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Background: Since NEK7 is critical for NLRP3 inflammasome activation, NEK7

inhibitors could be employed as therapeutic agents against gout, a representative

disease caused by NLRP3 inflammasome.

Methods:We designed NEK7 inhibitors based on biochemical kinome profiling of

2,7-substituted thieno[3,2-d]pyrimidine derivatives (SLC3031~3035 and

SLC3037). Inflammasome activation was assessed by ELISA of IL-1b and

immunoblotting of IL-1b maturation after treatment of bone marrow-derived

macrophages with LPS+monosodium urate (MSU). NLPR3 binding to NEK7 and

oligomerization were examined using immunoprecipitation and Blue Native gel

electrophoresis, respectively. In vivo effect was investigated by studying gross

and histopathological changes of food pad tissue of MSU-injectedmice, together

with assays of maturation of IL-1b and ASC speck in the tissue.

Results: SLC3037 inhibited inflammasome by MSU and other inflammasome

activators through blockade of NLRP3 binding to NEK7 or oligomerization, and

subsequent ASC oligomerization/phosphorylation. SLC3037 significantly

reduced foot pad thickness and inflammation by MSU, which was superior to

the effects of colchicine. SLC3037 significantly reduced content or maturation of

IL-1b and ASC speck in the food pad. The number and height of intestinal villi

were decreased by colchicine but not by SLC3037.

Conclusion: SLC3037, a NLRP3 inhibitor blocking NEK7 binding to NLRP3, could

be a novel agent against diseases associated with NLRP3 inflammasome

activation such as gout, cardiovascular diseases, metabolic syndrome or

neurodegenerative diseases.
KEYWORDS

inflammasome, NEK7, gout, monosodium urate, crystal
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2023.1307739/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1307739/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1307739/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1307739/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2023.1307739&domain=pdf&date_stamp=2024-02-02
mailto:jhyoun@hanyang.ac.kr
mailto:TBSIM@yuhs.ac
mailto:mslee0923@sch.ac.kr
https://doi.org/10.3389/fimmu.2023.1307739
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2023.1307739
https://www.frontiersin.org/journals/immunology


Park et al. 10.3389/fimmu.2023.1307739
1 Introduction

The inflammasome is a cytoplasmic multiprotein complex

comprising a sensor protein, an adaptor protein ASC (apoptosis-

associated speck-like protein containing a caspase-recruitment

domain), and pro-caspase-1 (1). When the inflammasome

complex is assembled through a homotypic interaction between

PYD and CARD domains of sensor proteins and ASC, inactive pro-

caspase-1 is auto-processed to active caspase-1, leading to

maturation of pro-interleukin-1b (pro-IL-1b) or pro-IL-18 to

their active forms (1, 2). There are several types of

inflammasomes depending on the sensor proteins, and the

NLRP3 inflammasome has been most extensively studied due to

its potential contribution to the pathogenesis of numerous diseases

such as cardiovascular, metabolic, neurodegenerative, and

infectious diseases including COVID-19 infection (3–5).

Among diseases related to the NLRP3 inflammasome, gout is

one of the first diseases pathogenically associated with the

inflammasome (6). NLRP3 can be activated by diverse stimulators

ranging from microbial products to host-derived danger signals or

metabolites. Among diverse activators, monosodium urate (MSU)

is a classical NLRP3 activator linked to the development of gout.

MSU crystal belongs to lysosomotropic agents that can activate the

inflammasome by acting on lysosomes after trapping into the

lysosomal lumen (7, 8). Asymptomatic gout is managed by drugs

inhibiting synthesis of uric acids such as allopurinol and febuxostat,

or uricosuric agents. However, once gout attack due to MSU crystal

deposition in tissues occurs, available drugs are only colchicine,

corticosteroids, or non-steroidal anti-inflammatory drugs (9).

Although colchicine has been employed as the drug of choice for

gout attack for more than 200 years, its mechanism of action was

recently elucidated: suppression of the microtubule-mediated

NLRP3 inflammasome (6, 10). While clinically effective,

colchicine has several adverse effects including severe

gastrointestinal discomfort, diarrhea, bone marrow suppression,

and hepatotoxicity (11). However, no drugs have been developed

so far that can replace colchicine as the first-line drug against

gout attack.

Assembly of the NLRP3 inflammasome during activation is

regulated by several factors or events. Among them, NEK7, a

member of the NIMA-related kinase (NEK) protein family, is

critical in NLRP3 oligomerization as a downstream of K+ efflux

(12, 13), which is another crucial event in most types of

inflammasomes (14). After sensing a drop in intracellular K+

concentration, NLRP3 localization and structure are changed (15,

16). NEK7 localized to the centrosome bridges NLRP3 subunits

recruited to microtubule-organizing center (MTOC) through

dynein-mediated retrograde transport (17). In this process, NEK7

binds to the concave site of the LRR domain of NLRP3 and induces

disassembly of the preassembled NLRP3 complex, exposure of the

hidden PYD domain, and formation of the NLRP3 oligomer

complex comprising ASC and pro-caspase-1 (15, 18). Thus,

NEK7 can be a superb target for treatment of inflammasome-

related diseases. Indeed, several drugs including MCC950, C1-27,

IAA94, Rg3, and oridonin have been reported to suppress the

inflammasome through NEK7 inhibition (19–21). In particular,
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MCC950 binds to the LRR domain of NLRP3 and stabilizes closed

NLRP3 conformation inhibiting NEK7 binding (18). However,

most of these agents were identified in systems unrelated to

inflammasome and later found to have inhibitory activity on the

inflammasome (18, 21–23).

In an attempt to develop novel inhibitors of the NLRP3

inflammasome acting on NEK7, we identified an NLRP3 inhibitor

blocking NEK7 binding to NLRP3 and investigated its effect on an

MSU-induced gout animal model, which mimics human gout

arthritis pathogenically linked to the inflammasome.
2 Materials and methods

2.1 Chemistry

General information: Unless otherwise described, all

commercial reagents and solvents were purchased from

commercial suppliers and used without further purification. All

reactions were performed under a N2 atmosphere in flame-dried

glassware. The progress of reactions was monitored by using TLC

with 0.25 mm E. Merck-precoated silica gel plates (60 F254), and a

UV lamp, ninhydrin, or p-anisaldehyde stain for detection

purposes. All solvents were purified by using standard techniques.

Purification of reaction products was carried out by using silica gel

column chromatography using Kieselgel 60 Art. 9385 (230–400

mesh). The purity of all compounds was ≥95%, and mass spectra

and the purities of all compounds were analyzed using the Waters

LCMS system (Waters 2998 Photodiode Array Detector, Waters

3100 Mass Detector, Waters SFO System Fluidics Organizer, Water

2545 Binary Gradient Module, Waters Reagent Manager, Waters

2767 Sample Manager) using the SunFire™ C18 column (4.6 ×

50 mm, 5 mm particle size): solvent gradient = 30% B at 0.00 min,

30% B at 1.00 min, 100% B at 7.00 min, 100% B at 8.00 min, 30% B

at 8.01 min, 30% B at 10.00 min. Solvent A consisted of 0.1%

HCOOH in H2O and solvent B 0.1% HCOOH in MeOH, with a

flow rate of 0.8 ml/min. The % purity of all compounds

was analyzed at wavelengths of 254 nm, 275 nm, and 300 nm.

The 1H and 13C NMR spectra were obtained using a Bruker 400

MHz FT-NMR (400 MHz for 1H and 100 MHz for 13C)

spectrometer. Standard abbreviations are used for denoting the

signal multiplicities.

1-Ethyl-4-(4-nitrophenyl)piperazine (2 in Figure 1): To a

solution of 1 in Figure 1 (1.0 g, 7.09 mmol) in DMSO (7.1 ml),

K2CO3 (1.96 g, 14.18 mmol) and 1-ethylpiperazine (1.80 ml, 14.18

mmol) were added. The reaction mixture was then stirred for 1 h at

room temperature, quenched with water, and diluted with EtOAc.

The organic layer was washed with brine, dried over MgSO4,

filtered, and concentrated. The residue was purified by flash

column chromatography on silica gel (0% to 10% MeOH/DCM)

to afford 2 (1.5 g, 89% yield) as a yellow solid. 1H NMR (400 MHz,

DMSO-d6) d 1H NMR (400 MHz, DMSO-d6) d 8.04-8.00 (m, 2H),

7.01-6.97 (m, 2H), 3.42-3.40 (m, 4H), 2.45-2.43 (m, 4H), 2.33 (q, J =

7.19 Hz, 2H), 1.01 (t, J = 7.15 Hz, 3H); 13C NMR (100MHz, DMSO-

d6) d 154.8, 136.8, 125.7, 112.5, 52.0, 51.5, 46.3, 12.0. LRMS (ESI)m/

z 236 [M + H]+.
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4-(4-Ethylpiperazin-1-yl)aniline (3 in Figure 1): To a solution of

2 of Figure 1 (1.0 g, 4.26 mmol) in EtOAc (14 ml) under H2, Pd/C

(100 mg) was added. The reaction mixture was then stirred for 12 h

at room temperature, filtered through a pad of Celite, washed with

EtOAc, and concentrated. The resulting residue (794 mg, 91% yield)

was used for the next step without further purification. 1H NMR

(400 MHz, DMSO-d6) d 6.70-6.66 (m, 2H), 6.53-6.49 (m, 2H), 4.49

(bs, 2H), 2.93-2.90 (m, 4H), 2.49-2.47 (m, 5H), 2.37 (q, J = 7.13 Hz,

2H), 1.03 (t, J = 7.21 Hz, 3H); 13C NMR (100 MHz, DMSO-d6) d
142.4, 141.8, 117.7, 114.7, 52.5, 51.5, 50.2, 11.8. LRMS (ESI)m/z 206

[M + H]+.

1-Ethyl-4-(6-methoxy-5-nitropyridin-2-yl)piperazine (5 in

Figure 1): The synthesis of 5 was described in our previous

report (24).

N-(3-(2-((4-(4-Ethylpiperazin-1-yl)phenyl)amino)thieno[3,2-d]

pyrimidin-7-yl)phenyl)methanesulfonamide (SLC3031): The

synthesis of SLC3031 was described in our previous report (24).

N-(3-(2-((3,4,5-Trimethoxyphenyl)amino)thieno[3,2-d]

pyrimidin-7-yl)phenyl)methanesulfonamide (SLC3032): The

synthesis of SLC3032 was described in our previous report (24).

7-Bromo-N-(4-(4-ethylpiperazin-1-yl)phenyl)thieno[3,2-d]

pyrimidin-2-amine (6 in Figure 1): The synthesis of 6 was described

in our previous report (24).
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N-(4-(4-Ethylpiperazin-1-yl)phenyl)-7-phenylthieno[3,2-d]

pyrimidin-2-amine (SLC3033): The synthesis of SLC3033 was

described in our previous report (24).

N-(4-(4-Ethylpiperazin-1-yl)phenyl)-7-(3-methoxyphenyl)thieno

[3,2-d]pyrimidin-2-amine (SLC3034): The synthesis of SLC3034 was

described in our previous report (24).

2-(3-(2-((4-(4-Ethylpiperazin-1-yl)phenyl)amino)thieno[3,2-d]

pyrimidin-7-yl)phenyl)isothiazolidine 1,1-dioxide (SLC3035): The

synthesis of SLC3035 was described in our previous report (24).

3-(2-Chlorothieno[3,2-d]pyrimidin-7-yl)-N-(2-(dimethylamino)

ethyl)benzamide (8 in Figure 1): To a solution of 4 in Figure 1 (1 g,

4.02 mmol) in 1,4-dioxane (27 mL), 2 N Na2CO3 (12 mL, 12.05

mmol) and 3-boronobenzoic acid (730 mg, 4.42 mmol) were added.

After flowing nitrogen over the solution for 10 min, Pd(PPh3)2Cl2
(140 mg, 0.20 mmol) and t-BuXphos (85 mg, 0.20 mmol) were

added at room temperature. The reaction mixture was stirred at

100°C for 3 h and filtered through a Celite pad and concentrated.

Dichloromethane (5 ml) and diethyl ether (45 ml) were added to the

residue, stirred at room temperature for 1 h, and filtered. The

resulting solid was washed with diethyl ether and dried at 50°C. To a

solution of the resulting residue (600 mg) in DMF (10 ml) was

added N,N-dimethylethylenediamine (0.45 ml, 4.14 mmol), HATU

(1.6 g, 4.14 mmol), and DIPEA (1.1 ml, 6.21 mmol). The reaction
A B

D

E F

G IH

C

FIGURE 1

Synthesis of the NEK7 inhibitor. SLC3031~3035 and SLC3037 were synthesized as described in “Materials and methods”. Reagent and condition for
these reactions are as follows: (A) K2CO3, 1-ethylpiperazine, DMSO, 100°C, 3 h, 85%–89%; (B) Pd/C, H2, EtOAc, RT, 12 h, 91%–95%; (C) (3-(N-
methylsulfonamido)phenyl)boronic acid, 2 N Na2CO3, Pd(PPh3)2Cl2, t-BuXPhos, 1,4-dioxane, 100°C, 3 h, 73%; (D) various amines, K2CO3, Pd2dba3,
XPhos, 2-BuOH, 100°C, 1 h, 76%–78%; (E) 4-(4-ethylpiperazin-1-yl)aniline, TFA, 2-BuOH, 120°C, 24 h, 73%; (F) various boronic acid, 2 N Na2CO3, Pd
(PPh3)2Cl2, t-BuXPhos, 1,4-dioxane, 100°C, 3 h, 19-71% (G) 3-boronobenzoic acid, 2 N Na2CO3, Pd(PPh3)2Cl2, t-BuXPhos, 1,4-dioxane, 100°C, 3 h;
(H) N,N-dimethylethylenediamine, HATU, DIPEA, DMF, RT, 1 h, 54% over 2 steps; (I) 4-(4-ethylpiperazin-1-yl)aniline, K2CO3, Pd2dba3, XPhos, 2-
BuOH, 100°C, 1 h, 69%. (RT, room temperature).
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1307739
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Park et al. 10.3389/fimmu.2023.1307739
mixture was then stirred for 1 h at room temperature, quenched

with water, and diluted with EtOAc. The organic layer was washed

with brine, dried over MgSO4, filtered, and concentrated. The

resulting residue was purified by flash column chromatography

on silica gel (0% to 10% MeOH/DCM) to afford 8 (781 mg, 54%

yield over two steps) as a gray solid. 1H NMR (400MHz, DMSO-d6)

d 9.58 (s, 1H), 8.88 (s, 1H), 8.73 (t, J = 5.44 Hz, 1H), 8.42 (t, J =

1.59 Hz, 1H), 8.18 (td, J = 1.21, 7.98 Hz, 1H), 7.92 (td, J = 1.28,

7.95 Hz, 1H), 7.67 (t, J = 7.76 Hz, 1H), 3.66 (q, J = 5.91 Hz, 2H), 3.30

(t, J = 6.05 Hz, 2H), 2.87 (s, 6H), 2.60 (bs, 1H); 13C NMR (100 MHz,

DMSO-d6) d 166.7, 159.3, 156.4, 155.8, 138.2, 134.3, 133.4, 132.5,

131.2, 130.9, 128.6, 127.0, 126.8, 56.1, 42.6, 39.4, 34.7. LRMS (ESI)

m/z 361 [M + H]+.

N-(2-(Dimethylamino)ethyl)-3-(2-((4-(4-ethylpiperazin-1-yl)

phenyl)amino)thieno[3,2-d]pyrimidin-7-yl)benzamide (SLC3037):

To a solution of 8 in Figure 1 (300 mg, 0.83 mmol) in 2-butanol

(5.5 ml), 3 (170 mg, 0.83 mmol), K2CO3 (572 mg, 4.15 mmol), Pd2
(dba)3 (76 mg, 0.08 mmol), and XPhos (40 mg, 0.08 mmol) were

added at room temperature. The reaction mixture was then stirred

for 1 h at 100°C, cooled to room temperature, filtered, and

concentrated. The resulting residue was purified by flash column

chromatography on silica gel (0% to 20% MeOH/THF) to afford

SLC3037 (302 mg, 69% yield) as a yellow solid. 1H NMR (400 MHz,

DMSO-d6) d 9.41 (s, 1H), 9.17 (s, 1H), 8.55 (s, 1H), 8.49 (s, 1H),

8.38 (t, J = 5.56 Hz, 1H), 8.20 (d, J = 7.82 Hz, 1H), 7.85 (d, J =

7.82 Hz, 1H), 7.73-7.71 (m, J = 9.05 Hz, 2H), 7.60 (t, J = 7.76 Hz,

1H), 6.87-6.85 (m, J = 9.05 Hz, 2H), 3.42 (q, J = 6.52 Hz, 2H), 3.08-

3.05 (m, 4H), 2.52-2.50 (m, 4H), 2.44 (t, J = 6.97 Hz, 2H), 2.37 (q, J =

7.17 Hz, 2H), 1.03 (t, J = 7.15 Hz, 3H); 13C NMR (100MHz, DMSO-

d6) d 166.2, 158.3, 157.9, 153.7, 146.0, 135.0, 134.1, 133.5, 132.7,

130.3, 128.2, 126.8, 126.2, 122.0, 119.9, 115.7, 58.0, 52.3, 51.5, 49.0,

45.1, 37.4, 11.8. LRMS (ESI) m/z 530 [M + H]+. HRMS (ESI) m/z

calculated for C29H36N7OS
+ [M + H]+: 530.2697. Found: 530.2691.
2.2 Biochemical in vitro kinase assay

Biochemical assay of the SLC3037 effect on NEK7 protein

kinase activity was performed at Reaction Biology Corp. SLC3037

was tested in a 10-dose IC50 mode with threefold serial dilution

starting at 10 µm in the presence of 10 µm of ATP.
2.3 Cell culture and drug treatment

Bone marrow-derived macrophages (BMDMs) were cultured in

DMEM (Welgene, LM 001-05) containing 10% FBS, 100 U/ml

penicillin, and 100 mg/ml streptomycin. For drug treatment, the

following concentrations were used: MSU (500 mg/ml; Sigma,

U2875), LPS (100 ng/ml; Sigma, L3024), SLC3037 (5 mM),

LLOMe (400 nM; Sigma, L7393), nigericin (10 mM; Sigma,

N7143), ATP (5 mM; Roche, 10127531001), and palmitic acid

(PA) (300 mM; Sigma, P9767). PA stock solution (50 mM) was

prepared by dissolving in 70% ethanol and heating at 55°C.

Working PA solution was made by diluting PA stock solution in
Frontiers in Immunology 04
2% fatty acid-free BSA-DMEM. For NLRP3 activation, BMDMs

were treated with MSU, LLOMe, ATP, and nigericin PA for 5 h,

45 min, 45 min, 45 min and 16 h, respectively, after pretreatment

with 100 ng/ml LPS for 4 (MSU) or 3 h (all other activators). For

activation of AIM2 and NLRC4 inflammasomes, BMDMs

pretreated with 100 ng/ml LPS for 3 h were transfected with 1

mg/ml poly(dA:dT) (Sigma, P0883) or 250 ng/ml flagellin

(InvivoGen, tlrl-stfla) using Lipofectamine 2000 (Invitrogen) for

3 h. NEK7 inhibitors were added 1 h before addition of

inflammasome activators or transfection, viz., after 2~3 h of

incubation with LPS.
2.4 Antibodies and immunoblot analysis

Cells or tissues were solubilized in a lysis buffer containing

protease inhibitors. The protein concentration was determined

using the Bradford method. Samples (10~30 mg) were separated

on 4%~12% Bis–Tris gel (NUPAGE, Invitrogen) and transferred to

nitrocellulose membranes for immunoblot analysis using the ECL

method (Dongin LS). To detect cleaved caspase-1 in cells treated in

vitro, culture supernatant was precipitated with cold (−20°C)

acetone, followed by resuspension in a sample buffer and heating

at 100°C for 5 min before electrophoretic separation according to a

previous protocol (25), since the intensity of the caspase-1 band in

the BMDM extract was very faint. Antibodies against the following

proteins were used for immunoblot analysis: IL-1b (R&D systems,

AF-401-NA, 1: 1,000), caspase-1 p20 (Millipore, ABE1971, 1:

1,000), ASC (AdipoGen, AL177, 1: 1,000), phospho-ASC (ECM

Biosciences, AP5631, 1: 1,000), NLRP3 (AdipoGen, AG-20B-0014,

1:1,000), NEK7 (Abcam, ab133514, 1:1,000), HSP 90 (Santa Cruz,

sc13119, 1: 1,000), and b-actin (Santa Cruz, sc47778, 1: 1,000).

Densitometry of the protein bands was performed using

ImageJ software.
2.5 Immunoprecipitation

After lysis of cells in an ice-cold lysis buffer (400 mM NaCl,

25 mM Tris–HCl, pH 7.4, 1 mM EDTA, and 1% Triton X-100)

containing protease and phosphatase inhibitors, lysates were

centrifuged at 12,000g for 10 min in microfuge tubes and

supernatant was incubated with anti-NEK7 antibody (Abcam,

1:1,000) or control IgG in a binding buffer (200 mM NaCl,

25 mM Tris–HCl, pH 7.4, 1 mM EDTA) with constant rotation at

4°C for 1 h. After adding 50 ml of 50% of Protein G bead (Roche) to

lysates and incubating with rotation at 4°C overnight, resins were

washed with a binding buffer. After resuspending pellet in a sample

buffer and heating at 100°C for 3 min, supernatant was collected by

centrifugation at 12,000g for 30 s, followed by electrophoretic

separation in a NUPAGE gradient gel. Immunoblot analysis was

conducted by sequential incubation with anti-NEK7 or -NLRP3

antibody as the primary antibody and then with horseradish

peroxidase-conjugated anti-rabbit IgG or -mouse IgG. Bands were

visualized using an ECL kit.
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2.6 Detection of ASC oligomerization

ASC oligomerization was studied according to a published

protocol (26). Briefly, BMDMs were washed in ice-cold PBS and

then lysed in NP-40 buffer (20 mM HEPES–KOH pH 7.5, 150 mM

KCl, 1% NP-40, and protease inhibitors). Lysate was centrifuged at

2,000g, 4°C for 10 min. The pellet was washed and resuspended in

PBS containing 2 mM disuccinimidyl suberate (DSS) for

crosslinking, followed by incubation at room temperature for

30 min. The samples were then centrifuged at 2,000g, 4°C for

10 min. Precipitated pellets and soluble lysates were subjected to

immunoblot analysis using the anti-ASC antibody.
2.7 Blue-native PAGE

Blue-native polyacrylamide gel electrophoresis (BN-PAGE) was

performed using the Bis–Tris NativePAGE system (Invitrogen),

according to the manufacturer’s instructions. Briefly, cells were

collected and lysed in 1× NativePAGE Sample Buffer containing 1%

digitonin and protease inhibitor, followed by centrifugation at

13,000 rpm, 4°C, for 20 min. 20 ml supernatant mixed with 1 ml
of 5% G-250 Sample Additive was loaded on a NativePAGE 3%

~12% Bis–Tris gel. Samples separated on gels were transferred to

PVDF membranes (Millipore) using a transfer buffer, followed by

immunoblot analysis using the anti-NLRP3 antibody.
2.8 Immunofluorescence study

Tissue samples were fixed in 10% buffered formalin and

embedded in paraffin. Sections of 4-mm thickness were incubated

with anti-ASC antibody (1:200) as the primary antibody. After

staining with anti-rabbit secondary antibody conjugated to Alexa

Fluor 488 (Invitrogen) for 1 h, fluorescence was visualized with an

LSM980 confocal microscope (Zeiss).
2.9 ELISA

Contents of IL-1b and TNF-a in culture supernatants of

BMDMs or tissue extract were determined using mouse ELISA

kits (DY401, R&D Systems for IL-1b and DY410, R&D Systems for

TNF-a), according to the manufacturer’s instruction.
2.10 Animals

C57BL/6 mice were purchased from Orient Bio. All animal

experiments were performed using 9-week-old male C57BL/6 mice

after acclimation in a specific pathogen-free condition for 1 week

before experiment. To induce acute gout arthritis, mice were

injected subcutaneously with 3 mg of MSU crystals into the

plantar surface of the hindfoot pad. 50 mg MSU was suspended

in 1 ml of PBS and sonicated for 3 min on ice. 30 min and 24 h after

MSU injection, each group of mice was treated by intraperitoneal
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injection of SLC3037, an NEK7 inhibitor (25 mg/kg, dissolved in

10% DMSO), or oral administration of colchicine (1 mg/kg,

dissolved in 0.04% ethanol). To reduce pain, anesthesia was

performed using isoflurane during the experiment. Euthanasia

was performed if the weight was reduced by 20%. Foot pad

thickness and %swelling were determined using a digimatic

caliper. Hind paws were removed from mice 48 h after MSU

injection, fixed, and decalcified in 5.5% EDTA in phosphate-

buffered formalin before embedding in paraffin.

All animal experiments were conducted in accordance with the

Public Health Service Policy in Humane Care and Use of

Laboratory Animals. Animal protocols were approved by the

IACUCs of Hanyang University and the Department of

Laboratory Animal Resources of Yonsei University College of

Medicine, AAALAC-accredited units. Temperature of animal

rooms was 22 ± 2°C, and humidity was 50 ± 10%. Foot tissues

were homogenized in RIPA buffer (50 mM Tris–HCl, pH 7.4, 1%

NP-40, 0.25% sodium deoxycholate, 150 mM NaCl, 1 mM EGTA)

containing protease inhibitors, and the homogenates were

centrifuged at 12,000g for 10 min. Supernatant was subjected to

ELISA or immunoblot analysis. To minimize any potential bias, all

male mice were randomly assigned to experimental groups or age-

matched control groups. Samples were prepared, treated, processed,

and analyzed in random order. All samples were collected and

analyzed under the same condition.
2.11 Blood chemistry and hemogram

Analysis of blood chemistry was conducted using a Fuji Dri-

Chem analyzer. Hemogram was obtained using heparinized blood

and a Hamevet950 Blood Analyzer (Drew Scientific).
2.12 Statistical analysis

All values are expressed as the means ± SEM of ≥3 independent

experiments performed in triplicate. Two-tailed Student’s t-test was

employed to compare values between two groups. One-way

ANOVA with Tukey’s test was used to compare values between

multiple groups. Two-way repeated-measures ANOVA with

Bonferroni’s post-hoc test was used to compare multiple repeated

measurements between groups. Levene’s test was employed to

confirm the homogeneity of variances between multiple groups.

GraphPad Prism 6 software was employed for statistical analysis. P

values < 0.05 were considered significant.
3 Results

3.1 Inhibition of inflammasome in vitro by a
NLRP3/NEK7 inhibitor

We have reported that 2,7-substituted thieno[3,2-d]pyrimidine

derivatives possess potent inhibitory activities against Flt3 and

FAK (24). In the course of exploring inhibitory activities of 2,7-
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substituted thieno[3,2-d]pyrimidine derivatives against other

kinases by biochemical kinome profiling, we have found that a

2,7-substituted thieno[3,2-d]pyrimidine derivative could inhibit

NEK7 (data not shown), which led us to explore 2,7-substituted

thieno[3,2-d]pyrimidine derivatives as potential NEK7 inhibitors.

Based on structural features of substituents of the thieno[3,2-d]

pyrimidine derivatives identified by us, six derivatives (SLC3031 ~

3035 and SLC3037) were selected to investigate their inhibitory

activities against the inflammasome. A key intermediate, 7-bromo-

2-chlorothieno[3,2-d]pyrimidine (4 in Figure 1), was synthesized

according to the experimental procedures described in our

previous report (24). The aromatic amine (3 in Figure 1) was

prepared by nucleophilic aromatic substitution reaction of 4-

fluoronitrobenzene with 1-ethylpiperazine (a), followed by

reduction of the nitro group utilizing catalytic hydrogenation (b).

At C-7 position of thieno[3,2-d]pyrimidine, various substituted

phenyl groups were installed through palladium-mediated Suzuki

coupling reactions (c, f, and g). Various amine analogues were

introduced through Buchwald amination coupling reactions (d and

i) and acid-catalyzed amination reactions (e) at the C-2 position of

thieno[3,2-d]pyrimidine for synthesis of SLC3031 ~ 3035 and

SLC3037 (Figure 1).

Using these compounds, we studied whether SLC3031~3035

and SLC3037 at 5mM concentration could inhibit IL-1b release

from bone marrow-derived macrophages (BMDMs) in response to

MSU, an effector of inflammasome activation in gout (6) in

combination with LPS (LPS+MSU). ELISA of culture

supernatant showed that SLC3037 significantly suppressed IL-1b
release in response to LPS+MSU (613.56 ± 36.18 for (−):LPS+MSU

versus 269.07 ± 38.74 pg/ml for SLC3037:LPS+MSU, p < 0.0001 by

one-way ANOVA with Tukey’s test) (Figure 2A). Effects of

SLC3031, SLC3032, SLC3033, SLC3034, and SLC3035 were

marginal without statistical significance (Figure 2A). Thus, we

employed SLC3037 for further studies. Biochemical in vitro

kinase assay confirmed that SLC3037 inhibits kinase activity of

NEK7 with an IC50 value of 2.85 mM (Supplementary Figure 1).

When we studied the dose–response relationship, SLC3037

inhibited both IL-1b release and maturation of pro-IL-1b to IL-

1b after LPS+MSU treatment in a dose-dependent manner

between 1mM and 10mM concentrations (48.26 ± 10.45 for (−):

Veh versus 429.68 ± 91.54 pg/ml for (−):LPS+MSU, p < 0.0001)

(347.65 ± 58.86 pg/ml for 1 mM SLC3037:LPS+MSU, p > 0.1;

129.67 ± 5.73 pg/ml for 2 mM SLC3037:LPS+MSU, p < 0.0001;

134.29 ± 2.78 pg/ml for 5 mM SLC3037:LPS+MSU, p < 0.0001;

59.88 ± 1.38 pg/ml for 10 mM SLC3037:LPS+MSU, p < 0.0001 all

versus (−):LPS+MSU by one-way ANOVA with Tukey’s test)

(Figure 2B), suggesting that SLC3037 is an authentic inhibitor of

inflammasome. Immunoblot analysis also demonstrated that

SLC3037 inhibits maturation of pro-IL-1b to IL-1b in BMDMs

treated with LPS+MSU (Figure 2C), validating the results of

ELISA. Cleavage of pro-casapase-1 to active caspase-1 after LPS

+MSU treatment was also inhibited by SLC3037 when acetone

precipitate of culture supernatant was employed for immunoblot

analysis (Figure 2C). Cleaved caspase-1 was not visible when the

BMDM extract was employed. When inflammasome activators
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other than MSU were employed, IL-1b release in response to LPS +

LLOMe, ATP, nigericin, or PA in combination with LPS was

significantly reduced by SLC3037 (384.10 ± 20.48 for (−):LPS

+LLOMe versus 50.05 ± 7.47 pg/ml for SLC3037:LPS+LLOMe, p

< 0.0001; 54.31 ± 1.62 for (−):LPS+ATP versus 26.70 ± 0.94 pg/ml

for SLC3037;LPS+ATP, p < 0.0001; 915.52 ± 23.31 for (−):LPS

+nigericin versus 463.45 ± 85.48 pg/ml for SLC3037:LPS

+nigericin, p < 0.01; 103.84 ± 7.55 for (−):LPS+PA versus 25.51

± 2.68 pg/ml for SLC3037:LPS+PA, p < 0.0001 by two-tailed

Student’s t-test) (Figure 2D), suggesting that SLC3037 could

inhibit inflammasome activation by multiple activators. In

contrast to the inhibition of IL-1b release by SLC3037, TNF-a
release in response to MSU in combination with LPS was not

significantly decreased by multiple concentrations of SLC3037,

suggesting specific inhibition of inflammasome by SLC3037 (p >

0.1 by one-way ANOVA with Tukey’s test) (Supplementary

Figure 2A). TNF-a release in response to LLOMe or ATP in

combination LPS was also not significantly reduced by SLC3037

(p > 0.1 by two-tailed Student’s t-test), although TNF-a release in

response to nigericin or PA in combination with LPS tended to be

downregulated by SLC3037 (p < 0.01 by two-tailed Student’s t-

test), which could be due to the effects of IL-1b on the secondary

cytokine release (Supplementary Figure 2B). To corroborate the

specific inhibition of the NRLP3 inflammasome by SLC3037, we

studied whether SLC3037 affects IL-1b release in response to poly

(dA:dT) and flagellin, activators of AIM2 and NLRC4

inflammasome, respectively (1, 13). IL-1b release after

transfection of LPS-pretreated BMDMs with poly(dA:dT) or

flagellin was not significantly inhibited by SLC3037 (p > 0.1 and

p > 0.05, respectively, by two-tailed Student’s t-test) (Figure 2E),

indicating that SLC3037 does not affect NEK7-independent

inflammasome activation (13).

We next studied whether SLC3037 could inhibit NEK7 binding

to NLRP3, a critical process in inflammasome activation (27).

Immunoprecipitation study showed apparently reduced NEK7

binding to NLRP3 by SLC3037 (Figure 3A), suggesting that

SLC3037 inhibits inflammasome activation via inhibition of NEK7-

NLRP3 interaction.We also studied NLRP3 oligomerization, which is

a hallmark of inflammasome activation and relies on NLRP3 binding

to NEK7 bridging NLRP3 oligomerization (27). Likely due to

inhibition of NEK7 binding to NLRP3, NLRP3 oligomerization was

apparently reduced by SLC3037 (Figure 3B), suggesting that SLC3037

inhibits the inflammasome through inhibition of NLRP3 binding to

NEK7 and oligomerization. We next studied ASC oligomerization,

which occurs after rearrangement of NLRP3 cages into active

oligomers in association with NEK7 (28). Consistent with the effect

of SLC3037 on the IL-1b release and NLRP3 binding to NEK7,

SLC3037 reduced ASC oligomerization by LPS+MSU (Figure 3C),

indicating that SLC3037 inhibits the inflammasome through

suppression of ASC oligomerization. We also studied ASC

phosphorylation, which is crucial for ASC oligomerization and

inflammasome activation (29). Again, SLC3037 inhibited ASC

phosphorylation by LPS+MSU (Figure 3D), supporting that

SLC3037 inhibits the inflammasome through blockade of ASC

phosphorylation and oligomerization.
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3.2 Inhibition of MSU-induced gout by the
NLRP3/NEK7 inhibitor

Since it is well established thatMSU crystal can elicit inflammasome-

dependent gout in animal models (30), we examined whether SLC3037

could inhibit clinical manifestations of gout in vivo, using an MSU

crystal-induced gout model (30). When MSU was injected

subcutaneously into the foot pad of mice, swelling of the foot pad was

well observed, as evidenced by increased total foot pad thickness, %

swelling, and Dfoot pad thickness, likely due to in vivo inflammasome

activation byMSU (Figures 4A, B). Foot pad swelling reached a peak 5 h

after injection and waned after 24 h~48 h (Figure 4B). When SLC3037

was injected twice at 30 min and 24 h after MSU injection, foot pad

swelling was significantly reduced as evidenced by decreased total foot

pad thickness, %swelling, and Dfoot pad thickness compared with PBS-

treatedmice (foot pad thickness at 48 h: 2.59 ± 0.02 forMSU+PBS versus

2.22 ± 0.03 mm forMSU+SLC3037, p < 0.0001; %swelling at 48 h: 35.51

± 1.90 forMSU+PBS versus 15.84 ± 1.06 forMSU+SLC3037, p < 0.0001;
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Dfoot pad thickness at 48 h: 0.67 ± 0.02 for MSU+PBS versus 0.30 ±

0.02 mm for MSU+SLC3037, p < 0.0001 by two-way ANOVA with

Bonferroni’s test) (Figure 4B), suggesting suppression of MSU-induced

tissue inflammation in vivo by SLC3037. We also examined the effect of

colchicine dosed at 1 mg/kg, which has been used to treat MSU-induced

gout in experimental animals (30). This dose of colchicine is equivalent

to 0.081 mg/kg for human patients (31) and is higher than the dose for

human patients with acute gout attack (9, 32). Although colchicine

significantly reduced foot pad thickness, %swelling, and Dfoot pad

thickness 48 h after MSU injection (foot pad thickness: 2.38 ±

0.03 mm for MSU+colchicine, p < 0.001 versus MSU+PBS; %swelling:

23.60 ± 1.54 for MSU+ colchicine, p < 0.001 versus MSU+PBS; Dfoot
pad thickness: 0.45 ± 0.03 mm for MSU+colchicine, p < 0.001 versus

MSU+PBS by two-way ANOVAwith Bonferroni’s test), the decreases of

total foot pad thickness, %swelling, and Dfoot pad thickness were

significantly less than those in MSU-injected mice treated with

SLC3037 (foot pad thickness: p < 0.01; %swelling: p < 0.05; Dfoot pad
thickness: p < 0.05 by two-way ANOVA with Bonferroni’s test)
A B

D

E

C

FIGURE 2

Inhibition of the inflammasome by SLC3037. (A) BMDMs were primed with 100 ng/ml LPS for 4 h and then treated with 500 mg/ml MSU for 5 h, in
the presence or absence of NEK7 inhibitors. The IL-1b content in the culture supernatant was determined by ELISA (n = 3 each). (B) BMDMs were
treated with LPS+MSU with varying concentrations of SLC3037. The IL-1b content in the culture supernatant was determined by ELISA (n = 4 each).
(C) After treatment of BMDMs as in (B), the cell extract or resuspended acetone precipitate of culture supernatant (SN) was subjected to immunoblot
analysis using indicated antibodies. (D) BMDMs were primed with 100 ng/ml LPS for 3 h and then treated with LLOMe for 45 min, ATP for 45 min,
nigericin for 45 min, or PA for 16 h in the presence or absence of SLC3037, and IL-1b content in the culture supernatant was determined by ELISA
(n=4 each). (E) BMDMs pretreated with 100 ng/ml LPS for 3 h were transfected with poly(dA:dT) or flagellin for 3 h in the presence or absence of
SLC3037, and the IL-1b content in the culture supernatant was determined by ELISA (n = 4 each). All data in this figure are the means ± SEM from
more than three independent experiments. Red arrowheads indicate bands representing mature IL-1b. ***p < 0.001 by one-way ANOVA with
Tukey’s test.
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(Figure 4B), suggesting a higher efficacy of SLC3037 compared with

colchicine in treating acute gout attack.

When we studied histopathologic changes in hind paws 48 h after

injection, MSU-treated mice exhibited marked inflammatory cell

infiltration in subcutaneous soft tissue and joint space, which could

explain tissue swelling (Figure 4C). Here, administration of SLC3037

dramatically reduced inflammatory cell infiltration in soft tissue of the

foot pad. Colchicine also reduced the inflammatory cell infiltration

albeit to an apparently lesser extent compared with SLC3037

(Figure 4C), consistent with the aforementioned clinical results

demonstrating higher efficacy of SLC3037 compared with colchicine.
3.3 Inhibition of MSU-induced
inflammasome activation in vivo by the
NLRP3/NEK7 inhibitor

We next studied whether improved clinical manifestation of

gout and inflammation by the NEK7 inhibitor are due to inhibition
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of MSU-induced inflammasome in vivo. When the IL-1b content in

tissue extract of the foot pad from MSU-treated mice was

determined using ELISA, significant IL-1b was detected

(Figure 5A), indicating inflammasome activation by MSU.

SLC3037 administration significantly suppressed IL-1b content in

foot pad tissue of mice treated with MSU (442.31 ± 46.46 for MSU

+PBS versus 280.30 ± 31.88 pg/ml for MSU+SLC3037, p < 0.01 by

one-way ANOVA with Tukey’s test) (Figure 5A). In contrast, the

decrease of IL-1b content in foot pad tissue of MSU-treated mice by

colchicine was statistically insignificant (Figure 5A). Immunoblot of

foot pad tissue extract demonstrated maturation of pro-IL-1b to IL-

1b and caspase-1 cleavage by MSU injection (Figure 5B), consistent

with inflammasome activation by MSU. SLC3037 administration

significantly suppressed maturation of pro-IL-1b to IL-1b and

caspase-1 cleavage in tissue extract of the foot pad by MSU as

determined by densitometric analysis (IL-1b: 0.98 ± 0.16 for MSU

+PBS versus 0.24 ± 0.02 for MSU+SLC3037, p < 0.01; caspase-1:

0.92 ± 0.01 for MSU+PBS versus 0.50 ± 0.12 for MSU+SLC3037, p <

0.05 by one-way ANOVA with Tukey’s test), indicating inhibition
A B

DC

FIGURE 3

Inhibition of NLRP3 and ASC oligomerization by SLC3037. (A) BMDMs were treated with LPS+MSU in the presence or absence of SLC3037. The cell
lysate was immunoprecipitated using the anti-NEK7 antibody, which was subjected to immunoblot analysis using the indicated antibodies as
described in “Materials and methods” (red arrowhead, NLRP3 band) (B) After treating BMDMs as in (A), the cell lysate was separated on a Blue native
gel, which was subjected to immunoblot analysis using anti-NLRP3 antibody. (C) BMDMs were treated with LPS+MSU in the presence or absence of
SLC3037. The cell extract was subjected to immunoblot analysis using anti-ASC antibody after DSS crosslinking. (D) Cells were treated as in (C), and
the cell extract was subjected to immunoblot analysis using anti-p-ASC (Tyr144) antibody.
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of inflammasome activation (Figure 5B). Colchicine also decreased

pro-IL-1b maturation to IL-1b and caspase-1 cleavage by MSU;

however, the decreases were statistically insignificant (Figure 5B),

suggesting a stronger suppressive effect of SLC3037 on the

inflammasome compared with colchicine. In contrast to the

inhibition of IL-1b release by SLC3037 in vivo, the content of

TNF-a in the foot pad lysate of mice injected with MSU was not

significantly reduced by SLC3037 administration, suggesting

specific inhibition of the inflammasome by SLC3037 in vivo (p >

0.05 by one-way ANOVA) (Supplementary Figure 2C).

Additionally, we studied ASC speck, a hallmark of tissue

inflammasome activation (29). In the foot pad of MSU-injected

mice, ASC speck was well observed by confocal microscopy after

immunostaining with anti-ASC antibody (Figure 5C), indicating

inflammation activation. SLC3037 significantly reduced the number

of ASC speck in foot pad tissue of MSU-treated mice (1.18 ± 0.13 in

MSU+PBS versus 0.54 ± 0.12 in MSU+SLC3037, p < 0.01 by one-

way ANOVA with Tukey’s test) (Figure 5C), showing suppression

of MSU-induced inflammasome by SLC3037. Colchicine also

decreased the number of ASC speck in the foot pad of MSU-
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treated mice; however, the decrease was statistically insignificant

(Figure 5C), consistent with a stronger suppressive effect of

SLC3037 on the MSU-induced inflammasome compared

with colchicine.

To study the side effects of SLC3037, we investigated possible

changes of blood cell number and chemistry. Administration of

SLC3037 or colchicine to MSU-injected mice twice in 2 days did not

cause specific abnormality in hemogram or blood chemistry

(Tables 1A, B). We also conducted major organ biopsy to study

the possible occurrence of histopathological abnormality by

SLC3037. H&E staining of tissue sections did not reveal

detectable abnormalities in the major organs including the liver,

adipose tissue, skeletal muscle, spleen, pancreas, heart, kidney, and

lung of mice treated with SLC3037 or colchicine (Figure 6A).

However, in colchicine-treated mice, decreased height and

number of intestinal villi were observed (height: 262.00 ± 21.10

for Con versus 197.59 ± 9.98 mm for MSU+colchicine, p < 0.05;

number: 12.33 ± 0.85 for Con versus 9.58 ± 0.34/high-power field

for MSU+colchicine, p < 0.05 by one-way ANOVA with Tukey’s

test) (Figures 6A, B), which could be due to impaired mitosis of
A

B

C

FIGURE 4

In vivo effect of SLC3037 on MSU-induced gout. (A) Schematic drawing of the time of MSU, SLC3037, or colchicine administration. (SC,
subcutaneous) (B) MSU was subcutaneously injected into the foot pad of mice, and foot pad thickness, %swelling, and Dfoot pad thickness were
determined using a digimatic caliper (n = 16 each). (Con, control) (C) H&E staining of foot pad sections from mice of (B) (arrows, foci of
inflammation) (scale bar: 100 mm). All data in this figure are the means ± SEM from more than three independent experiments. Rectangles were
magnified. *p < 0.05, **p < 0.01, ***p < 0.001 by two-way ANOVA with Bonferroni’s test.
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highly proliferative intestinal epithelial cells, consistent with a

previous paper (33). In contrast, such abnormalities in the

intestinal villi were not observed in SLC3037-treated mice (height:

247.48 ± 9.80 mm for MSU+SLC3037, p > 0.1 versus Con; number:

11.00 ± 0.36/high-power field for MSU+SLC3037, p > 0.1 versus

Con by one-way ANOVA with Tukey’s test) (Figures 6A, B),

suggesting no severe adverse effects of SLC3037 on the intestinal

epithelium in contrast to colchicine. These results suggest that

SLC3037 has not only a higher efficacy but also less adverse effect

compared with colchicine in treating an animal model of gout.
4 Discussion

In our attempt to develop a novel inflammasome inhibitor

blocking NEK7 action, we identified SLC3037, which could inhibit

inflammasome activation by MSU, an effector of inflammasome

activation associated with gout. As an inhibitor or NEK7, SLC3037

would inhibit the activating step of the inflammasome rather than the

priming step, since the pro-caspase-1 level in BMDMs and the pro-
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IL-1b level in food pad tissue were not affected by SLC3037. The

marked decrease of pro-IL-1b in BMDMs treated with 10 mM
SLC3037 in vitro but not in those treated with 1~5 mM SLC3037

might be due to the leakage of pro-IL-1b to the culture supernatant

associated with cell death such as pyroptosis by a high concentration

of SLC3037 rather than inhibition of pro-IL-1b expression since the

pro-IL-1b level was not notably reduced by 1~5 mM SLC3037 despite

significantly reduced release of mature IL-1b. Reduced expression of

pro-caspase-1 in food pad tissue of SLC3037-treated mice is not likely

to be a direct effect of SLC3037 since pro-caspase-1 expression was

not reduced by SLC3037 treatment in vitro and might be due to an

indirect effect related to a cell-extrinsic mechanism. These results

suggest that SLC3037 inhibits the activating step rather than the

priming step of inflammasome activation.

Contribution of NEK7 inhibition in SLC3037-mediated

suppression of the inflammasome in vitro was most clearly shown

by the inhibition of NEK7 binding to NLRP3 and NLRP3

oligomerization by SLC3037, as NEK7 binding to the concave

LRR domain of NLRP3 and subsequent formation of a large

NEK7–NLRP3 oligomer complex are crit ical steps in
A
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C

FIGURE 5

Inhibition of MSU-induced inflammasome by SLC3037 in vivo. (A) Two days after subcutaneous injection of MSU to the foot pad (i.e., one day after
the last administration of colchicine or SLC3037), IL-1b content in tissue extract of the foot pad was determined by ELISA (n=10 each). (B) Solubilized
tissue extract of (A) was subjected to immunoblot analysis using indicated antibodies (left). Densitometric analysis of immunoblot bands was
conducted (right) (n=3 each). (C) Paraffin sections of foot pad tissue from mice of (A) were subjected to immunofluorescence using anti-ASC
antibody, and the number of ASC specks (arrows) was counted (n=3 each) (right). Representative immunofluorescence images are shown (left
panel). (scale bar: 10 mm) All data in this figure are the means ± SEM from more than three independent experiments. *p < 0.05, **p < 0.01, ***p <
0.001 by one-way ANOVA with Tukey’s test.
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inflammasome activation (15, 18). NEK7 inhibitors such as

SLC3037 might interfere with NEK7 binding to LRR of NLRP3

and inhibit NEK7 action to open the NLRP3 cage, which is critical

for the rearrangement of NLRP3 into active oligomer (28).

However, as SLC3037 was originally derived from known FAK

inhibitors, the possibility that FAK inhibition had a synergistic

effect on inflammasome inhibition cannot be totally eliminated

(34). In addition to in vitro effects, SLC3037 also inhibited indices of

clinical gout and in vivo inflammasome by MSU administration,

suggesting the potential of SLC3037 as a new drug against gout

attack. The effect of SLC3037 was more pronounced than that of

colchicine, which has been the drug of choice against gout attack for

centuries but can cause several untoward effects in patients. In

addition, adverse effects on intestinal villi such as decreased height

and number, which was observed after colchicine administration,

was absent in mice treated with SLC3037.
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Although we identified SLC3037 as an inhibitor of kinase activity

of NEK7, catalytic activity of NEK7 has been reported to be

dispensable for NEK7 action in inflammasome activation (13).

Inhibition of kinase activity of NEK7 might cause untoward effects

unrelated to inflammasome inhibition, since NEK7 is an important

kinase regulating mitotic spindle assembly and mitosis (35). Likely

due to its limited cellular content, NEK7-mediated inflammasome

activation and mitosis are mutually exclusive events (36), and

regulation of inflammasome activation by NEK7 occurs only in the

interphase of the cell cycle. Thus, cells with the inhibited

inflammasome by SLC3037 are likely myeloid cells in the

interphase. In mice treated with SLC3037, cells other than

macrophages such as lymphoid or epithelial cells in mitosis might

be affected by SLC3037. However, likely due to the short

administration period, systemic side effects were not manifest as

evidenced by no changes in hemogram, blood chemistry, or biopsy of
TABLE 1 Laboratory profile of mice treated with SLC3037 or colchicine.

A

Unit Ref. ranges Con MSU+PBS MSU+colchicine MSU+SLC3037

Leukocytes

WBC K/ml 1.8-10.7 5.14±1.73 5.69±2.22 3.82±1.39 4.00±0.97

NEU K/ml 0.1-2.4 0.45±0.21 0.63±0.21 0.48±0.35 0.79±0.64

LYM K/ml 0.9-9.3 4.26±1.60 4.71±2.13 3.07±1.31 2.94±0.88

MONO K/ml 0.0-0.4 0.34±0.15 0.31±0.08 0.19±0.12 0.23±0.08

EOS K/ml 0.0-0.2 0.07±0.05 0.03±0.01 0.04±0.02 0.03±0.01

BASO K/ml 0.0-0.2 0.02±0.02 0.01±0.01 0.01±0.01 0.01±0.01

Erythrocytes

RBC M/ml 6.36-9.42 9.94±0.59 10.14±0.28 9.16±1.85 9.89±0.44

HGB g/dL 11.0-15.1 12.96±1.38 13.25±0.85 12.28±2.78 13.18±1.55

HCT % 35.1-45.4 56.21±1.93 57.38±1.70 51.61±10.36 54.90±1.94

Thrombocytes PLT K/ml 592-2972 1120.00±157.16 1239.88±126.54 1088.50±222.77 1154.00±202.90

B

Con MSU+PBS MSU+colchicine MSU+SLC3037

AST (U/l) 115.00±11.18 132.00±23.87 116.00±14.32 112.00±21.10

ALT (U/l) 58.00±2.74 60.00±3.54 57.00±2.74 59.00±4.18

TG (mg/dl) 79.00±36.30 38.00±16.43 41.00±17.82 25.00±16.96

TCHO (mg/dl) 80.00±3.54 86.00±10.25 83.00±6.71 90.00±3.54

ALP (U/l) 564.00±41.14 548.00±51.79 611.00±112.10 477.00±55.07

ALB (g/dl) 1.00±0.00 1.20±0.27 1.00±0.00 1.00±0.00

DBIL (mg/dl) <0.05 <0.05 <0.05 <0.05

GGT (U/l) <0.5 <0.5 <0.5 <0.5

LDH (U/l) 639.00±61.07 626.00±191.36 502.00±98.53 478.00±165.82

CRE (mg/dl) 1.04±0.07 1.08±0.06 1.08±0.07 1.03±0.08

CPK (U/l) 1859.00±321.62 2349.00±761.94 1509.00±327.14 1716.00±731.64

CA (mg/dl) 13.20±0.27 13.10±0.22 13.20±0.07 13.30±0.27

BUN (U/l) 20.00±2.03 18.70±3.17 17.40±1.92 17.60±1.78
No abnormality in hemogram (A) or blood chemistry (B) was detected in C57BL/6 injected with MSU and then treated with SLC3037 or colchicine. Con, control.
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major organs including the small intestine after in vivo

administration of SLC3037 twice in 2 days. These data might have

clinical relevance since small intestinal epithelial cells have the highest

turnover rate in the whole body with renewal in less than 2 days in

rodents (33), suggesting that SLC3037 administration twice in 2 days

would not impair proliferation or mitosis of even the most highly

proliferating cells in the body. Thus, the probability of significant

systemic toxicity related to the inhibition of mitosis might be

insignificant in patients with acute gout attack treated with

SLC3037 for a short period. In contrast, the number and height of

intestinal villi were significantly reduced by colchicine at the 1-mg/kg

dose, which is consistent with previous results reporting

gastrointestinal mucosal injury in mice treated with 0.5 mg/kg

colchicine (37, 38). Adverse effects of colchicine on intestinal

mucosal cells could be attributable to effects of colchicine binding

tomicrotubule and inhibiting mitosis of intestinal epithelial cells (39).

In conclusion, we identified a novel NLRP3 inhibitor that has

significant suppressive effects on the inflammasome by several

NLRP3 activators in vitro including MSU. We also observed

marked suppression of clinical manifestations of gout together with

amelioration of the inflammasome in vivo. Our NLRP3 inhibitor

appears to be more efficacious in the treatment of MSU-induced gout

of experimental animals than colchicine and was devoid of adverse

effects on intestinal mucosa, which was observed after treatment with

colchicine. Since kinase activity of NEK7 is dispensable for NRLP3

activation and we did not prove direct binding of SLC3037 to NEK7,
Frontiers in Immunology 12
it may be premature to regard SLC3037 as a NEK7 inhibitor. If NEK7

inhibitors without effects on kinase activity could be developed, such

compounds could be valuable candidates against gout or other

diseases characterized by the inflammasome such as cardiovascular

diseases, metabolic syndrome, and neurodegenerative disorders. In

contrast to the results showing no role of kinase activity of NEK7 on

the inflammasome, NEK7 phosphorylation has been reported to be

important in the inflammasome (36). The detailed relationship

between NEK7 kinase activity and phosphorylation and their roles

in inflammasome remain to be clarified.
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