monotherapy or

combined with pembrolizumab (186) (NCT04348916).

Coxsackievirus-based OVs were evaluated alone and combined with

ICIs in non-small-cell lung or bladder cancer patients (118).
TABLE 2 Currently approved viruses worldwide.

Name Virus Indication Location Results from registry studies

Oncorine
(H101)

Adenovirus
Serotype 5

In combination with chemotherapy
for patients with NPC

China (2005) ORR 72.7% versus 40.3%

Imlygic
(T-VEC)

HSV1 Unresectable stage IIIB–
IV melanoma

Australia(2016), Europe(2015),
Israel (2017), USA(2015)

DRR 16.3% versus 2.1%; median OS 23.3 months
versus 18.9 months, HR 0.79, (P = 0.051)

Delytact
(Teserpaturev)

HSV1 R/R glioblastoma following
radiotherapy and temozolomide

Japan (2021) Median PFS 4.7 months; median OS 20.2 months;

Rigvir
(ECHO-7)

Echovirus Stage I–II melanoma Armenia (2016), Georgia
(2015), Latvia (2004)

Decreased risk of disease progression with ECHO-7
relative
to other experimental immunotherapies, HR 6.67 (P
< 0.001)
T-VEC, talimogenelaherparepvec; HSV1, herpes simplex virus type 1; BCG, bacillus Calmette–Guerin; DRR, durable response rate; ORR, objective response rate; OS, overall survival; PFS,
progression-free survival.
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Conclusion and perspectives

OVs represent a new class of cancer treatments and hold great

promise as novel cancer therapeutics. The main increasing interest

in OV is the ability to induce lytic tumor cell death that promotes

both innate and tumor-specific adaptive immune responses. At the

same time, viruses are capable of being modified to enhance

antitumor benefits by improving entry and replication in tumor

cells and promoting antitumor immunity.

The clinical performance of OV monotherapy failed to match

expectations to a certain extent, but combination therapy offered

further promise with durable responses, especially combined ICI

therapies. There is increasing evidence that the combinations of

OVs with ICIs, or even ICIs encoded by OVs, may induce

synergistic effects and have the potential to treat recalcitrant,

immunologically cold tumors. The application of OV–ICI

combinations is still in its early stage and is expected to develop

along the traditional paradigm, not only for use in later lines for

recurrent/metastatic disease but also for potential use in

neoadjuvant and definitive chemoradiotherapy settings. However,

the phase III clinical trial of MASTERKEY-265 (74) using OVs and

ICIs has resulted in failure, suggesting the need for more

exploration of combination therapy modalities, including dosing

schemes, such as alternative, sequential or synchronous dosing, as

well as dosing sequences and dosing interval patterns.

Like other therapeutic strategies, considerable preclinical and

clinical challenges continue to impair OV development, such as

incomplete understanding of the underlying mechanisms of tumor

regression with specific OV agents, penetration into the tumor bulk,

antiviral immune responses, off-target infection, adverse conditions

in the tumor microenvironment, the lack of specific predictive and

therapeutic biomarkers, and limited standardization of immune

correlates in clinical trials. However, updated achievements to

deepen the understanding of the mechanisms and immunology of

OV therapy are guiding new OV tactics. With increased molecular

understanding, a number of studies for optimizing oncolytic

virotherapy are in clinical development.

The review of the clinical landscape of OV showed that the most

common tumors targeted in OV cancer clinical trials were

melanoma and gastrointestinal cancers, and the most common

viruses used were adenovirus, HSV-1, reovirus and poxviruses

(118), indicating that most clinical trials used DNA viruses with

genetic modifications and transgene expression, such as GM-CSF.

One meta-analysis by Li et al. reported that T-VEC showed

remarkable efficacy with prolonged overall survival compared to

other OVs, and the advantage of the objective response rate was
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identified with oncolytic DNA viruses via intratumoral injections

but not in RNA viruses through intravenous injections (187). In

general, solid tumors, especially those with sufficient infiltration of

immune cells, are mainly targeted by oncolytic viruses.

Considering the many variables with OV therapies discussed,

many directions are on the way for clinical trials, and the progress of

treatment means will empower the full possibilities of OVs. There

are many opportunities ahead for the development of these

therapeutic strategies that may substantially improve cancer-

related outcomes.
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