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and adaptive immunity following
intranasal immunization of mice
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Introduction: Nonhuman adenoviral (AdV) gene delivery platforms have

significant value due to their ability to elude preexisting AdV vector immunity

in most individuals. Previously, we have demonstrated that intranasal (IN)

immunization of mice with BAd-H5HA, a bovine AdV type 3 (BAdV3) vector

expressing H5N1 influenza virus hemagglutinin (HA), resulted in enhanced

humoral and cell-mediated immune responses. The BAd-H5HA IN

immunization resulted in complete protection following the challenge with an

antigenically distinct H5N1 virus compared to the mouse group similarly

immunized with HAd-H5HA, a human AdV type 5 (HAdV5) vector expressing HA.

Methods: Here, we attempted to determine the activation of innate immune

responses in the lungs of mice inoculated intranasally with BAd-H5HA compared

to the HAd-H5HA-inoculated group.

Results: RNA-Seq analyses of the lung tissues revealed differential expression

(DE) of genes involved in innate and adaptive immunity in animals immunized

with BAd-H5HA. The top ten enhanced genes were verified by RT-PCR.

Consistently, there were transient increases in the levels of cytokines (IL-1a,
IL-1b, IL-5, TNF- a, LIF, IL-17, G-CSF, MIP-1b, MCP-1, MIP-2, and GM-CSF) and

toll-like receptors in the lungs of the group inoculated with BAdV vectors

compared to that of the HAdV vector group.

Conclusion: These results demonstrate that the BAdV vectors induce enhanced

innate and adaptive immunity-related factors compared to HAdV vectors in

mice. Thus, the BAdV vector platform could be an excellent gene delivery system

for recombinant vaccines and cancer immunotherapy.

KEYWORDS

innate immunity, mucosal immunity, mucosal immunization, bovine adenoviral vector,
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Introduction

Adenoviruses (AdV) are icosahedral non-enveloped viruses

with 25-48 kb dsDNA genomes (1). AdV vector-based vaccines

are capable of eliciting both humoral and cell-mediated immune

(CMI) responses (2, 3) by stimulating innate immunity through

both Toll-like receptor (TLR)-mediated and TLR-independent

pathways (4, 5). Unlike subunit or inactivated virus vaccines, Adv

vector-based vaccines do not require an adjuvant for their

immunogenicity. AdV vector-based influenza vaccines have

shown immense promise in eliciting protective immunity in

animal models (6, 7) and human clinical trials (8, 9). Also, Adv

vectors are excellent delivery vehicles for cancer gene therapy

(10–12).

Due to the potential presence of more than 100 AdV types in

humans, there is a high possibility of developing Adv-specific

neutralizing antibodies, known as ‘preexisting vector immunity,

in the general population (13–15). This vector immunity could

adversely impact the efficacy of several human Ad (HAdV) vector-

based delivery systems. Hence, several nonhuman Ads have been

developed as gene delivery vectors to avoid vector immunity (16,

17). These nonhuman Ad vectors can be based on bovine AdV

(BAdV), simian AdV, ovine AdV, canine AdV, porcine AdV, avian

AdV, or murine AdV (16–18).

We have shown that the BAdV3 vector system can induce

humoral and CMI responses against HA of an H5N1 influenza virus

even in exceptionally high levels of HAdV vector immunity (19).

Moreover, preexisting HAdV-neutralizing antibodies in humans do

not cross-neutralize BAdV3 (20), and HAdV-specific CMI response

does not cross-react with BAdV3 (5). BAdV3 internalization into

the cells is independent of the HAdV5 receptors [Coxackievirus-

adenovirus receptor (CAR) and avb3 or avb5 integrin] (21);

however it utilizes a(2,3)-linked and a(2,6)-linked sialic acid-

binding proteins as major receptors for internalization (22).

BAdV3 efficiently transduces the heart, kidney, lung, liver, and

spleen. The vector persists longer than a HAdV5 vector, especially

in the heart, kidney, and lung in a mouse model (23). Sequential

administration of HAdV5 and BAdV3 vectors overcomes vector

immunity in an immunocompetent mouse model of breast cancer

(20), and the persistence of the BAdV3 genome in human and

nonhuman cell lines is similar to HAdV5 vectors (24). Therefore,

BAdV3 vectors offer an attractive replacement to HAdV vectors for

circumventing high levels of preexisting HAdV immunity with

comparable safety profiles as HAdV vectors.

In an earlier study, we demonstrated that the BAd-H5HA, a

BAdV vector expressing hemagglutinin (HA) of the H5N1

influenza virus, elicited significantly better immune responses

compared to HAd-H5HA, even at a reduced dose (25). To

understand the factors responsible for the antigen-specific

enhanced immune responses with the BAdV vector-based

platform, we employed transcriptome analyses of the lung tissues

from BAd-H5HA-inoculated mouse groups and compared with

HAd-H5HA-inoculated groups. The genes involved in innate and

adaptive immune responses were highly expressed in BAd-H5HA-

inoculated groups. The top ten of these enhanced genes involved in

innate and adaptive immunity were validated by qRT-PCR analyses.
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In addition, the upregulation of Toll like receptor genes (TLR2,

TLR3, TLR4, TLR7, and TLR9) in the lungs compared to the HAdV

vector was also confirmed by qRT-PCR. Furthermore, some of these

highly expressed genes related to innate and/or adaptive immune

responses-related molecules or cytokines were verified by multiplex

assay. Our results suggest that higher expression of factors

associated with innate and adaptive immune responses could be

critical in eliciting better immune responses in animals immunized

with the BAdV vector platform compared to the HAdV vector-

based delivery system.
Results

Differentially expressed genes in the lungs
of BAd-H5HA-inoculated mice compared
to that of the HAd-H5HA-inoculated group

Previously, we have shown that IN (intranasal) immunization

of mice with BAd-H5HA induced enhanced humoral and CMI

responses compared to the group vaccinated similarly with HAd-

H5HA, even with a reduced vaccine dose (25). We hypothesized

that enhanced expression of immune response-related genes might

be a critical difference between BAd-H5HA and HAd-H5HA. To

test this hypothesis, we collected lung tissues at 6, 12, 24, and 48 h

post-infection (PI) from mouse groups infected with BAd-H5HA,

HAd-H5HA, or PBS (Table 1). Total RNA extracted from the lung

tissues was used for RNA-Seq analyses to uncover DE genes.

A heat map of RNA-Seq data is shown where the values of data

points are represented to visualize gene expression levels (Figure 1).

Each row represents a gene, each column represents a sample, and a

color gradient indicates the expression level of each gene. The heat

map shows the clusters of genes that are co-regulated and the

samples with similar expression profiles. The PBS-treated groups
TABLE 1 Study design.

Mouse 1 Mouse 2 Description

1 PBS1-1 PBS2-1 PBS intranasal for 6 h

2 PBS1-2 PBS2-2 PBS intranasal for 12 h

3 PBS1-3 PBS2-3 PBS intranasal for 24 h

4 PBS1-4 PBS2-4 PBS intranasal for 48 h

5 HHA1-1 HHA2-1 HAd-HA vector intranasal for 6 h

6 HHA1-2 HHA2-2 HAd-HA vector intranasal for 12 h

7 HHA1-3 HHA2-3 HAd-HA vector intranasal for 24 h

8 HHA1-4 HHA2-4 HAd-HA vector intranasal for 48 h

9 BHA1-1 BHA2-1 BAd-HA vector intranasal for 6 h

10 BHA1-2 BHA2-2 BAd-HA vector intranasal for 12 h

11 BHA1-3 BHA2-3 BAd-HA vector intranasal for 24 h

12 BHA1-4 BHA2-4 BAd-HA vector intranasal for 48 h
BALB/c mice (2 animals/group) were inoculated intranasally with PBS (Mock) or 3×107 PFU
of HAd-H5HA or BAd-H5HA. At 6, 12, 24, and 48 h post-inoculation, two animals/group
were euthanized under anesthesia, and lung samples were collected for RNA extraction.
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clustered together at 6, 12, 24, or 48 h (basal group), indicating the

homogeneity of mock samples. While both BAd-H5HA and HAd-

H5HA treated groups at 6 and 12 h form separated clusters from the

mock samples (Figure 1). More interestingly, at the later stages (24

and 48 h), BAd-H5HA and HAd-H5HA groups showed a distinct

gene expression profile, where the BAd-H5HA groups clustered

mainly with the early states (6 h and 12 h), but the HAd-H5HA

groups were clustered with the PBS basal group annotated with

arrows (Figure 1). This difference suggests that the HAd-H5HA-

induced DE gene expression levels decline rapidly. In contrast, the

BAd-H5HA-induced DE maintained its overexpression status for a

longer period.

To determine variability in the expression of DE genes in the

BAd-H5HA or the HAd-H5HA group, a graphical representation

by Venn diagram analysis was examined to infer the overall

distribution of DE genes between the vaccine groups at 6, 12, 24,

and 48 h PI (Figure 2). The average DE genes within the group was

used to compare the gene expression patterns between samples. The

overlapping region between the circles indicates the number of DE
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genes shared between the groups. Compared to the PBS group, the

BAd-H5HA (BHA) group shows the highest number of DE genes at

all times than the HAd-H5HA (HHA) group. The BAd-H5HA

group shows variable numbers of DE genes compared to the HAd-

H5HA group at all time points.

Further in Volcano plot analysis, there were 664, 320, 901, and

1865 DE genes at 6, 12, 24, and 48 h PI, respectively, between BAd-

H5HA and HAd-H5HA groups (Figure 3). The overall gene

expression profiles are similar at 6 h and 12 h, while quite

different at 24 h and 48 h time points. Our data suggest that host

responses to BAd-H5HA and HAd-H5HA are somewhat similar at

early stages (6 and 12 h PI) than the later stages (24 and 48 h PI).

The top ten overexpressed genes in the BAd-H5HA group

compared to the HAd-H5HA group at 6, 12, 24, and 48 h PI are

listed (Supplementary Table 2).

To better understand the biological functions of the DE genes,

KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway

analyses were conducted for the BAd-H5HA group compared to

the HAd-H5HA group at 6, 12, 24, and 48 h PI. The primary
FIGURE 1

A heatmap uncovering the differential expressed (DE) genes in the lungs of mice at various times post-inoculation (PI) with BAd-H5HA (BHA), HAd-
H5HA (HHA), or mock (PBS). Two independent samples for each group are shown, depicting an increase or decrease in expression levels, with red or
green color, respectively. PBS_1_06, PBS_1_12, PBS_1_24, & PBS_1_48 represent 6, 12, 24, and 48 h PI samples from mouse #1 in mock-inoculated
group. HHA_1_06, HHA_1_12, HHA_1_24, & HHA_1_48 represent 6, 12, 24, and 48 h PI samples from mouse #1 in HAd-H5HA-inoculated group.
BHA_1_06, BHA_1_12, BHA_1_24, & BHA_1_48 represent 6, 12, 24, and 48 h PI samples from mouse #1 in BAd-H5HA-inoculated group. The same
time points are repeated with mouse #2. The red arrows are showing the later stages (24 and 48 h) of HAd-H5HA groups gene expression clustering
close to the PBS basal group.
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biological pathways relevant to the innate and adaptive immune

responses that were highlighted include cytokine-cytokine receptor

interaction (19 genes), IL-17 signaling pathways (8 genes), TLR

signaling pathway (7 genes), NOD-like receptor signaling pathway

(9 genes), and TNF signaling pathway (7 genes) at 6 h PI; cytokine-

cytokine receptor interaction (35 genes), natural killer cell-mediated

cytotoxicity (12 genes), IL-17 signaling pathways (11 genes), TLR

signaling pathway (11 genes), and TNF signaling pathway (10 genes)

at 12 h PI; cytokine-cytokine receptor interaction (33 genes), IL-17

signaling pathways (19 genes), TNF signaling pathway (19 genes),

NOD-like receptor signaling pathway (18 genes), chemokine

signaling pathway (16 genes), and TLR signaling pathway (11

genes) at 24 h PI; and cytokine-cytokine receptor interaction (39
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genes), hematopoietic cell linkage (20 genes), IL-17 signaling

pathways (19 genes), cell adhesion molecules (20 genes), TNF

signaling pathway (16 genes), and chemokine signaling pathway

(19 genes), at 48 h PI (Figure 4). Overall, our transcriptome study of

DE genes suggests that the major signaling pathways that were

upregulated included cytokine-cytokine receptor interaction, IL-17

signaling pathway, TLR signaling pathway, TNF signaling pathway,

and NOD-like receptor signaling pathway. The top 10 pathways by

KEGG database pathway analysis are listed (Table 2). The cytokine-

cytokine receptor interaction pathway has the highest number of DE

genes (228). This pathway has multiple chemokine and cytokine

genes upregulated in the BAd-H5HA group than the HAd-H5HA

group (Figure 5).
FIGURE 2

Venn diagram of differentially expressed (DE) genes in the lungs of mice at 6, 12, 24, and 48 h post-inoculation (PI) with BAd-H5HA (BHA), HAd-
H5HA (HHA) or mock (PBS). The red circle represents the number of differentially expressed genes (DEGs) in the HAd-H5HA(HHA) compared to the
PBS group. The yellow circle represents the number of DEGs in the BAd-H5HA (BHA) compared to the PBS group. The green circle represents the
number of DEGs in the BAd-H5HA (BHA) compared to HAd-H5HA (HHA) group. The overlapping region between the circles indicates the number of
DE genes shared between the groups.
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FIGURE 3

Volcano plots from the DESeq2 analysis of differentially expressed (DE) genes in the lungs of mice at 6, 12, 24, and 48 h post-inoculation (PI) with
BAd-H5HA (BHA), HAd-H5HA (HHA), or mock (PBS). Log2 fold changes are plotted on the x-axis, and -log10 p-values on the y-axis. Each point
represents a gene, the red color dots representing the upregulated genes, and the green color dots representing the downregulated genes. The
cutoff of the log2 fold change is 2.5, and the cutoff of the -log10 (FDR<0.05) is 1.3.
FIGURE 4

KEGG pathways highlighting differentially expressed (DE) groups of genes within the same biological pathway in the lungs of mice at 6, 12, 24, and
48 h post-inoculation (PI) with BAd-H5HA (BHA) compared to the HAd-H5HA (HHA) groups.
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Validation of top ten upregulated genes by
BAdV vector

To further validate our identified DE genes by RNA-Seq, we

examined the top ten upregulated genes (Supplementary Table 2)

by examining RNA extracted from the lung tissues of BAd-H5HA-

or HAd-H5HA-inoculated mice using qRT-PCR. Indeed, all the 10

genes were upregulated in BAd-H5HA groups compared to HAd-
Frontiers in Immunology 06
H5HA groups at 6, 12, 24, and 24 h PI (Figure S1A). The gene

ontology (GO) biological processes of these DE genes showed

highly enriched natural killer cell pathways (Figure S1B). The

KEGG pathway analysis indicated the involvement of four genes

in the cytokine-cytokine receptors interaction, two genes in the

TLR process, and two genes in viral protein interaction with

cytokine and cytokine receptor interaction beside other pathways

(Figure S1C). A tree map (Figure S1D right) and network map
TABLE 2 KEGG top 10 pathways analysis of BAd-H5HA DE genes than HAd-H5HA.

Direction GAGE analysis: BAd-H5HA vs. HAd-H5HA statistic Genes adj. P-value

Down Drug metabolism -4.7087 44 1.60E-03

Metabolism of xenobiotics by cytochrome P450 -4.1298 45 6.80E-03

Up Cytokine-cytokine receptor interaction 6.0313 228 6.30E-07

NOD-like receptor signaling pathway 4.814 150 1.90E-04

Viral protein interaction with cytokine and cytokine receptor 4.6804 79 2.70E-04

Coronavirus disease 4.6203 203 2.70E-04

TNF signaling pathway 4.5248 108 3.30E-04

IL-17 signaling pathway 4.4162 83 5.00E-04

NF-kappa B signaling pathway 3.8989 99 3.10E-03

Toll-like receptor signaling pathway 3.7856 83 4.50E-03
The KEGG database pathway analysis with a false discovery rate (FDR) 0.1 cutoff value for significance was used to show the top 10 pathways.
FIGURE 5

Cytokine-cytokine receptor interaction pathway. DE genes KEGG pathway analysis with significance cutoff (FDR) 0.1 was performed for BAd-H5HA
versus HAd-H5HA. Red and green represent up-regulated and down-regulated genes, respectively. The KEGG database pathway analysis with a false
discovery rate (FDR) 0.1 cutoff value for significance was used to show the top 10 pathways.
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(Figure S1D left) illustrated potential interactions of different

KEGG pathways.
Upregulation of TLR genes by BAdV vector

AdV plays a vital role in activating TLR-mediated innate

immunity (4). To ascertain enhanced expression of TLR genes in

the lungs of the BAd-H5HA-inoculated mouse group compared to

the HAd-H5HA group, qRT-PCR analyses were performed. The

qRT-PCR analyses showed that the BAdV groups at various time

points have higher expression levels of TLR2, TLR3, TLR4, TLR7,

and TLR9 than the HAdV groups (Figure S2).
Expression of innate and adaptive
immunity-related factors in the lungs

To further verify whether there was enhanced induction of

innate and adaptive immunity-related factors, cytokines, and

chemokines in the lungs of mice inoculated with BAd-H5HA, the

lung wash samples from mock-, HAd-DE1E3-, BAd-DE1E3-, HAd-

H5HA-, or BAd-H5HA-inoculated groups were assayed using a 32-

multiplex kit assay. There was a transient increase in the levels of IL-

1a, IL-1b, IL-5, tumor necrosis factor-alpha (TNF-a), Leukemia

inhibitory factor LIF, IL-17, G-CSF, and GM-CSF cytokines in the

lung washes of the group inoculated with BAd-H5HA or BAd-

DE1E3 compared to the group inoculated with HAd-H5HA or

HAd-DE1E3 (Figure 6). There were transient increases in the levels

of chemokines CCL2, CCL4, CCL8, CXCL1 and CXCL10 in the

lung washes of the group inoculated with BAd-H5HA or BAd-

DE1E3 compared to the group inoculated with HAd-H5HA or

HAd-DE1E3 (Figure 7). These data suggest that the BAdV vector

platform is a better gene delivery system than the HAdV vector in

stimulating the innate immune responses in mice.
Discussion

AdV vectors have enormous potential as a gene delivery

platform for developing recombinant vaccines against infectious

diseases and cancer immunotherapy (26–32). The concept of

preexisting AdV vector immunity in humans (33) has created a

niche for developing novel AdV vectors that can overcome the

preexisting vector immunity barrier. Along this direction, we

developed a BAdV vector platform (34) and demonstrated its

utility in eluding an exceptionally high level of vector immunity

in a mouse model (35). We have shown that IN immunization of

mice with BAd-H5HA elicited significantly higher levels of humoral

(including mucosal) and CMI responses at a lower vector dose,

resulting in complete protection following challenge with an

antigenically distinct influenza virus compared to the HAd-

H5HA-immunized group (25). Enhanced immune responses with

BAd-H5HA were also observed with the IM route of immunization

(25); however, complete protection was conferred with a 30-fold

vaccine dose compared to the vaccine dose used for the IN
Frontiers in Immunology 07
inoculation. These observations led us to pursue the potential

factors responsible for high levels of humoral and CMI responses

following IN immunization with BAd-H5HA.

Our RNA-Seq analyses of the lung samples from vector-inoculated

mice revealed a distinct spectrum and longer duration of DE genes,

including genes associated with innate and adaptive immunity in the

BAd-H5HA-inoculated group compared to the HAd-H5HA-

inoculated group. These results showed that the BAdV vector

induced significantly higher levels of several innate and adaptive

immunity-related host factors compared to the HAdV vector.

Indirectly, these transcriptome analyses also implicate that the BAdV

vaccine platform could serve as an excellent gene delivery vehicle for

recombinant vaccines. Further studies are needed to investigate the

roles of the vital DE genes and their cellular origin in the BAd-H5HA-

inoculated group in inducing enhanced immune responses.

Enhanced induction of innate and adaptive immunity-related

host factors, cytokines, and chemokines in the lungs of mice

inoculated with BAd-H5HA broadly supports the outcomes of

transcriptome analyses. It is not a surprise since previously we have

demonstrated the enhanced expression of CCL2, CCL3, CCL4, CCL5,

CXCL2, TNF-a, CXCL-10, interferon-gamma (IFN-g), IL-6, TLR2,
TLR-3, TLR-4, TLR-7 and TLR9 in the spleen at early time points in

BAdV vector-inoculated groups compared to that of HAdV vector-

inoculated groups by intravenous (IV) injection (36). It further

emphasizes that the BAdV vector platform can induce higher levels

of innate and adaptive immunity-related factors, cytokines, and

chemokines that could lead to the enhancement of immune

responses to BAdV vaccines. This process could significantly

impact the development of transgene-specific immune responses.

The BAdV vector stimulated higher expression of TLR2, TLR3,

TLR4, TLR7, and TLR9 genes in the lungs than the HAdV vector.

These results are aligned with our previously described data (36) where

the same TLRs were upregulated in the spleen of the BAdV vector

group. TLR-mediated pathways are critical for the activation of

transcription factors like interferon regulatory factors (IRFs) and

nuclear factor kB (NF-kB), which determine the outcome of the

innate immune responses (37). The qRT-PCR analyses of the top ten

DE genes identified by RNA-Seq in the lungs of BAd-H5HA confirmed

their upregulated state. These genes are involved in natural killer cell

pathways, TLR pathways, cytokine-receptor interactions, and viral

protein interaction with cytokine, suggesting the advantage of the

BAdV vector as a vaccine vector might be explained through its better

stimulation of the innate and adaptive immune factors.

In summary, there are enhanced innate and adaptive immunity-

related factors in the lungs of mice in the BAdV vector group

compared to the HAdV vector group, suggesting the preeminence

of the BAdV vaccine platform for developing effective vaccines

against emerging infectious diseases and cancer immunotherapy.
Materials and methods

Cell lines and Ad vectors

293 (human embryonic kidney cells expressing HAdV5 E1

proteins) (38), BHH3 (bovine-human hybrid clone 3) (39), and
frontiersin.org
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BHH2C (bovine-human hybrid clone 2C) (39) cells as monolayer

cultures were grown using minimum essential medium (MEM)

(Life Technologies, Thermo Fisher Scientific, Waltham, MA)

supplemented with either 10% reconstituted fetal bovine serum or

fetal calf serum (Hyclone, Thermo Fisher Scientific) and

gentamycin (50 µg/ml).

The generation and characterization of BAd-DE1E3 (BAdV3

E1 and E3 deleted empty vector) (40), BAd-H5HA [BAd3 E1 and
Frontiers in Immunology 08
E3 deleted vector expressing HA of A/Hong Kong/156/97(H5N1)

(HK/156)] (19), HAd-DE1E3 (HAdV5 E1 and E3 deleted

empty vector) (41), HAd-H5HA [HAdV5 E1 and E3 deleted

vector expressing HA of HK/156] (42), were described earlier. BAd-

DE1E3 and BAd-H5HA were replicated and titrated in BHH3

cells as described elsewhere (19), whereas HAd-DE1E3 and HAd-

H5HA were grown in 293 cells and titrated in BHH2C cells

as described earlier (43). As described previously, all vectors
FIGURE 6

Innate cytokine multiplex assay showing the increase in cytokines levels in BAdV vectors inoculated groups. BALB/c mice (3 animals/group) were
inoculated IN once with PBS or with 3 × 107 PFU per animal of HAd-DE1E3, BAd-DE1E3, HAd-H5HA or BAd-H5HA, and at 6, 12, 24, 48 and 96 h after
inoculation and the animals were euthanized. The lung washes were collected and used to monitor levels of innate cytokines by multiplex assays
using a 32-plex Kit from Millipore Sigma. *, significant at p<0.05; **, significant at p<0.01.
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were purified by cesium chloride density-gradient ultracentrifugation

(44, 45).
Animal inoculation studies

All mouse studies were conducted with the approvals of the

Institutional Animal Care and Use Committee (IACUC) and the

Institutional Biosafety Committee (IBC). Six-to-eight-week-old

BALB/c mice (Envigo RMS, Inc., Indianapolis, IN) were mock-

inoculated with phosphate-buffered saline (PBS), pH 7.2 or

inoculated IN with 3 × 107 PFU of BAd-DE1E3 [4.2 × 108 virus

particles (VP)], BAd-H5HA (6.8 × 108 VP), HAd-H5HA (1.2 × 109

VP), or HAd-DE1E3 (8.9 × 108 VP). The plaque forming units and
Frontiers in Immunology 09
virus particle counts were calculated as previously described (46). At

6, 12, 24, 48, and 96 h PI, three animals/group were anesthetized

with ketamine-xylazine solution, and the lung washes were

prepared by homogenizing one lung from each animal in 1 mL of

PBS as described (25, 47). The lung tissue samples were also

collected in Invitrogen RNAlater Stabilization Solution (Thermo

Fisher Scientific # AM7020) for RNA extraction.
RNA isolation, sequencing, and analyses

The lung tissue samples in RNAlater were used to extract RNA

using Monarch Total RNA Miniprep Kit (Thermo Fisher Scientific
FIGURE 7

Innate chemokines multiplex assay showing the increase in chemokines levels in BAdV vectors inoculated groups. BALB/c mice (3 animals/group)
were inoculated IN once with PBS or with 3 × 107 PFU per animal of HAd-DE1E3, BAd-DE1E3, HAd-H5HA or BAd-H5HA, and at 6, 12, 24, 48 and
96 h after inoculation and the animals were euthanized. The lung washes were collected to monitor levels of innate chemokines by multiplex assays
using a 32-plex Kit from Millipore Sigma. *, significant at p<0.05; **, significant at p<0.01.
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#50-152-7886), and the RNA quality was confirmed by 1% agarose gel

electrophoresis and Agilent 2100 bioanalyzer 2100 Total RNA Nano

Series II. RNA samples were sent for RNA-Seq using 250-300 bp insert

cDNA library with Illumina NovaSeq platforms with paired-end 150

bp (PE 150) sequencing strategy using 20 million reads/sample and ≥ 6

G Raw Data/Sample depth (Novogene, Sacramento, CA). The data

quality parameters are shown (Supplementary Table 1). The data were

analyzed by a bioinformatics specialist using a combination of

programs, including STAR, HTseq, Cufflink, and wrapped scripts.

Alignments were parsed using the Tophat program, and differential

expressions were determined through DESeq2/edgeR. GO and KEGG

enrichments were implemented by ClusterProfiler. Gene fusion and the

difference of alternative splicing events were detected by Star-fusion

and rMATS software.

Sequences were quality-checked using FastQC for completeness,

depth, and read quality. Sequences were aligned to the mm10 Mus

musculus reference genome using a STAR aligner (48). Gene

quantification was done using HTSeq-count (49).
Differential gene expression

DESeq2 determines DE genes between at least two experimental

groups (50–52). Genes with low counts are filtered for subdued

expression by their normalized mean counts, and raw p-values are

adjusted for multiple testing using the Benjamini-Hochberg correction.

For this experiment, genes considered significantly DE are those with

adjusted p-values controlled at False Discovery Rates (FDR) < 0.01

specific threshold. Volcano plots were produced in the Enhanced

Volcano R package (53) and showed the un-transformed log (2) fold

change of each gene plotted against its adjusted p-value, both of which

were calculated in DESEq2. Twenty genes with the highest mean-

normalized counts were selected to generate the heatmap.
Reverse transcription cDNA synthesis

The extracted RNA samples from the lungs were converted to a

single complementary DNA strand (cDNA) using High-Capacity

cDNA Reverse Transcription Kit (Applied Biosystems, Thermo

Fisher Scientific) according to the manufacturing recommendation.

500 nanogram RNA from each sample was converted to cDNA and

used in the downstream qPCR.
Quantitative polymerase reaction

TaqMan Fast Universal PCR 2X Master Mix (Applied

Biosystems, Thermo Fisher Scientific) was used to evaluate the

differential gene expression between the groups. A real-time PCR

was conducted with a 20 µL reaction volume with ROX dye as a

passive internal reference to normalize non-PCR-related

fluorescence fluctuations. The QuantStudio 3 real-time PCR

System (Thermo Fisher, Fisher Scientific) was used to detect

differences in each target quantity. TaqMan Gene Expression
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Assays (Applied Biosystems, Thermo Fisher Scientific) were used

to evaluate the differentially expressed TLRs. The 18S ribosomal

RNA gene was used as an internal housekeeping gene. The primers

and probes of the top ten DE genes identified by RNA-Seq were

obtained from TaqMan assays and arrays (Thermo Fisher

Scientific) (Supplementary Table 3).
Functional pathways and
enrichment analysis

ShinyGo 0.77 (http://bioinformatics.sdstate.edu/go/), the web-

based bioinformatics data analysis tool, was used to analyze gene/s

functional pathways and process the enrichment analysis for the DE

top ten genes at 6, 12, 24, and 48 h PI;Mus musculus was used as the

input species. The DE genes were annotated and used in the

functional enrichment analysis by the default settings for

determining the significance of Gene Ontology (GO) Biological

Processes and Kyoto Encyclopedia of Genes and Genomes KEGG

pathways. The ShinyGO is another web-based data analysis tool

used to graphically visualize the upregulated genes’ functions and

enrichment results (54). The P-value cutoff set was set at a false

discovery rate (FDR) = 0.05.
Multiplex cytokine analysis

The lung washes were used to monitor levels of innate and

adaptive immunity-related factors, cytokines, and chemokines by

multiplex assays using Mouse Cytokine/Chemokine Magnetic Bead

Panel - Premixed 32 Plex - Immunology Multiplex Assay (Millipore

Sigma, St. Louis, MO as described (55). Briefly, the samples were

centrifuged at 15,000 g for 10 min, and analyzed for interleukin (IL)-1

alpha, IL-1 beta, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-9, IL-10, IL-12

(p40), IL-12 (p70), IL-13, IL-15, IL-17, interferon-gamma inducible

protein (IP10), keratinocyte-derived chemokine (KC), eotaxin,

monocyte chemoattractant protein 1 (MCP-1), monokine-induced

by gamma interferon (MIG), macrophage inflammatory protein-2

alpha (MIP-2a), macrophage inflammatory protein-1 alpha (MIP-

1a), macrophage inflammatory protein-1 beta (MIP-1b), IFN-g,
lipopolysaccharide-induced CXC chemokine (LIX), TNF-a,
regulated upon activation normal T cell expressed and secreted

(RANTES), leukemia inhibitory factor (LIF), granulocyte colony-

stimulating factor (G-CSF), granulocyte-macrophage colony-

stimulating factor (GM-CSF), macrophage colony-stimulating

factor (M-CSF), vascular endothelial growth factor (VEGF).

Samples were 2-fold diluted and incubated with the pre-mixed

capture antibody-coupled beads in 96-well plates at 4°C overnight.

The beads were washed and incubated with the biotinylated

secondary antibodies for 2 h. Streptavidin–phycoerythrin was

added and incubated for 30 min, and the beads were washed and

resuspended in sheath fluid. The standard curve range was 3.2-10,000

pg/ml. The analysis was performed by a Bio-Plex 200 System with

High Throughput Fluidics (HTF) Multiplex Array System (Indiana

University Cancer Center Facility, Indianapolis, IN).
frontiersin.org

http://bioinformatics.sdstate.edu/go/
https://doi.org/10.3389/fimmu.2023.1305937
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Sayedahmed et al. 10.3389/fimmu.2023.1305937
Statistical analyses

One and two-way ANOVA with Bonferroni post-test were

performed to determine statistical significance for the multiplex

assay. The p-value below 0.05 was considered statistically significant.
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