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Expansion of CD4+ cytotoxic T
lymphocytes with specific gene
expression patterns may
contribute to suppression of
tumor immunity in oral
squamous cell carcinoma:
single-cell analysis and
in vitro experiments

Hu Chen1†, Junsei Sameshima1†, Shiho Yokomizo1,
Tomoki Sueyoshi1, Haruki Nagano1, Yuka Miyahara1,
Taiki Sakamoto1, Shinsuke Fujii 2, Tamotsu Kiyoshima2,
Thomas Guy3, Seiji Nakamura4, Masafumi Moriyama1*,
Naoki Kaneko1,3* and Shintaro Kawano1

1Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical
Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan, 2Laboratory of Oral
Pathology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science,
Kyushu University, Fukuoka, Japan, 3Ragon Institute of MGH, MIT and Harvard, Massachusetts General
Hospital, Harvard Medical School, Boston, MA, United States, 4Faculty of Dental Science, Kyushu
University, Fukuoka, Japan
Background: Cancer immunotherapy targeting CD8+ T cells has made

remarkable progress, even for oral squamous cell carcinoma (OSCC), a

heterogeneous epithelial tumor without a substantial increase in the overall

survival rate over the past decade. However, the therapeutic effects remain

limited due to therapy resistance. Thus, a more comprehensive understanding of

the roles of CD4+ T cells and B cells is crucial for more robust development of

cancer immunotherapy.

Methods: In this study, we examined immune responses and effector functions

of CD4+ T cells, CD8+ T cells and B cells infiltrating in OSCC lesions using single-

cell RNA sequencing analysis, T cell receptor (TCR) and B cell receptor (BCR)

repertoire sequencing analysis, and multi-color immunofluorescence staining.

Finally, two Kaplan-Meier curves and several Cox proportional hazards models

were constructed for the survival analysis.

Results: We observed expansion of CD4+ cytotoxic T lymphocytes (CTLs)

expressing granzymes, which are reported to induce cell apoptosis, with a

unique gene expression patterns. CD4+ CTLs also expressed CXCL13, which is

a B cell chemoattractant. Cell–cell communication analysis and multi-color

immunofluorescence staining demonstrated potential interactions between
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CD4+ CTLs and B cells, particularly IgD- CD27- double negative (DN) B cells.

Expansion of CD4+ CTLs, DN B cells, and their contacts has been reported in T

and B cell-activated diseases, including IgG4-related disease and COVID-19.

Notably, we observed upregulation of several inhibitory receptor genes including

CTLA-4 in CD4+ CTLs, which possibly dampened T and B cell activity. We next

demonstrated comprehensive delineation of the potential for CD8+ T cell

differentiation towards dysfunctional states. Furthermore, prognostic analysis

revealed unfavorable outcomes of patients with a high proportion of CD4+ CTLs

in OSCC lesions.

Conclusion: Our study provides a dynamic landscape of lymphocytes and

demonstrates a systemic investigation of CD4+ CTL effects infiltrating into

OSCC lesions, which may share some pathogenesis reported in severe T and B

cell-activated diseases such as autoimmune and infectious diseases.
KEYWORDS

oral squamous cell carcinoma, CD4+ cytotoxic T lymphocytes, CTLA-4, T cell
dysfunction, CXCL13, double negative B cells
1 Introduction

Cancer immunotherapy has revolutionized the treatment

environment. The two principal treatment modalities are immune

checkpoint inhibitor therapy and adoptive cell therapy represented

by chimeric antigen receptor-T cell therapy. Both therapies share a

mutual objective, namely eradicating cancer cells and improving

prognosis by activating cytotoxic T lymphocytes (CTLs),

particularly the CD8+ CTL subpopulation. These therapies have

demonstrated substantial efficacy in patients who are refractory to

existing therapies.

Oral squamous cell carcinoma (OSCC) is a heterogeneous

epithelial tumor without a substantial increase in the overall

survival rate over the past decade, largely because of its high

propensity for local invasion and recurrence (1). Although

evidence supports adjuvant chemoradiation for high-risk

individuals, recurrence remains prevalent and disease-related

death is considerable, even at early time points. Similar to other

solid tumors, programmed cell death protein 1 (PD-1) inhibitors

nivolumab and pembrolizumab have been approved for patients

with recurrent/metastatic head and neck squamous cell carcinomas

including OSCC. Furthermore, the application of neoadjuvant

immunotherapy, nivolumab, and cytotoxic T-lymphocyte-

associated protein 4 (CTLA-4) inhibitor ipilimumab prior to

surgical intervention has recently been recognized to be a feasible

treatment (2). Several reports on the influence of human leukocyte

antigen (HLA) genetic factors and some antigenic peptides

recognized by CTLs in OSCC suggest the effectiveness of these

immunotherapies. However, regardless of various ongoing efforts to

improve treatment outcomes, the therapeutic effect is limited

because a fraction of patients remains non-responsive or quickly

become resistant, and a certain rate of hyper-progression occurs (3).

Consequently, while current studies about tumor immunity have
02
primarily focused on CD8+ T cells and tumor cells, especially in

OSCC, a more comprehensive understanding that is not confined to

these cell types is crucial for more robust development of

cancer immunotherapy.

In addition to CD8+ T cells, the pivotal role of CD4+ T cells in

instigating and maintaining effective tumor immunity has been

gaining recognition, even in the context of cancer immunotherapies

tailored to induce a CD8+ CTL response (2). Recently, Kruse et al.

demonstrated that CD4+ effector T cells are inclined to infiltrate the

invasive front of major histocompatibility complex (MHC) class I-

deficient tumors that may escape eradication mediated by CD8+

CTLs (4). This substantial discovery elucidates how CD4+ T cells

indirectly eradicate tumor cells through collaboration with tumor-

associated myeloid cells and stimulation of innate immune cells. In

fact, several studies have provided evidence associating expression

of MHC class II in tumor cells with favorable outcomes of many

cancer types (5–7).

Apart from T cells, mounting evidence suggests that B cells

infiltrating tumor lesions and antibodies produced by plasma cells

play a crucial role in tumor immunity. This is notably supported by

Roei et al. who comprehensively demonstrated that tumor-reactive

antibodies are produced by both germline-encoded autoreactive

antibody-secreting cells (ASCs) and ASCs which underwent

somatic hypermutations (SHMs) and affinity maturation (8).

Despite the controversy surrounding their role in tumor

immunity, a comprehensive understanding of B cells and the

ant ibod ies they produce remains ind i spensab le for

OSCC treatment.

In this study, we found that specific subsets of CD4+ T cells,

notably CD4+ CTLs, expand in OSCC by high-throughput

sequencing and quantitative imaging. We have previously

identified these subsets as pivotal contributors to the

establishment of specific disease milieus such as systemic
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sclerosis, IgG4-related disease, and COVID-19 (9–11). While

expansion of tumor neoantigen-specific CD8+ T cells, which

contribute to cancer eradication, has been previously reported in

other cancer types, we found that the sum of CD4+ T cells, B cells,

and ASCs in OSCC was similar to CD8+ T cells, and CD4+ CTLs

and activated B cells were the main CD45+ immune cells. Notably,

CD4+ CTLs also expressed multiple kinds of inhibitory receptor

(IR) genes, such as PDCD1, CTLA4, LAG3, and HAVCR2, and

exhibited co-expression modules analogous to CD4+ regulatory T

cells (Tregs), suggesting that they eliminate tumor cells via cytotoxic

activity and act as immunosuppressor cells.

Furthermore, we found that CD4+ CTLs expressed C-X-C motif

chemokine ligand 13 (CXCL13), a B cell chemoattractant, and

physically interacted with activated B cells in tumor lesions.

These activated B cells included a population of DN B cells that

we have previously reported to be a disease-related B cell population

that arises from the extrafollicular B cell response and are readily

induced in the altered inflammatory milieu.

Our results indicate that CD4+ CTLs might be as pivotal to

tumor immunity as CD8+ CTLs, and that CD4+ CTLs also interact

with B cells through physical conjugation. This study provides a

comprehensive landscape of the dynamics of T and B cells induced

in OSCC lesions, potentially revealing some similarities with the

pathogenesis of severe T and B cell-activated diseases such as

autoimmune and infectious diseases.
2 Materials and methods

2.1 Study participants

The study included 23 patients with primary OSCC of the

tongue treated at the Department of Oral and Maxillofacial Surgery,

Kyushu University Hospital. Patients had been diagnosed from

2015 to 2017 at the Department of Kyushu University Hospital. The

OSCC histological grade was determined by the World Health

Organization’s classification system, and the tumor grade was

determined by the TNM classification system. All included

patients had a pathological diagnosis by biopsy and underwent

scheduled excision surgery. A summary of OSCC patient

information is presented in Supplementary Table 1. This study

was approved by the Ethics Committee of Kyushu University

Hospital (IRB number: 2021-265). Informed consent was

obtained from each patient. All experiments were performed in

accordance with the relevant guidelines and regulations.
2.2 Tissue homogenization and CD45+

cell isolation

All fresh tissue samples of OSCC were collected at the time of

surgical resection. Excised tongue specimens from three OSCC

patients (Supplementary Table 1, patients marked as ‘scRNA-seq’

in the Application column) were preserved in Tissue Storage

Solution (130-100-008, Miltenyi Biotec) for subsequent

processing. The tissue samples were transferred to gentleMACS C
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Tubes (130-093-237, Miltenyi Biotec) and cut into small pieces in

RPMI-1640 with L-glutamine and phenol red (189-02025,

FUJIFILM). Multi Tissue Dissociation Kit I (130-110-201,

Miltenyi Biotec) and a gentleMACS Octo Dissociator with

Heaters (130-096-427, Miltenyi Biotec) were employed to gently

isolate cells from the tongue samples while preserving cell surface

epitopes. Following homogenization for 1 hour, the tissue sample

was passed through a 100 µm MACS SmartStrainer (130-098-463,

Miltenyi Biotec) and transferred into a 5 mL Round Bottom

Polystyrene Test Tube with Cell Strainer Snap Cap (352235,

Falcon). After washing twice with EasySep Buffer (20144,

STEMCELL), erythrocytes were eliminated using a Red Blood

Cell Lysis Solution (130-094-183, Miltenyi Biotec).

For CD45+ cell isolation, the homogenized cell suspension was

incubated with a PE anti-human CD45 antibody (304039,

BioLegend) and FcR Blocking Reagent, human (130-059-901,

Miltenyi Biotec) at room temperature (RT) for 15 min. Then,

EasySep Human PE Positive Selection Kit II (17664, STEMCELL)

was employed for positive selection of desired cells. Cells were

labeled with anti-CD45+ antibody-coated magnetic particles and

separated using an EasySep Magnet (18000, STEMCELL). After

separation, the cells were preserved in CELLBANKER 1 plus

(11912, ZENOGEN PHARMA) and stored at -80°C for

subsequent analysis.
2.3 Single-cell RNA and TCR/BCR library
preparation and sequencing

The number and viability of isolated CD45+ cells were assessed

using a LUNA-FX7 Automated Cell Counter (L70001, Logos

Biosystems). The cell concentration was adjusted to 10,000 single

cells per sample. Subsequently, the cells were processed using a

Chromium Single Cell 5′ Reagent Kit (v2) in the 10x Genomics

Chromium instrument in accordance with the manufacturer’s

protocol. To construct libraries, 10x Genomics Chromium Single

Cell V(D)J v2 (GEX + human TCR/BCR) reagents were used. The

prepared libraries were subjected to sequencing on an Illumina

Hiseq platform with the following configuration: Read 1 (26 bp) + i7

index (8 bp) + i5 index (8 bp) + Read 2 (91 bp). Additionally, Hiseq

350M read/lane and two lanes per sample were used to ensure a

sequence depth of 100,000 reads per cell.
2.4 Quality control and gene
expression analysis

The raw sequencing data from Illumina Hiseq were processed

to generate FASTQ files, which were then used to obtain single cell

feature counts and V(D)J immune profiling analysis results using

10x Genomics Cell Ranger 6.0 software. Subsequent gene

expression analysis and cell clustering were performed in the R

4.2.0 environment using the Seurat 4.3.0 package (12).

Before commencing the analysis, the gene expression data were

first filtered based on the following criterion: cells exhibiting more

than 15% mitochondrial RNA, fewer than 100 gene counts, and
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fewer than 200 gene types were considered lysed and removed from

the dataset. The scRNA-seq gene expression data were normalized

using the sctransform (SCT) method, and the respective expression

data from the three patients were integrated to correct the batch

effects. Dimensionality reduction of the gene expression matrix was

performed using principle complement analysis (PCA), and

visualization was achieved through uniform manifold

approximation and projection (UMAP) dimensionality

reduction (13).

A k-nearest neighbor graph was constructed based on the PCA

results, and cell clusters were identified using Louvain algorithm

(14). The leukocyte phenotypes were then assigned to these clusters

using the following marker genes: CD79A, MS4A1, CD19 for B cells;

CD79A, SDC1, XBP1, JCHAIN for ASCs; CD3E, CD4, IL7R for

CD4+ T cells; CD3E, CD8A for CD8+ T cells; TPSAB1, CPA3 for

mast cells; CD14, CD68, AIF1 for macrophages; IFIT1, MX2 for

neutrophils; NCAM1 for NK cells; CD4, CLEC4C, IL3RA for

plasmacytoid dendritic cells (pDCs); TRGV9, CD3E for gd T cells.

T cells and B cells were extracted and re-clustered using the

pipeline mentioned above. Quality control measures were

implemented to minimize the potential doublet in both T cells

and B cells. For CD4+ T cells, any cells expressing CD19, CD79A,

MS4A1, CD8A, CD14 or AIF1 were removed. Similarly, in CD8+ T

cells, cells expressing CD19, CD79A, MS4A1 CD4, CD14 and AIF1

were excluded. Finally, for B cells, any cells expressing CD3E, CD4,

CD8A, CD14 or AIF1 were removed. This process ensured the

purity and accuracy of the selected T cells and B cells for

further analysis.

Subsequently, T cell subsets were assigned based on the

following criteria: central memory T cell (TCM) exhibited high

expression of SELL and CCR7, while effector memory T cell

expressed low SELL and CCR7; expression of PDCD1, CTLA4,

LAG3 and ENTPD1 for CD8+ exhausted T cell; expression of

GZMA CD4+ CTL; expression of FOXP3, IL2RA for regulatory T

cell; expression of TRBV20-1 for mucosal associated invariant T

(MAIT) cell expressed; low expression of PDCD1, CTLA4, LAG3

but high expression of GZMB for CD8+ CTL; expression ofMKI67,

CCNA2 and CCNB2 for proliferating T cell.

B cell subsets were assigned using the following criteria: high

expression of IGHD and negative expression of CD27 for naïve B

cell; expression of CD27, negative expression of IGHD and low

expression of CCR7 and CD40 for memory B cell; high expression of

CCR7 and CD40 for activated B cell; negative expression of CD27

and IGHD for double negative (DN) B cell; positive expression of

BCL6, AICDA, MEF2B and STMN1 for germinal center (GC) B cell;

high expression of IGHG1 and IGHG3 for IgG ASC; high expression

of IGHA1 and IGHA2 for IgA ASC.
2.5 TCR/BCR repertoire analysis

The TCR and BCR repertoire data generated from the 10x

Genomics Cell Ranger pipeline were processed utilizing the

scRepertoire v1.7.2 package (15). The information of barcode,

TCR/BCR V(D)J and C germline gene usage, amino acid and

nucleotide sequence of complementarity determining region
Frontiers in Immunology 04
(CDR) 3 was employed for downstream analysis. T cells or B cells

with identical amino acid sequence in the CDR3 region were

regarded as the same clonotype. Subsequently, the counts of

identical expanded clonotypes representing clonal expansion

among these clonotypes were computed and divided into six

levels for T cells: Single: only one count per clonotype; Small: no

more than three counts per clonotype; Medium: no more than 15

counts per clonotype; Large: no more than 50 counts per clonotype;

Hyperexpanded: more than 50 counts per clonotype; NA: ab TCR

sequence was undetected, and six levels for B cells: Single: only one

count per clonotype; Small: no more than three counts but more

than one count per clonotype; Medium: no more than five counts

but more than three counts per clonotype; Large: no more than ten

counts but more than five counts per clonotype; Hyperexpanded:

more than ten counts per clonotype; NA: BCR sequence was

undetected. These different levels of counts of identical expanded

clonotypes were visualized using the coordinates of UMAP derived

from gene expression analysis conducted above.

Chord diagrams were employed to visualize the TCR

interconnectivity among the distinct subsets. The counts of

shared clonotypes between distinct CD4+ and/or CD8+ T cell

subsets assigned in the gene expression analysis and unique

clonotypes of these distinct T cell subsets were computed to

construct a matrix for visualization. This visualization using

chord diagrams was conducted using the circlize v0.4.15 package

(16), where a chord connecting two different subsets represented

shared clonotypes and the thicker these chords were, the greater

counts of shared clonotypes the two subsets had. The counts of

these unique clonotypes grouped by different CD4+ T cells, CD8+ T

cells and B cells were also visualized using bar plots.

The diversity of these distinct subsets in CD4+ T cells, CD8+ T

cells and B cells was estimated by five metrics: Shannon, inverse

Simpson, Chao1 and inverse Pielou’s measure of species evenness

(17–20). The Shannon Diversity Index was calculated using the

following process: 1) count the total number of clonotypes (N), and

the total number of TCR/BCR sequences in each clonotype (n). 2)

calculate the proportion of each clonotype (pi) in the community

via dividing n by N. 3) calculate the Shannon Diversity Index using

the formula: -sum (pi * ln(pi)). The inverse Simpson Index was

calculated using the formula: 1/sum (pi^2) and the Pielou Index

was calculated by dividing the Shannon Diversity Index by the

natural logarithm of the total clonotypes count. The Chao1 Index

was calculated using the following process: 1) count the total

number of clonotypes (N). 2) determine the number of

clonotypes with single (n1) or double (n2) TCR/BCR sequence. 3)

calculate the Chao1 Index using the formula: N + [n1(n1 - 1)]/[2 *

(n2 + 1)].

In addition, MiXCR v4.0 (21) was used to calculate the

frequency of somatic hypermutations (SHMs). An alignment-

guided consensus algorithm was employed to reconstruct the

BCR amino acid sequences and identify SHMs from the input of

BCR nucleotide sequences. Subsequently, each mutation flagged by

the algorithm employed to calculate the SHM frequency via

dividing the mutation amino acid by the total number of amino

acids. The output was visualized utilizing the Platypus v3.4.0

package (22) and was grouped by distinct B cell subsets assigned
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in gene expression analysis. The Pairwise Wilcoxon test was

employed to calculate the p-values between the DN3 subset and

the IgG ASC subset, as well as between the DN3 subset and the IgA

subset, and the p-values were adjusted using the Benjamini-

Hochberg method.
2.6 Single-cell trajectory analysis and RNA
velocity analysis

The single-cell trajectory analysis in this study was conducted

using Monocle3 v1.3.1 package (23). The two Seurat objects with

barcodes, features and gene expression matrix, which contained

conventional CD4+ T cells and CD8+ T cells, respectively, were

transformed into objects suitable for Monocle3. Subsequently, these

subsets information and UMAP coordinates from the gene

expression analysis above were assigned to the objects. The

single-cell trajectory analysis was carried out following these

steps: 1) Graph learning: trajectory graphs for the whole

conventional CD4+ T cells and CD8+ T cells were fit using

Monocle3’s ‘learn_graph’ function, respectively. 2) Cell ordering

in pseudotime: To arrange the cells along the trajectories,

‘order_cells’ function was utilized and the TCM subset assigned in

both conventional CD4+ T cells and CD8+ T cells was designated as

the root of the trajectory. 3) Graph visualization: These T cells were

plotted using the UMAP coordinates calculated in the gene

expression analysis and colored by pseudotime. Finally, gene

dynamic plots were produced using the ggplot2 v3.4.1 package,

the average gene expression of specific genes in cells with identical

pseudotime was calculated and these dot plots were visualized by

the pseudotime order of these cells and colored by distinct subsets.

The RNA velocity analysis was performed using velocyto v0.17 and

velocyto.R v0.6 package (24). The alignment bam files and barcode

information of the three OSCC samples generated from 10x cellranger

software were used as input data for velocyto, which is a command line

tool. Subsequently, velocyto was used to classify the reads in bam files

into distinct categories to yield loom files for the three OSCC samples

and gene annotation gtf file and repeat masked gtf file from 10x

GRCH38 Cell Ranger reference package was employed at this step. The

output loom files contained matrices of spliced, unspliced and

ambiguous reads of detected genes and were used for further analysis

using velocyto.R v0.6 package in R 4.2.0 environment. The three loom

files were merged firstly and divided into two objects with conventional

CD4+ T cells and CD8+ T cells, respectively. The subset information

and UMAP coordinates from the gene expression analysis above were

assigned to the velocyto objects and RNA velocity estimation was

performed for the two objects using ‘RunVelocity’ function from

velocyto.R v0.6 package grouped by distinct conventional CD4+ T

cell and CD8+ T cell subsets. Following this, subsequent visualization

based on the UMAP coordinates generated in the gene expression

analysis was produced using ‘show.velocity.on.embedding.cor’ function

in velocyto.R v0.6 package.
Frontiers in Immunology 05
2.7 Hierarchical clustering analysis and
cell-cell communication analysis

The average gene expression matrix of each T cell subset

assigned in gene expression analysis was calculated for the

hierarchical clustering analysis. The hierarchical clustering

analysis was executed using ‘hclust’ function and the algorithm

ward.D2 in R 4.2.0 environment (25). The hierarchical clustering

analysis results were visualized in a dendrogram to elucidate the

relationships among the subsets.

The cell-cell communication analysis of cellular crosstalk

between B cell and conventional CD4+ T cell subsets was carried

out using CellphoneDB v4 (26). Gene expression data, along with

cell subset annotation information for these T cells and B cells from

the gene expression analysis generated above were exported for the

prediction of enriched receptor-ligand interactions. The interaction

was predicted on the expression of a receptor by one cell type and a

ligand by another cell type using cellphonedb v4.1.0 package in the

python 3.10.9 environment. The generated output files containing

p-values indicating the statistical significance of specific interaction

pairs between conventional CD4+ T cells and B cells and the average

expression level of each interaction pair between each cell pair were

utilized for subsequent visualization in the R 4.2.0 environment.

The quantity of significant receptor-ligand interactions between

conventional CD4+ T cells and B cells was computed and visualized

in a heatmap. The specific receptor-ligand pairs were depicted in

dot plots, where dot size indicated the negative logarithm base 10 of

p-values and gradient color indicated the logarithm base 2 of the

average expression of each interaction pair. Both visualizations were

produced using the ggplot2 v3.4.1 package.
2.8 High dimensional weighted gene co-
expression network analysis and gene
ontology enrichment analysis

All the T cell subsets identified in the gene expression analysis

were subjected to WGCNA at a single-cell level using the

hdWGCNA v0.2.18 package (27). To optimize the T cell dataset

for the hdWGCNA pipeline, metacells were constructed for each

distinct T cell subset, and the harmony v0.1.1 package (28) was

employed for the dimensionality reduction. Then k-Nearest

Neighbors algorithm was performed to identify groups of similar

T cells for aggregation. The resulting metacells gene expression

matrix was subsequently used in the WGCNA. The metacell gene

expression matrix from the CD4+CTL subset was specified for the

co-expression network analysis and the different co-expression

modules resulting were visualized in a dendrogram.

Following this, the harmonized module eigengenes (hMEs)

were computed across the entire T cell dataset based on the co-

expression modules obtained from the WGCNA and were

visualized in conjunction with the UMAP calculated in the Seurat
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object using a feature plot. The hME of module 3 (M3) in the

CD4+CTL subset was further visualized in T cell subsets using a

violin plot. Genes in each co-expression module were assessed

based on the eigengene-based connectivity, or kME, and were

subsequently visualized in each module arranged according to

kME. The genes with top 10 kME values were displayed in this plot.

The genes with top 100 highest kME values in M3 were

extracted for GO enrichment analysis (29), which was also

conducted in the R 4.2.0 environment. The gene symbols were

converted to Entrez IDs using the stringr v1.5.0 package. Following

this, the GO enrichment analysis was performed using the

clusterProfiler v4.7.1.002 package (30). The top 10 biological

processes (BPs) were displayed in a dot plot.
2.9 Single-cell regulatory network
inference and clustering analysis

The subset information and gene expression matrix of all T cells

generated by Seurat was used for SCENIC analysis using the

SCENIC v1.3.1 package in the R 4.2.0 environment (31). SCENIC

settings were initialized using the following motif database: hg19-

500bp-upstream-7species.mc9nr.feather and hg19-tss-centered-

10kb-7species.mc9nr.feather. Subsequently, a soft gene filter was

applied to remove the genes in very few cells (less than 1% cells) and

the transcription factor (TF) list and gene expression matrix were

exported to text format to run GRNboost. Co-expression modules

with TFs were computed based on the prepared matrix using the

GRNboost v0.1.5 package in the python 3.10.9 environment and the

output was further analyzed in the R 4.2.0 environment. The

RcisTarget v1.18.2 package was employed to analyze TF motif for

the identification of regulons. Then the regulon activity in the T

cells was scored using the AUCell v1.20.2 package. The average

regulon activity as well as these identified regulons across different T

cell subsets was visualized in a heatmap.
2.10 Hematoxylin and eosin staining

The formalin-fixed, paraffin embedded (FFPE) OSCC tissue

sections, with a thickness of 4 mm, were subjected to a

deparaffinization process in xylene for 10 min, followed by a

rehydration procedure through a graded series of ethanol

solutions with decreasing concentrations: 100% ethanol for 10

min, 90% ethanol for 5 min, 80% ethanol for 5 min, and 70%

ethanol for 5 min. Subsequently, the slides were rinsed in water for 2

min before being immersed in hematoxylin for 1 min to stain the

nuclei. After thorough washing, the washed slides were stained with

eosin for 5 min, and afterwards dehydrated in a gradient series of

ethanol solutions and xylene. Finally, the slides were mounted with

the coverslip and acrylic resin dissolved in xylene. An Olympus

IX83 inverted microscope was employed to observe the prepared

slides and capture images.
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2.11 Multicolor immunofluorescence
staining and cell quantification

All tissue samples for HE and IF staining were fixed in neutral

buffered formalin for less than 72 hours. Those formalin-fixed

paraffin-embedded (FFPE) blocks were placed in a room

temperature, dark, low humidity environment until use. Although

p a r a ffin b l o c k s c a n b e s t o r e d f o r 2 5 y e a r s f o r

immunohistochemistry and ten years for protein-requiring

platforms, samples stored for less than ten years were used in this

study (32). IF staining was conducted immediately after the FFPE

blocks were cut into sections to avoid the quick antigenicity decay of

samples (33, 34). FFPE OSCC tissue sections were subjected to

deparaffinization and rehydration. The sections were washed with

Tris-buffered saline with tween 20 (TBST) three times for 3 min

each wash. Antigen retrieval was carried out using either AR6 buffer

(AR6001KT, Akoya) or AR9 buffer (AR9001KT, Akoya), depending

on the specific primary antibodies required. The information and

condition of primary antibodies were provided in Supplementary

Table 2. This process involved microwave treatment (MWT) for 15

min, followed by cooling to RT. After the MWT step, the sections

were washed in TBST with agitation three times for 2 min each

wash. The sections were then blocked by applying an antibody

diluent/block buffer (ARD1001EA, Akoya) for 10 min at RT.

Primary antibodies were diluted in diluent/block buffer

(ARD1001EA, Akoya) and subsequently applied to the sections

for incubation in a humid chamber. Following the primary antibody

incubation, the sections were washed three times for 3 min each

wash and incubated with an Opal Polymer HRPMs + Rb secondary

antibody (ARH1001EA, Akoya). Subsequently, the sections were

washed three times for 3 min each wash for signal amplification

using TSA Amplification Reagent. The TSA Amplification Reagent

used in this study included TSA Plus Fluorescein (NEL741001KT,

Akoya), TSA Plus Cyanine 3 (NEL744001KT, Akoya), TSA Plus

Cyanine 5 (NEL745001KT, Akoya, and Opal 780 Reagent Pack

(FP1501001KT, Akoya). Following signal amplification, MWT was

performed for multiplexing. When all target proteins were detected,

the sections were stained with Spectral DAPI (FP1490, Akoya) for 5

min at RT and subsequently mounted using coverslips with

VECTASHIELD PLUS Antifade Mounting Medium (H-1900,

Vector Laboratories).

An Olympus IX83 inverted microscope was used to examine the

prepared sections and capture images. The captured images were

used to quantify cells in StrataQuest 7.0 software (TissueGnostics).

Positivity or negativity of markers was determined by the cutoff

values of intensity and area parameters established by experienced

pathologists. Lymphocyte subsets were identified by the following

criteria: CD4+ Granzyme A+ for CD4+CTLs; CD4+ T-bet+ for T

helper 1 (Th1) cells; CD4+ GATA3+ for T helper 2 (Th2) cells; CD4+

RORgT+ for T helper 17 (Th17) cells; CD4+ FoxP3+ for Tregs; CD4+

ICOS+ CXCR5+ for T follicular helper (Tfh) cells; CD4+ CCR7+

CD45RA- for CD4+ TCM; CD8
+ Granzyme A+/Granzyme B+ for

CD8+ CTL; CD8+ PDCD1+/CTLA4+ CD39+ for CD8+ TEX; CD19
+
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IgD- CD27- for DN B cells; CD19+ IgD- CD27- CXCR5+ CD11c- for

DN1 B cells; CD19+ IgD- CD27- CXCR5- CD11c+ for DN2 B cells;

CD19+ IgD- CD27- CXCR5- CD11c- for DN3 B cells; CD19+ IgD-

CD27- CXCR5- CD11c- for DN4 B cells.
2.12 Statistical analysis

Statistical analysis and data visualization were performed in the

R 4.2.0 environment. The Kaplan-Meier (K-M) curve was plotted,

and survival analysis was executed by comparing two Kaplan-Meier

curves through following steps (35): 1) Create a survival data table:

A progression of OSCC, which was recurrence or metastasis here,

was identified as the event of interest. The 20 patients

(Supplementary Table 1, patients marked as ‘multi-color IF, K-M

and COX analysis’ in the Application column) with progression-

free duration, measured in days, was used as the elapsed time to the

event of interest and one of the cases was not followed up for the full

five years and was therefore considered as censored data in the

current study. 2) Separate into two categories, high and low density,

based on the density of CD4+ CTLs: A logistic regression model was

fit in this step for the event of interest and the density of CD4+

CTLs. Receiver operating characteristic and area under the curve

values were calculated to determine the optimal cutoff point. The

cutoff value of the CD4+ CTL density was calculated using the

formula: log (BCP/(1 – BCP) – b0)/b1, where b0 is the intercept and
b1 is the coefficient of the CD4+ CTL density, and BCP is the best

cut off point from the logistic regression model. 3) Draw K-M

curves: The two K-M curves, grouped by high and low CD4+ CTL

density, were plotted using the survimer v0.4.9 package in R 4.2.0

environment. 4) Compare the two categories: The log-rank test was

used to estimate the statistical significance between the two

categories . A p-value less than 0.05 was considered

statistically significant.

Survival analysis utilizing Cox proportional hazards regression

was performed on event of interest, which was progression of OSCC

as above, and variables, as well as covariables, from the 20 patients

same as above (Supplementary Table 1, patients marked as ‘multi-

color IF, K-M and COX analysis’ in the Application column) in R

4.2.0 environment through the following steps (36): 1) Filter

variables: Cox proportional hazards models were constructed for

the following variable, respectively: a) density of CD4+ CTL, Treg,

CD4+ TCM, Th1, Th2, Th17 and Tfh subsets, b) age, c) sex, d) T

stage, e) N stage, f) differentiation of carcinoma. Variables

exhibiting significance were selected for next step, where a p-

value less than 0.05 was considered statistically significant. 2)

Construction of Cox models: Cox models including CD4+ CTL

density and N classification, Treg density and N classification, Th2

density and N classification were constructed, respectively. 3)

Significance test for variables: The partial likelihood ratio test was

used to calculate p-values for these variables in these distinct

models, and a p-value of less than 0.05 was considered

statistically significant.
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3 Results

3.1 Single-cell RNA sequencing reveals the
landscape of infiltrated immune cells in
OSCC tissues

To investigate infiltrated immune cells in OSCC tissues, we

homogenized tongue samples from three patients with OSCC and

isolated CD45+ cells that had infiltrated into the resected tongues

(Figure 1A). We then analyzed the CD45+ cells by single-cell RNA

sequenc ing ( s cRNA- s eq ) and TCR/BCR repe r t o i r e

sequencing (Figure 1B).

The scRNA-seq data were visualized using UMAP

dimensionality reduction (Figure 1C, Supplementary Figure 1).

We then assigned immune cell types to distinct clusters based on

leukocyte phenotype genes (Supplementary Figures 2, 3). The types

of infiltrated immune cells identified included T cells, B cells, ASCs,

natural killer cells, macrophages, pDCs, neutrophils, and mast cells.

We extracted the T cells and performed further cell clustering

analysis (Figure 1D). Subsequently, we assigned T cell subset types

to the clusters based on marker genes (Figure 1E, Supplementary

Figure 3). A CD4+ T cell subset expressing GZMA was designated as

the CD4+ CTL subset. The subset labeled TCM-CD4
+ 2 exhibited

high expression of CXCL13, which distinguished it from the TCM-

CD4+ 1 subset. The MAIT subset was identified by expression of

TRBV20-1 (37). The Treg subset expressed a high level of FOXP3,

whereas only the gd T cell subset expressed TRGV9. TCM-CD8
+ and

TEM-CD8
+ subsets were assigned based on the expression levels of

SELL and CCR7. Both CD8+ CTL and TEX-CD8
+ subsets displayed

elevated expression of GZMB. However, the TEX-CD8
+ subset also

expressed ENTPD1 and other IR genes. The proliferating T cell

subset represented T cells undergoing proliferation and included

both CD4+ and CD8+ T cells (Figure 1E).

The different levels of TCR sequence counts of each clonotype

in T cells were also visualized through UMAP (Figure 1F). Highly

expanded clonotypes were predominantly found in CD4+ CTL,

Treg, TEM-CD8
+, and TEX-CD8

+ T cell subsets. To circumvent

potential misinterpretation of novel subsets due to doublets

generated during library construction, we further investigated the

shared TCR sequences among T cell subsets (Figure 1G). The CD4+

CTL subset shared TCR sequences with TCM-CD4+ 2 and

proliferating T cell subsets, but did not share TCR sequences with

either Treg or CD8+ T cell subsets. This revealed that CD4+ CTLs

were a unique subset of T cells and related to other conventional

CD4+ T cell subsets, such as the TCM-CD4
+ 2 subset.
3.2 CD4+ CTLs represent a unique
subset and may differentiate from other
CD4+ T cells

To investigate the association between CD4+ CTLs and other

conventional CD4+ T cells, we analyzed CD4+ CTL, TCM-CD4
+ 1,
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and TCM-CD4
+ 2 subsets. Additionally, we renamed some subsets

using marker genes from the clustering analysis, such as TCM-

CXCL13+ and TCM-CXCR5
+ subsets (Figures 2A, B, Supplementary

Figure 4). Both CD4+CTL 1 and CD4+CTL 2 subsets expressed

cytotoxic gene GZMA. However, the CD4+CTL 2 subset also

expressed GZMB and other IR genes expressed in exhausted

CD8+ T cells, such as PDCD1, CTLA4, LAG3, TIGIT, HAVCR2,

and TOX (38). Notably, T cells in CD4+ CTL and TCM-CXCL13
+

subsets exhibited high clonal expansion, low diversity and low

frequency of unique clonotypes, indicating that these subsets had

experienced activation and proliferation because of antigen

specificity (Figures 2C, D, Supplementary Figure 5). Conversely,

the TCM subset exhibited low TCR clonal expansion, suggesting a

lack of antigen specificity.

The CD4+ CTL subset had shared TCR sequences with the

TCM-CXCL13+ subset (Figure 2E), revealing a potential

developmental relationship between these two subsets.

Consequently, we performed pseudotime analysis based on
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calculations and predictions for estimating single cell trajectories,

although it would be limited in accuracy or confidence (Figure 2F).

By integrating this analysis with the TCR repertoire analysis, our

findings demonstrated that the CD4+ CTL subset was the most

terminally developed subset among all CD4+ T cell subsets.

Furthermore, the TCM-CXCL13
+ subset represented an activated

subset that had been presented antigens by antigen-presenting cells

and potentially differentiated into the CD4+ CTL subset upon

continuous exposure to antigens from cancer cells. A gene

dynamic plot revealed alterations in expression of certain genes

(Figure 2G, Supplementary Figure 6). During pseudotime

progression from TCM to CD4+ CTLs, GZMA and CXCL13

exhibited continuous upregulation, while CCR7 and SELL

displayed downregulation. This suggested that activated TCM cells

were predisposed to residing in peripheral tissue and acquired the

ability to respond to cancer cells directly or indirectly.

Because differentiation of T cells is predominantly driven by

specific gene regulatory networks that are primarily mediated by
B
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FIGURE 1

The landscape of infiltrating immune cells. (A) IF staining of CD45+ cells in OSCC tissue. The staining showed that dense immune cells had infiltrated
in OSCC of tongue tissue. Scale bars: 100 µm. (B) Overview of scRNA-seq. Resected tongues from three patients with OSCC underwent
homogenization, from which CD45+ cells were extracted by magnetic isolation. GEX and V(D)J libraries were subsequently constructed using these
cells for sequencing, and the sequencing data were analyzed by various methods. (C) UMAP visualization of infiltrating immune cells with assigned
clusters. This displayed a variety of immune cells in OSCC tissues. ASC: antibody-secreting cell; B: B cell; CD4+ T: CD4+ T cell; CD8+: CD8+ T cell;
gd T: gd T cell; Mj: macrophage; Neu: neutrophil; NK: natural killer cell; pDC: plasmacytoid dendritic cell. (D) UMAP visualization of T cells colored
by assigned T cell subsets. Various T cell subsets were identified by unsupervised clustering and assigned based on expression of specific marker
genes. TCM-CD4: CD4

+ central memory T cell; CD4+ CTL: CD4+ cytotoxic T lymphocyte; MAIT: mucosal associated invariant T cell; Treg: regulatory
T cell; TCM-CD8: CD8

+ central memory T cell; TEM-CD8: CD8
+ effector memory T cell; TEX-CD8: CD8

+ exhausted T cell; gd T: gd T cell; Proliferating
T: proliferating T cell. (E) Violin plot of gene expression in T cell subsets. This plot showed the marker gene expression used to assign T cell subsets.
(F) UMAP visualization of T cells combined with TCR clonal expansion. The specific gradient color denotes different degree of clonal expansion in
TCRs. NA: ab TCR sequence was undetected. (G) Chord diagrams of the unique and shared TCR clonotype counts in T cell subsets. The chords
connecting two different subsets represent shared TCR clonotypes.
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FIGURE 2

Gene expression and TCR repertoire analysis of conventional CD4+ T cells. (A) UMAP visualization of conventional CD4+ T cells. CD4+ CTL: CD4+

cytotoxic T lymphocyte; TCM: central memory T cell; TCM CXCL13+: CXCL13-expressing central memory T cell; TCM CXCR5+: CXCR5-expressing
central memory T cell; TCM/TEM: central memory T cell and effector memory T cell. (B) Violin plot of gene expression in CD4+ T cell subsets. The
plot depicts expression of genes associated with T cell functions in distinct subsets. (C) UMAP visualization of conventional CD4+ T cells integrated
with TCR clonal expansion. The gradient color represents different degree of clonal expansion in distinct TCR clonotypes. NA: ab TCR sequence was
undetected. (D) Proportional stacked bar plot of clonal expansion in conventional CD4+ T cell subsets. A high level of clonal expansion was
predominantly found in the CD4+ CTL subsets. (E) Chord diagrams of unique and shared TCR clonotype counts in conventional CD4+ T cell subsets.
The chords connecting two different subsets represent shared TCR clonotypes. (F) UMAP visualization of conventional CD4+ T cells colored by
pseudotime and integrated with single cell trajectories. The TCM subset was set as the root node of single cell trajectories. (G) Gene dynamic plot
based on pseudotime. Cells were ordered in accordance with pseudotime, and the average expression of these genes in cells with identical
pseudotime was calculated and visualized in this plot. (H) Heat map of the top 10 active regulons in T cell subsets. An extended regulon refers to a
regulon that has been expanded to include both direct and indirect targets of a regulon. The counts of these genes are indicated by parenthesis
following the regulons. (I) UMAP visualization integrated with RNA velocity analysis of conventional CD4+ T cells. The direction of the arrow
represents the predicted direction of change in cell state, and the length of the arrow represents the predicted speed of change in cell state.
(J) Multicolor IF staining of CD4+ CTLs and CXCL13+ CD4+ T cells in OSCC tissue. Scale bars: 50 µm (low magnification) and 5 µm
(high magnification).
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transcription factors (TFs) and cofactors, we employed SCENIC, a

computational tool designed to infer regulatory information from

scRNA-seq data, to predict potential TFs and gene regulatory

networks in these T cell subsets (Figure 2H). Notably, the CD4+

CTL subset displayed a different group of regulons compared with

other T cell subsets, separating them from other T cell

subsets.Additionally, we carried out RNA velocity analysis to

estimate the cell state in various subsets (Figure 2I). The length of

the arrow was longer in TCM-CXCL13
+ and some TCM subsets

compared with CD4+ CTL and other TCM subsets, indicating that

the cell state in the TCM-CXCL13
+ subset was changing at a fast rate,

whereas CD4+ CTLs may have halted their development and

maintained a stable cell state. Multicolor IF staining in tissue

lesions confirmed the CD4+ CTL subset and their aggregation by

the expression of CD4, GZMA and CXCL13 (Figure 2J).
3.3 CD4+ CTLs exhibit cytotoxicity and may
induce apoptosis of tumor cells

The potential anti-tumor capacity of CD4+ CTLs has been

demonstrated across multiple tumor types (39). To investigate the

anti-tumor activity of CD4+ CTLs in OSCC, we compared the

expression level of cytotoxic genes between the CD4+ CTL subset

and other cytotoxic T cell subsets (Figure 3A). Our results indicated

that the CD4+ CTL subset expressed PRF1, GZMA, and GZMB,

indicating that CD4+ CTLs may induce apoptosis in tumor cells via

the release of cytotoxic mediators, especially granzyme B and

perforin. The expression level of cytotoxic genes in the CD4+

CTL subset, such as GZMA and GZMB, was elevated compared

with that in the other CD4+ T cell subsets (Figure 2B), but did not

appear to reach comparable levels with those in the CD8+ T cell

subset. An intriguing observation was that the CD4+ CTL subset

also expressed TNFSF10 that encodes the protein TRAIL.

Considering that TRAIL and its corresponding receptor, TRAIL

receptor, induce apoptosis in tumor cells, this suggests an

alternative apoptotic pathway independent from granzyme B and

perforin pathways.

Because CD4+ CTLs mediate cell death in an HLA class II-

restricted manner (40), we examined the proximity of CD4+ CTLs

and tumor cells expressing HLA-DR by multicolor IF staining

(Figure 3B). The staining suggested that CD4+ CTLs were in

contact with HLA-DR-positive tumor cells. We further observed

the proximity of CD4+ CTLs and apoptotic tumor cells (Figure 3C).

These data indicated the probable anti-tumor efficacy of

CD4+ CTLs.
3.4 CD4+ CTLs and Tregs share similar
functional co-expression modules

To elucidate the correlation between these T cell subsets, we

calculated the average gene expression of distinct T cell subsets and

conducted hierarchical clustering analysis (Figure 3D). The gene

expression patterns of TCM-CD4 2 (i.e., TCM-CXCL13
+) and CD4+

CTLs appeared to be similar, whereas all CD8+ T cell subsets
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merged into one cluster at an earlier stage. Notably, the

CD4+CTL 2 subset displayed a gene expression pattern

resembling that of the Treg subset.

To further investigate the specific similarities in the gene

expression patterns between these subsets, we performed

WGCNA, which is a powerful analytical tool designed to identify

modules of highly correlated genes, on the CD4+ CTL subset at the

single cell level (Supplementary Figure 7). An intriguing module of

highly correlated genes, designated as M3, included IR genes, such

as CTLA4, LAG3, TIGIT, ENTPD1, TNFRSF9, and TNFRSF18

(Figure 3E), which were upregulated in CD4+ CTL, Treg, and

TEX-CD8
+ subsets (Figures 3F, G). Subsequently, we performed

Gene Ontology (GO) biological process analysis on M3 (Figure 3H),

which revealed that M3 was associated with terms like regulation of

T cell activation and negative regulation of immune system

processes. Additionally, we compared all identified modules

across the various subsets (Figure 3I, Supplementary Figure 8)

and found that hME expression of modules in CD4+ CTLs and

Tregs was similar.
3.5 CD4+ CTLs interact with B cells and
potentially elicit pleiotropic effects for
tumor immunity

A crucial function of CD4+ T cells is mediating humoral

immunity together with B cells. Consequently, we focused on the

cell communication and interactions between the CD4+ T cell

subset and B cells. Enriched ligand–receptor interactions between

CD4+ T cell subsets and B cells were predicted by expression of a

receptor in CD4+ T cell subsets and a ligand in B cells using

CellphoneDB and vice versa. We then visualized the number of

predicted significant interactions using a heat map (Figure 3J).

CD4+CTL 2 and TCM-CXCL13
+ subsets demonstrated particularly

strong interactions with B cells, followed by the CD4+CTL 1 subset,

indicating that both CD4+CTL and TCM-CXCL13
+ subsets

exhibited enhanced communication with B cells.

Next, we visualized the specific ligand–receptor interactions

between CD4+ T cell subsets and B cells using a dot plot

(Figures 3K, L). Upregulation of ligand–receptor pairs, such as

CXCL13–CXCR5 and ICAM1,3–aLb2, between CD4+ CTL and B

cell subsets or TCM-CXCL13
+ and B cell subsets facilitated contact

between these cells. Multicolor IF staining also demonstrated that

CXCL13-producing CD4+ CTLs attracted B cells (Figure 3M).

The upregulation of CD40LG–CD40 and CD28–CD80/CD86

ligand–receptor interactions between CD4+ CTL and B cell subsets

or TCM-CXCL13
+ and B cell subsets represented promotion of

activation and further development of T and B cells. Interestingly,

we observed a strong IFNG–IFNR interaction between CD4+CTL 2

and B cell subsets, and IFNG was upregulated in the CD4+CTL 2

subset (Figure 2B). IFN-g promotes ASC development (41), and

signaling from IFN- g has been implicated in promoting germinal

centers (42). This suggested that the CD4+CTL 2 subset was

associated with B cell differentiation. Furthermore, secreted IFN-g
recruits monocytes to the tumor site and activates them (4),

resulting in a positive effect on tumor immunity.
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FIGURE 3

The CD4+ CTL subset may exert pleiotropic effects in tumor immunity. (A) Violin plot of gene expression related to cytotoxicity in several cytotoxic T
cell subsets. (B) Multicolor IF staining of CD4+ CTLs and HLA-DR+ tumor cells. Conjugation between these two cell types is depicted by the yellow
arrow and line. GZMA: granzyme A; panCK: pan-cytokeratin; c-Casp3: cleaved caspase-3. Scale bars: 50 µm (low magnification) and 5 µm (high
magnification). (C) Multicolor IF staining of CD4+ CTLs and apoptotic tumor cells. The white arrow indicates CD4+ CTLs, and the dotted box
indicates apoptotic tumor cells. Scale bars: 50 µm (low magnification) and 5 µm (high magnification). (D) Visualization of hierarchical clustering
analysis in T cell subsets. (E) Visualization of genes in module 3 (M3). The top 10 kME value genes are displayed in this plot. (F) Feature plot of M3
hMEs. Expression of M3 hMEs was calculated in single cells and visualized on UMAP. (G) Violin plot of M3 hMEs. Expression of M3 hMEs was
calculated in single cells and visualized in various T cell subsets. (H) Dot plot of the top 10 terms of biological processes in GO enrichment analysis.
The enrichment p-values were calculated using the hypergeometric distribution test and adjusted by the Benjamini–Hochberg method. (I) Dot plot
of hMEs in all modules. Expression of hMEs in all modules was calculated in single cells and visualized in various T cell subsets. The dotted box
indicates the specific T cell subsets. (J) Heat map of significant receptor–ligand interactions. The gradient color represents the quantity of significant
interactions. (K-L) Dot plot of specific receptor–ligand pairs. The permutation test was used to calculate the p-value. (M) Multicolor IF staining of
CXCL-13-producing CD4+ CTLs (left), CTLA-4-expressing CD4+ CTLs (upper right), and conjugation with B cells (lower right). Conjugation between
these cells is depicted by the yellow arrow and line. Scale bars: 20 µm (low magnification) and 5 µm (high magnification).
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Conversely, the upregulation of certain ligand–receptor

interactions, such as ADORA2A–ENTPD1, CLEC2D–KLRB1,

CD80–CTLA4, and CD86-CTLA4, is indicative of inhibitory

regulation of T and B cells (43–46), implying a detrimental effect

on tumor immunity. We further investigated the typical IR

molecule CTLA-4 by multicolor IF (Figure 3M). The results

showed that CTLA-4-expressing CD4+ CTLs attracted and

conjugated with CD20+ B cells, suggesting potential suppression

of B cell responses (47).
3.6 Differential gene expression patterns in
tumor-infiltrating CD8+ T cells

The subset of CD8+ T cells was primarily determined by

expression of marker genes, such as SELL, CCR7, ENTPD1,
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GZMB , PDCD1 , CTLA4 , and LAG3 (F igures 4A, B ,

Supplementary Figure 9). The TCM subset was characterized by

high expression of SELL and CCR7, and low expression of GZMB.

Conversely, TEM, CD8
+ CTL and TEX subsets exhibited low or

negative expression of SELL and CCR7. GZMB was highly expressed

in one cluster in the TEM subset and in CD8+ CTL and TEX subsets.

The TEX subset further demonstrated high expression of IR genes,

such as PDCD1, CTLA4, LAG3, and TIGIT. A cluster of CD8+ T

cells in the TEX subset had increased expression of ENTPD1

encoding CD39, HAVCR2 encoding TIM-3, and TOX, which

indicated advanced exhaustion, suggesting a late dysfunctional

state of these cells (38). Multicolor IF staining displayed the

exhausted CD8+ T cells in OSCC tissue samples (Figure 4C).

To investigate the interrelationship among these T cell subsets,

TCR repertoire analysis was conducted and visualized (Figures 4D,

E, Supplementary Figure 10). Except for the TCM subset, we found
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FIGURE 4

Gene expression and TCR repertoire analysis of CD8+ T cells. (A) UMAP visualization of CD8+ T cells. TCM CD8: central memory CD8+ T cell; TEM
CD8: effector memory CD8+ T cell; TEX CD8: exhausted CD8+ T cell; CD8+ CTL: CD8+ cytotoxic T lymphocyte. (B) Violin plot of gene expression in
CD8+ T cell subsets. (C) Multicolor IF staining of CD8+ exhausted T cells in OSCC tissue samples. The white arrow indicates CD39+ PD-1+ CD8+

exhausted T cells. Scale bars: 20 µm (low magnification) and 5 µm (high magnification). (D) UMAP visualization of CD8+ T cells integrated with TCR
clonal expansion. The gradient color represents the different degree of clonal expansion in distinct TCR clonotypes. NA: ab TCR sequence was
undetected. (E) Proportional stacked bar plot of clonal expansion in CD8+ T cell subsets. (F) Chord diagrams of unique and shared TCR clonotype
counts in CD8+ T cell subsets. The chords connecting two different subsets represent shared TCR clonotypes. (G) UMAP visualization of CD8+ T
cells colored by pseudotime and integrated with single cell trajectories. (H) Gene dynamic plot based on pseudotime. Cells were ordered in
accordance with the pseudotime, and the average expression of these genes in cells with identical pseudotime was calculated and visualized in this
plot. (I) UMAP visualization integrated with RNA velocity analysis of CD8+ T cells. The direction of the arrow represents the predicted direction of the
change in cell state, and the length of the arrow represents the predicted speed of change in cell state.
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that other T cell subsets exhibited high clonal expansion in

clonotypes, and the most oligoclonally expanded cells, low TCR

diversity and low frequency of TCR unique clonotypes were

observed in the TEX subset. Many shared TCR sequences were

observed among the subsets (Figure 4F), suggesting that T cells with

the same clonotype existed in different cell states.
3.7 Tumor-specific CD8+ T cells
exhibit consistent differentiation to
dysfunctional states

We performed single cell trajectory analysis of these CD8+ T

cells, and the TCM subset was designated as the root of the trajectory

to calculate pseudotime (Figure 4G). Together with the analysis of

shared TCR sequences, it revealed that certain tumor-specific cells

in the TCM subset had developed into TEM cells and ultimately to

TEX cells. This suggested persistent differentiation towards

dysfunctional states during tumorigenesis.

Next, we tracked several genes using a gene dynamic plot

(Figure 4H, Supplementary Figure 11), and found that GZMA

and GZMB expression was continuously upregulated during

differentiation. Similarly, genes encoding IRs, including ENTPD1,

PDCD1, CTLA4, LAG3, and HAVCR2, showed a pattern of

upregulated expression. Furthermore, TOX and TCF7, which

encode two critical TFs, TOX and TCF1, during T cell exhaustion

(48), demonstrated an inverse expression pattern characterized by a

decrease in TCF7 expression and an increase in TOX expression.

Additionally, downregulated expression of SELL encoding the

integrin CD62L and CCR7, alongside upregulated expression of

ITGA1 and ITGAE encoding CD49a and CD103, respectively,

indicated tissue-resident development during differentiation.

Further insights into the cell state were achieved by RNA

velocity analysis of CD8+ T cells (Figure 4I). Notably, the arrow

length, which is indicative of the rate of the cell state change, was

longer in several TEM subsets compared with TEX subsets. This

implies a faster rate of cell state change in TEM subsets. Conversely,

TEX subsets demonstrated relative stability in their cell state,

suggesting that these cells had halted their development and

maintained a consistent cell state.
3.8 Various subsets of B cells and ASCs
infiltrate into OSCC lesions

Considering the role of CD4+ T cells in promoting B cell

activation and differentiation, we examined the subsets of B cells

and ASCs infiltrating into OSCC lesions (Figures 5A, B). Naïve B

cells were identified by high IGHD expression and the absence of

CD27 expression, whereas memory B cells lacked IGHD

expression. The activated B/DN1 subset exhibited CXCR5 and

low CD27 expression but increased expression of CCR7 and CD40

compared with memory B cells. GC B cells were marked by

expression of BCL6 and AICDA. DN3 B cells lacked IGHD,

CD27, CXCR5, CR2, and ITGAX encoding CD11c expression,

whereas IgG and IgA ASCs exhibited high IGHG and IGHA
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expression, respectively. Although DN2 and DN4 subsets failed

to form distinct clusters because of their scarcity in the scRNA-seq

data, their presence was confirmed by multicolor IF staining

(Supplementary Figure 12).
3.9 DN3 B cells synthesize IgG antibodies,
potentially originating from extrafollicular
responses, and frequently conjugate with
CD4+ CTLs

DN3 B cells showed notably high expression of IGHG1 and

IGHG3, even compared with IgG ASCs (Figure 5B), and analysis of

the BCR repertoire revealed oligoclonally expanded populations in

activated B/DN1, DN3, and ASC subsets (Figure 5C, Supplementary

Figure 13), whereas BCR clonal expansion in naïve B cells was almost

single and BCR diversity and frequency of unique BCR clonotypes was

high, indicating activation and differentiation of DN3 B cells.

Subsequently, we selected B cells containing more than three counts

per clonotype from the DN3 and ASC subsets and visualized VJ

germline gene usage (Figure 5D). Higher variability was observed in the

germline gene usage of DN3 B cells compared with that of ASC subsets,

indicating diverse expanded clonotypes of DN3 B cells, which was a

characteristic of extrafollicular responses.

Additionally, we investigated the frequency of SHMs across

these B cell subsets in heavy chains and light chains (Figure 5E).

DN3 B cells exhibited a significantly lower frequency of SHMs

compared with IgG ASCs (adjusted p-values of 6.426e-06 and

5.355e-06 in heavy chains and light chains, respectively). This

suggested that DN3 B cells were activated and differentiated

primarily through extrafollicular responses.

To further examine the potential coactivation between DN B

cells and CD4+ CTLs, we performed HE and multicolor IF staining

of OSCC tissue samples (Figure 5F). Conjugation between DN B

cells and CD4+ CTLs was observed in extrafollicular sites adjacent

to tumor cells. Such conjugation implied that CD4+ CTLs facilitated

DN B cell activation and promoted their differentiation via

extrafollicular responses. Conversely, DN B cells may also further

activate CD4+ CTLs in these responses.
3.10 Infiltration of CD4+ CTLs may imply a
poor prognosis of OSCC

Multicolor IF staining and quantification of CD4+ T cell subsets

were conducted in 20 tissue samples obtained from patients with

OSCC of the tongue (Figures 6A, B). The quantification indicated

substantial infiltration of CD4+ CTLs into OSCC lesions compared

with other CD4+ T cell subsets. To elucidate the potential correlation

between CD4+ T cell subsets and prognosis, patients were divided into

two groups by the density of infiltrating CD4+ CTLs, and Kaplan–

Meier models were constructed to compare the survival distribution

(Figure 6C). The results showed statistical significance in progression-

free survival probabilities between the two groups, indicating that

patients with a large number of CD4+ CTLs may have a

poor prognosis.
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Considering potential covariates may affect prognosis, we

constructed several COX proportional hazard models. Initially, we

constructed singular COX models for each variable, which included

the density of individual T cell subsets, age, sex, T and N

classification, and differentiation of carcinoma to filter these

variables. The density of CD4+ CTLs, Tregs, and Th2 and Tfh

cells, as well as the N classification demonstrated statistical
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significance (Supplementary Table 3). We next constructed

models that incorporated the density of each CD4+ T cell subset

with the N classification (Table 1, Supplementary Table 4). A high

density of CD4+ CTLs infiltrating into OSCC lesions was identified

to be a significant risk factor potentially influencing progression-

free survival time, whereas the density of Tregs, and Th2 and Tfh

cells did not show significant results in these models.
B

C D

E

F

A

FIGURE 5

Gene expression and BCR repertoire analysis of B cells. (A) UMAP visualization of B cells. Cells on the UMAP are colored in accordance with the subsets.
DN1: double negative 1 B cells; DN3: double negative 3 B cells; ASC: antibody-secreting cell; GC B: germinal center B cell. (B) Dot plot of gene expression in
B cell subsets. (C) UMAP visualization of B cells integrated with BCR clonal expansion. The gradient color represents different degree of clonal expansion in
distinct BCR clonotypes. NA: BCR sequence was undetected. (D) Circos plot of VJ germline gene usage in DN3 and ASC cells. This plot provided a circular
visualization of how V and J germline genes were combined. (E) Visualization of the SHM frequency in B cell subsets. The black line on the dots represents
the mean value. P-values were calculated by the Kruskal–Wallis test and adjusted by the Benjamini–Hochberg method, *P < 0.05, *****P < 0.00001, ns: not
significant. (F) HE staining and multicolor IF staining of DN B cells and conjugation with CD4+ CTLs in two consecutive OSCC sections. Conjugation between
these cells is depicted by the yellow arrow and line. Scale bars: 100 µm (low magnification) and 5 µm (high magnification).
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1305783
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Chen et al. 10.3389/fimmu.2023.1305783
4 Discussion

CD4+ CTLs play a protective role against several chronic and acute

viral infections, such as HIV, Epstein-Barr virus, and Dengue virus (40,

49, 50). We previously reported identification of this non-conventional

CD4+ helper T cell subset as the dominant tissue-infiltrating CD4+ T

cell subset driving inflammation in several autoimmune diseases

including IgG4-related disease and systemic sclerosis (11, 51).

Meanwhile, research by our group and others also indicated the

expansion of CD4+ CTLs in the context of COVID-19 (10, 52). In

addition to their significance in these diseases, the increased focus on

CD4+ T cells and CD4+ CTLs in cancer research has come about

because only a minority of tumors respond to current

immunotherapies including immune checkpoint inhibitor therapy.

Direct cytotoxicity of CD4+ CTLs against tumor cells was initially

reported in melanoma patients treated with ipilimumab, a monoclonal

antibody targeting CTLA-4. Subsequent investigations have gathered
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evidence supporting the indispensable role of CD4+ CTLs in tumor

immunity for other cancers, such as lung, colorectal, and bladder

cancers (53–56). Previous studies have mainly focused on the

cytotoxicity of CD4+ CTLs to establish effective immunotherapy. In

this study, we revealed that many CD4+ CTLs infiltrate the tumor

lesion together with CD8+ T cells. Moreover, these CD4+ CTLs possess

diverse functions other than their cytotoxic activity.

We first identified the CD4+ CTL subset as a unique subset of

tumor-infiltrating immune cells in OSCC, characterized by a distinct

gene expression pattern including the expression of cytotoxic genes

through scRNA-seq analysis with strict quality control, TCR repertoire

analysis and SCENIC analysis. Additionally, the results of single cell

trajectories, TCR clonal expansion, and RNA velocity analysis

increased our understanding of the dynamic processes underlying

conventional CD4+ T cell development in OSCC tissue, while it

would be limited in accuracy or confidence because of results based

on calculations and predictions. We found that infiltrating CD4+ TCM
B C

A

FIGURE 6

Multicolor IF staining and survival analysis. (A)Multicolor IF staining of CD4+ T cell subsets in OSCC tissue. The white arrow indicates cells in distinct subsets. Th1:
T helper 1 cell; Th2: T helper 2 cell; Th17: T help 17 cell; Tfh: T follicular helper cell; Treg: regulatory T cell. Scale bars: 10 µm (lowmagnification) and 5 µm (high
magnification). (B) Box plots of the frequency of CD4+ T cell subsets (n = 20) among CD4+ cells (left) and the density of these subsets (right). The TEM subsets
included Th1, Th2, Th17, and Tfh subsets. (C) Progression-free survival analysis using Kaplan–Meier models. The p-value was calculated by the log-rank test.
TABLE 1 COX proportional hazard model of the CD4+CTL density and N classification.

coef HR se(coef) z p-value lower.95 upper.95

CD4+CTL 0.007807 1.008 0.003663 2.131 0.03308* 1.001 1.015

N1 3.396 29.84 1.399 2.427 0.01522* 1.922 463.096

N2a 3.582 35.94 1.647 2.175 0.02961* 1.426 905.934

N2b 4.424 83.44 1.784 2.480 0.01316* 2.527 2755.381

N3b 5.203 181.9 1.929 2.697 0.00698** 4.151 7971.556
f

coef, estimated coefficients; HR, hazard ratio; se(coef), standard error of the coefficient. *P < 0.05, **P < 0.01.
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cells developed and acquired the capacity to produce CXCL13, which

was facilitated by antigen-presenting cells. However, the state of these

cells was changing quickly. Conditions of high antigen load and

prolonged antigen exposure may contribute to differentiation into

CD4+ CTLs, a cell state that was more stable but represented a

terminal stage of differentiation. Subsequently, we examined the

potential cytotoxicity of CD4+ CTLs. We found that tumor cells

expressing MHC class II molecules may be directly eliminated by

CD4+ CTLs, potentially via degranulation and perforin release or

activation of the TRAIL–TRAIL receptor axis.

Application of high dimensional WGCNA to the CD4+ CTL

subset revealed similarities in the expression of hMEs in modules

between CD4+ CTLs and Tregs, suggesting that CD4+ CTLs likely

possess immune regulatory functions despite their differing lineage.

Considering that these CD4+ CTLs are the most terminally developed

subset among all conventional CD4+ T cell subsets, coupled with their

cytotoxic activity and potential to suppress B cell responses via CTLA-4

expression, CD4+ CTLs may mediate immunosuppression and

tolerance functions in both homeostasis and inflammation.

An interesting finding was a module containing IR genes

upregulated in CD4+ CTL, Treg, and CD8+ TEX subsets. Paired with

upregulated expression of IR genes, such as PDCD1, LAG3, TIGIT,

HAVCR2, and CTLA4, this result suggests that cells in the CD4+CTL 2

subset were exhausted or dysfunctional in OSCC, although contention

remains on whether markers of CD8+ T cell exhaustion can be applied

to their CD4+ counterparts (57). This speculation was further

corroborated by high CXCL13, ENTPD1, and TOX expression, and

lost TCF7 expression in the CD4+CTL 2 subset (48, 58). Considering

that CD4+ CTLs are characterized as a terminally developed phenotype

of CD4+ T cells and the presence of CD4+ T cell exhaustion phenotype

is reported in several solid tumors, it is possible that these cells are

exhausted or dysfunctional CD4+ T cells and contribute to tumor

progression via immunosuppression (59, 60). In fact, infiltration of

CD4+ CTLs appeared to lead to poor outcomes of OSCC patients, as

observed in our retrospective evaluation of clinicopathological

parameters. Chen et al. demonstrated that CTLA-4 blockade can

promote the tumor immunity through a CD4+ T cell-dependent

manner in glioblastoma (61). Likewise, Mccaw et al. showed that

CD4+ CTLs initially delay tumor growth, but progression ultimately

becomes uncontrolled, together with expression of coinhibitory

molecules in murine breast tumor. Crucially, this phenomenon was

reversed through anti-CTLA4 therapy (60). Both studies underscore

the role of CD4+ T cell exhaustion in tumor progression and highlight

the potential of CD4-targeted therapy.

Another interesting finding was that CD4+ CTLs expressed B cell-

attracting chemokine CXCL13, thereby inducing B cell migration to

tumor lesions. In general, CXCL13 is typically expressed by HEVs and

follicular stromal cells in the B cell region of secondary lymphoid

organs. Nevertheless, several studies have reported CXCL13-producing

CD4+ T cells, which have been associated with favorable outcomes of

tumor immunity (62–64). Despite such findings, the effects of CXCL13

expression on clinical outcomes remain controversial, particularly in

terms of the association between high infiltration of CXCL13+ CD8+ T
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cells in tumor lesions and poor clinical outcomes (65, 66). Regardless,

the finding that CD4+ CTLs are predisposed to invoke B cells and

mediate humoral immunity through CXCL13 expression emphasizes

their central role in tumor immunity in addition to their CD8+

CTL counterparts.

Following this finding, we revealed expansion of activated B cells,

including DN3 B cells. DN3 B cells have been identified as

extrafollicular B cells in several immune conditions including IgG4-

related disease and COVID-19; these conditions are accompanied by

CD4+ CTL enlargement (67, 68). In OSCC, expanded CD4+ CTLs

physically interacted with these DN B cells in extrafollicular regions, a

scenario we have previously reported in other diseases. We observed

clonal expansion and markedly higher expression of IgG-related genes

in DN3 B cells. Additionally, the diverse VJ germline gene usage and

lower frequency of SHMs suggested that DN3 B cells may arise from

extrafollicular responses and lack affinity maturation. Considering that

the affinity of IgG antibodies is likely to be low, whether the antibodies

produced by DN3 B cells are associated or specific to tumor remains to

be determined, which warrants further investigation.

These seemingly contradictory effects suggested heterogeneity in

the CD4+ CTL subset. This heterogeneity may be due to the different

exhausted states and origins of distinct T cell subsets (69). The question

arises as to why such a specific immune microenvironment is observed

in tumor lesions. A potential explanation is related with the

resemblance of the tumor environment to T and B cell-activated

diseases. In such environment, immune cells are constantly exposed

to damage-associated molecular patterns and neoantigens, causing

sustained activation of T and B cells, especially in ‘hot’ tumors. Our

previous research across several disease situations, often characterized

by high cytokine production and lymphocyte activation, suggests that

such circumstances foster an extrafollicular response, subsequently

instigating differentiation of T and B cells into CD4+ CTLs and DN3

B cells, respectively. A notable example is COVID-19, in which

cytokine storms represent such a typical disease (9, 68). Research

deciphering these specific immune responses may ultimately deepen

our comprehension concerning the underlying immune mechanisms

of a broad spectrum of T and B cell-activated diseases including

autoimmune and infectious diseases. However, there are several

limitations to this study. The data presented here is descriptive and

suggestive of the tumor immunity mechanism focused on CD4+ CTLs.

Since we examined samples from human patients rather than a mouse

lab model, we could not explore the mechanism through which CD4+

T cell differentiation and CD4+ CTLs involvement in tumor immunity

occurred in the patients. Furthermore, although we found several

clonal expanded TCRs, we cannot identify those targets; this is one

of the factors that made the mechanism challenging to ascertain in this

study. Further studies should address these points.

In conclusion, our study indicates that expanded CD4+ CTLs

eliminate tumor cells by exerting their cytotoxicity, while possibly

attenuating T and B cell activity or acquiring an exhausted or

dysfunctional phenotype by expressing IRs and inhibitory molecules.

This suggests a dual role of CD4+ CTLs in either promoting or

suppressing tumor immunity, although the latter function is more
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prominent in OSCC. Furthermore, we observed that CD4+ CTLs

produce CXCL13 that potentially interacts with activated B cell

populations, including DN B cells, through physical conjugation in

tumor lesions. We employed a schema to summarize these results

(Figure 7). Whether CD4+ CTLs collaborate with DN3 B cells in tumor

immunity remains undetermined, despite these observations having

been consistently identified in the pathogenesis of IgG4-RD, systemic

sclerosis, fibrosingmediastinitis, and COVID-19. Considering the effect

of CD4+ CTLs in suppressing other cancers, including melanoma,

breast cancer, bladder cancer, and colorectal cancer via their

cytotoxicity, whether the dual role of CD4+ CTLs we found in this

study is specific to OSCC needs to be verified in the future. Our results

indicate the need for further investigation into the role of CD4+ CTLs

and DN B cells as potential drivers or inhibitors of tumor immunity,

which could enable the development of a novel cancer

immunotherapeutic strategy.
Frontiers in Immunology 17
Data availability statement

Sequence data presented in the study are deposited in National

Center for Biotechnology Information GEO database (https://www.

ncbi.nlm.nih.gov/geo/), accession number GSE247582 and in

BioProject, accession number PRJNA1039158.
Ethics statement

The study design and methods were approved by the

Institutional Review Board of the Center for Clinical and

Translational Research of Kyushu University Hospital (IRB

number: 834-00). The studies were conducted in accordance with

the local legislation and institutional requirements. The participants

provided their written informed consent to participate in this study.
FIGURE 7

Estimated schema of CD4+CTL and other T cells immunological processes in oral squamous cell carcinoma (OSCC). (Top left) Upon tumor antigen
presented by antigen-presenting cells, activated CD4+ cytotoxic T lymphocytes (CD4+CTL), CD4+ TCM and CD8+ TCM expanded within tumor lesions. CD8+

TCM subsequently differentiates into effector memory T cell (CD8+ TEM) or CD8
+CTL and expresses strong cytotoxicity. (Bottom right) Both CD4+CTLs and

CD8+CTLs can induce tumor cell death; CD4+CTLs recognize the antigens presented via MHC class II molecules (MHC II) and induce the tumor cell death
through granzyme B (GzmB) and perforin (PFN) release or TRAIL release, while CD8+CTLs also express Fas ligand (FasL) and recognize antigens presented via
MHC class I molecules (MHC II). (Top right) Activated CD4+ TCM and CD4+CTLs produce CXCL13, attracting CXCR5+ B cells and interacting with them via
TCR/MHC class II and costimulators such as CD28/B7, thereby initiating extrafollicular responses and promoting the differentiation of B cells into antibody
secreting cells (ASCs) or double negative B cell 3 (DN3). IFN-g produced by CD4+CTLs can also promote the responses. With high antigen load and
prolonged antigen exposure, CD8+CTLs differentiate into CD8+ exhausted T cells (CD8+ TEX) and become dysfunctional, marked by upregulation of
inhibitory receptor (IR) genes, ENTPD1 and TOX, and the downregulation of TCF7. Although CD4+CTLs display similar gene expression patterns, whether
they can become dysfunctional remains controversial (broken arrows). These CD4+CTLs also express CTLA-4, competitively binding with B7 molecules and
potentially limiting immune responses between CD4+ T cells and B cells.
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