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Background: Idiopathic pulmonary fibrosis (IPF) is a chronic progressive

interstitial lung disease. This study aimed to investigate the involvement of

endoplasmic reticulum stress (ERS) in IPF and explore its correlation with

immune infiltration.

Methods: ERS-related differentially expressed genes (ERSRDEGs) were identified

by intersecting differentially expressed genes (DEGs) from three Gene Expression

Omnibus datasets with ERS-related gene sets. Gene Set Variation Analysis and

Gene Ontology were used to explore the potential biological mechanisms

underlying ERS. A nomogram was developed using the risk signature derived

from the ERSRDEGs to perform risk assessment. The diagnostic value of the risk

signature was evaluated using receiver operating characteristics, calibration, and

decision curve analyses. The ERS score of patients with IPF was measured using a

single-sample Gene Set Enrichment Analysis (ssGSEA) algorithm. Subsequently, a

prognostic model based on the ERS scores was established. The proportion of

immune cell infiltration was assessed using the ssGSEA and CIBERSORT

algorithms. Finally, the expression of ERSRDEGs was validated in vivo and in

vitro via RT-qPCR.

Results: This study developed an 8-ERSRDEGs signature. Based on the

expression of these genes, we constructed a diagnostic nomogram model in

which agouti-related neuropeptide had a significantly greater impact on the

model. The area under the curve values for the predictive value of the ERSRDEGs

signature were 0.975 and 1.000 for GSE70866 and GSE110147, respectively. We

developed a prognostic model based on the ERS scores of patients with IPF.

Furthermore, we classified patients with IPF into two subtypes based on their
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signatures. The RT-qPCR validation results supported the reliability of most of

our conclusions.

Conclusion: We developed and verified a risk model using eight ERSRDEGs.

These eight genes can potentially affect the progression of IPF by regulating

ERS and immune responses.
KEYWORDS

idiopathic pulmonary fibrosis, endoplasmic reticulum stress (ER stress), diagnosis,
prognosis, bioinformatics analysis, immune filtration
1 Introduction

Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive

interstitial lung disease that has a high mortality rate and limited

treatment options (1). The average survival time after diagnosis is

only 2–3 years (2). Although two Food and Drug Administration-

approved drugs, pirfenidone and nintedanib, can slow the decline in

lung function, they do not halt disease progression or reduce

mortality (3). Currently, IPF is diagnosed by identifying a specific

pattern of lung damage known as usual interstitial pneumonia using

high-resolution computed tomography or lung biopsy (4). Despite

advancements in imaging technology and disease classification

systems, diagnosis remains challenging. Certain serum biomarkers,

such as surfactant protein A/D, matrix metallopeptidase-7, periostin,

osteopontin, and chemokine ligand 18, have shown predictive value

for diagnosis, prognosis, and treatment response (5, 6). However, the

heterogeneity of IPF and the involvement of various

pathophysiological factors in its progression make its diagnosis and

treatment difficult. Therefore, there is a pressing need for more

accurate, noninvasive, and feasible markers that could aid in the

diagnosis and prognosis of IPF, allowing for more precise and

personalized treatment approaches for patients with this condition.

The endoplasmic reticulum (ER) is an essential organelle that

maintains proteostasis, or the balance between protein production

and degradation within cells (7). ER stress (ERS) is a cellular response

that occurs when misfolded proteins accumulate in the ER and

disrupt protein homeostasis (8). Several factors, such as the

expression of mutant proteins, oxidative stress, impaired

autophagy, mechanical stretch, hypoxia, and aging, can induce ERS

in IPF (9). Emerging evidence suggests that ERS plays a critical role in

IPF by regulating the apoptosis and senescence of alveolar epithelial

cells (AECs) (10), promoting epithelial-mesenchymal transition (11)

and facilitating myofibroblast differentiation (12). Specifically, a

fibroblast-enriched ER protein called TXNDC5 promotes

pulmonary fibrosis by enhancing transforming growth factor-b
(TGF-b) signaling through stabilizing TGFBR1 (13). However, the

exact relationship between ERS and IPF has not been fully elucidated.

Recently, there has been growing interest in the role of immune

infiltration in cancer research. However, it is important to note that
02
immune dysregulation also plays a crucial role in the development

of IPF. Various immune cells are involved in the pathogenesis of

pulmonary fibrosis. When AECs are continuously injured, alveolar

macrophages release profibrotic cytokines and chemokines, such as

CCL18, CHI3L1, MMPs, Wnt, and TGF-b (14). These substances

activate fibroblasts, which differentiate into myofibroblasts.

Myofibroblasts produce an extracellular matrix (ECM), leading to

the thickening of the pulmonary interstitium. Regulatory T cells

inhibit Th1 cell activation, which alters the Th1/Th2 balance in the

lungs. Th2 cells produce IL-4 and IL-13, which promote the

polarization of alveolar macrophages into a profibrotic M2

phenotype and differentiation of circulating fibrocytes into

fibroblasts (15). Studies have shown that ERS regulates the

polarization of M2 macrophages in the lungs (16, 17). However,

the precise mechanism underlying this relationship is poorly

understood. Furthermore, whether ERS is involved in interactions

between other immune cells in IPF is unclear.

This study successfully established a connection between ERS

and immune infiltration in the context of IPF through a

comprehensive set of methodical bioinformatics analyses.

Furthermore, a diagnostic and prognostic prediction model and a

subclass classification system for patients with IPF were developed

based on genes associated with ERS. This study contributes

substantially to advancing knowledge regarding the intricate

re la t ionsh ips among ERS, immune infi l t ra t ion , and

IPF pathogenesis.
2 Materials and methods

2.1 Acquisition of IPF datasets and ERS-
related genes

The raw gene expression profiles of patients with IPF were

acquired from various datasets on the Gene Expression Omnibus

(GEO) website (https://www.ncbi.nlm.nih.gov/geo/) (18). The

following datasets were used: GSE70866 (19), GSE28042 (20),

GSE110147 (21), GSE24206 (22), and GSE93606 (23). The R

package “GEOquery”(version 2.68.0) (24) was utilized to access
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these datasets. The GSE70866 dataset contains 20 healthy individuals

and 212 IPF bronchoalveolar lavage fluid (BALF) specimens. These

specimens were analyzed using the Agilent-028004 SurePrint G3

Human GE 8×60K Microarray on the GPL14550 platform.

The GSE28042 dataset consists of 19 healthy subjects and 75

IPF peripheral blood mononuclear cell (PBMC) specimens. These

specimens were analyzed using the Agilent-014850 Whole Human

Genome Microarray 4×44K G4112F on the GPL6480 platform.

The GSE110147 dataset included 11 healthy, 15 nonspecific

interstitial pneumonia, and 22 IPF fresh-frozen lung tissue samples.

The samples were analyzed using the Affymetrix Human Gene 1.0

ST Array on the GPL6244 platform. Fifteen nonspecific interstitial

pneumonia samples were excluded from further analysis. The

GSE70866, GSE28042, and GSE110147 datasets were used as

training sets. The details of these datasets are listed in Table 1.

The GSE24206 dataset comprised six healthy donors and 17 IPF

lung tissue specimens. These specimens were analyzed using the

Affymetrix Human Genome U133 Plus 2.0 Array on the GPL570

platform. The GSE93606 dataset included 20 healthy controls and

154 IPF BALF and PBMC samples. The samples were analyzed

using the Affymetrix Human Gene 1.1 ST Array on the GPL11532

platform. The GSE24206 and GSE93606 datasets were selected as

external validation sets. Details of these datasets are provided in

Supplementary Table S1.

A total of 2,269 ERSRGs were obtained from the GeneCards

database (25) (https://www.genecards.org/). Additionally, 33

ERSRGs were identified from published literature available on the

PubMed website (https://pubmed.ncbi.nlm.nih.gov) (26, 27). After

removing duplicate genes, 2,279 unique ERSRGs were included in

subsequent analyses, as shown in Supplementary Table S2.
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2.2 Screening of ERS-related differentially
expressed genes

The raw microarray data from three datasets, GSE70866,

GSE28042, and GSE110147, were subjected to preprocessing for

quality control using the “limma” R package (version 3.56.2) (28).

This involved background adjustments and normalization. The

resulting expression matrices before and after normalization were

visualized using boxplots. The “limma” R package (version 3.56.2)

was also employed to identify DEGs between the IPF patient and

control groups. The threshold values for significance were set at an

adjusted p value (P.adj)< 0.05 and |log2 fold change| > 0.5 in all

three datasets. The results were visualized using the “ggplot2” and

“pheatmap” R packages (version 1.0.12). Common DEGs (co-

DEGs) were identified by intersecting the DEGs from the three

datasets. Subsequently, the co-DEGs were further intersected with

ERSRGs to determine the ERSRDEGs. Co-DEGs and ERSRDEGs

were identified using an online program, and Venn diagrams were

generated to illustrate overlapping genes.
2.3 Functional annotation of ERSRDEGs
and IPF datasets

Gene Ontology (GO) analysis was conducted to assess the

biological functions of ERSRDEGs. The analyses included the

evaluation of biological processes (BP), molecular functions (MF),

and cellular components (CC). The R package “ClusterProfiler”

(version 4.8.3) (29) was utilized for this analysis. A significance

threshold of p.adj< 0.05 and false discovery rate (FDR)< 0.05 were

applied to determine significant enrichment.

To further evaluate the relationship between genes in a

predefined gene set and a specific phenotype, gene set enrichment

analysis (GSEA) (30) was employed. This analysis was performed

on datasets related to IPF. The gene set “c2.cp.all.v2022.1.

Hs.symbols.gmt” from the MSigDB database (25) was used for

GSEA, and only terms with p.adj< 0.05 and FDR< 0.05 were

considered significant.
2.4 Weighted gene coexpression
network analysis

A weighted gene coexpression network analysis (WGCNA) (31)

was conducted on the DEGs between individuals with IPF and

control individuals in the GSE70866 dataset. The analysis employed

the WGCNA R package (32) with the RsquaredCut parameter set to

0.90, the minimum number of module genes set to 100, and the

module merge cut height set to 0.2. This package constructs scale-

free coexpression networks for clinical phenotypes. Hierarchical

clustering analysis was employed to filter the discrete cases.

Subsequently, an appropriate soft power was selected to construct

a weighted adjacency matrix, which was then transformed into a

topological overlap matrix (TOM). The TOM contained module

assignments labeled with color and module features (ME).
TABLE 1 Idiopathic Pulmonary Fibrosis data set information list.

GSE70866 GSE28042 GSE110147

Platform GPL14550 GPL6480 GPL6244

Species Homo sapiens Homo sapiens Homo sapiens

Tissue
bronchoalveolar

lavage cell

peripheral blood
mononuclear

cell

Fresh frozen lung
tissue specimens

Samples
in
IPF
group

112 75 22

Samples
in

Control
group

20 19 11

Reference

BAL Cell Gene
Expression Is
Indicative of
Outcome and

Airway Basal Cell
Involvement in

Idiopathic
Pulmonary
Fibrosis

Peripheral blood
mononuclear
cell gene
expression

profiles predict
poor outcome in

idiopathic
pulmonary
fibrosis

Comprehensive gene
expression profiling
identifies distinct and

overlapping
transcriptional profiles in
non-specific interstitial

pneumonia and
idiopathic

pulmonary fibrosis
IPF, Idiopathic Pulmonary Fibrosis; GEO, Gene Expression Omnibus.
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Pearson’s correlation coefficients were calculated to evaluate the

relationship between ME and the clinical features. Finally, the genes

in the most significant module associated with IPF were intersected

with ERSRDEGs for further investigation.
2.5 Co-ERSRDEG-associated diagnostic
model construction

In this study, we initially developed a Support Vector Machine

(SVM) model using the SVM algorithm (33) to identify ERSRDEGs

associated with IPF. The number of ERSRDEGs was selected based on

accuracy and error rate. Additionally, we employed the random forest

(34) (RF) algorithm, which utilizes bootstrap aggregation and

randomization of predictors to further screen candidate ERSRDEGs

for IPF diagnosis. The RF model was implemented using the

“randomForest” package (version 4.7-1.1) (35) in R, with the

following parameters: ntrees = “1000” and “set.seed (234)”. The

number of trees and error value of the 10-fold cross-validation were

plotted on the X and Y axes. Subsequently, a binary logistic regression

analysis was conducted to investigate the impact of the selected

ERSRDEGs on IPF. The logistic regression model was visualized

using the Forest Plot. To prevent overfitting, we employed the least

absolute shrinkage and selection operator (36) (LASSO) regression

algorithm to identify the ERSRDEGs with the highest predictive value

for IPF in the logistic regression model. The “glmnet” (37) package

(version 4.1-8) in R was utilized for this analysis. The ERSRDEGs and

their coefficients were determined using the best penalty parameter l,
which was associated with the smallest 10-fold cross-validation error.

The results of the LASSO regression analysis were presented using a

diagnostic model and variable locus diagrams. Finally, the identified

genes were used to construct an optimal risk signature, which was

determined by a linear combination of their expression levels, weighted

with the regression coefficients from the LASSO analysis. The risk score

for each sample was calculated as follows:

riskScore   =  o
i
Coefficient   (hub   genei)

*mRNA   Expression   (hub   genei)

Finally, the ERSRDEGs identified by the SVM, RF, and Logistic-

LASSO models were compared using a Venn diagram to identify

overlapping ERSRDEGs. A nomogram (38) was constructed using

the “rms” package (version 6.7-1) in R based on the co-ERSRDEGs

to visualize the diagnostic model for IPF. The model accuracy was

assessed by evaluating its predictive value using a calibration curve.

Furthermore, the clinical impact of the model’s judgment on

patients with IPF was quantified using decision curve analysis

(DCA) (39) by plotting a clinical impact curve.
2.6 Validation of expression of co-
ERSRDEGs and effect of the diagnostic
prediction model

The expression matrix of co-ERSRDEGs was obtained from

four datasets: GSE70866, GSE28042, GSE110147, and GSE24206.
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The expression differences between IPF and healthy samples were

assessed using the Wilcoxon rank sum test and visualized using the

“ggplot2” package. Statistical significance was set at p< 0.05. To

evaluate the accuracy of the model’s predictions, receiver operating

characteristic (ROC) (40) curves and corresponding area under the

curve (AUC) values were calculated using the “survivalROC” R

package. The diagnostic model based on co-ERSRDEGs was tested

in the training sets GSE70866 and GSE110147, as well as the

validation sets GSE24206 and GSE93606.
2.7 Spearman correlation analysis of
co-ERSRDEGs

In this study, Spearman correlation analysis was conducted to

examine the expression levels of co-ERSRDEGs in the GSE70866

dataset. The analysis was performed using the “limma” package

(28), with a significance threshold of |R| > 0.2 and p< 0.05. Scatter

plots were generated to visualize the results using the “ggplot2,”

“ggpubr,” and “ggExtra” packages.
2.8 Construction of ERS score
prognostic model

Initially, single-sample GSEA (ssGSEA) was employed to

quantify the ERS phenotype scores of all samples in the

GSE70866 dataset. This was performed by utilizing the

expression matrix of co-ERSRDEGs and the “GSVA” package

(41). Subsequently, the patients with IPF were divided into high-

and low-risk groups based on the median ERS score obtained

from the GSE70866 dataset. The overall survival (OS) of these two

groups was compared via Kaplan–Meier analysis and the log-rank

test. To assess the prognostic value of the risk model, ROC

analysis, time-dependent ROC curve analysis, and calculation of

the AUC values were conducted. These evaluations were

performed to determine the accuracy of the model for

predicting patient outcomes.
2.9 Classification of IPF subtypes

The “ConsensusClusterPlus” (35) package in R was employed

to cluster the patients with IPF in the GSE70866 dataset. This

clustering was based on the expression of co-ERSRDEGs between

patients with IPF and controls to identify the molecular subtypes

of IPF. The analysis was conducted using the following

parameters: maxK = 8, reps = 50, pItem = 0.8, pFeature = 1,

clusterAlg = “pam,” and distance = “spearman.” The outputs

included consensus cumulative distribution function (CDF)

plots and the relative change in the area under the CDF curve.

Principal component analysis (PCA) was conducted to further

validate gene expression patterns in the identified clusters.

Additionally, Kaplan–Meier survival analysis using the survival

package was employed to assess the differences in OS between the

various subtypes of IPF.
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2.10 Immune infiltration and correlation
between co-ERSRDEGs and immune cells

This study divided IPF cases in the GSE70866 dataset into two

groups based on their risk scores obtained from the LASSO regression

analysis. Similarly, patients were divided into high and low ERS score

groups based on their ERS phenotype scores. The relative abundances of

28 immune cell types in patients with IPF were quantified using the

ssGSEA algorithm (42, 43). The differences in immune cell abundance

between the risk score groups, ERS score groups, and IPF subtypes were

analyzed using theMann–WhitneyU test and presented using boxplots.

The correlation between the abundance of immune cell infiltration in

different groups and subtypes was assessed using Pearson’s correlation

analysis and visualized using a correlation matrix plot created with the

“ggplot2” R package. Pearson’s correlation analysis was used to examine

the relationship between the abundance of immune cell infiltration and

expression of co-ERSRDEGs. The results were displayed using a

correlation dot plot generated with the “ggplot2” R package.

Additionally, the CIBERSORT algorithm (44) was used to calculate

the infiltration fraction of 22 immune cell types in the risk score groups,

ERS score groups, and IPF subtypes. The results were presented as

histograms. Differences in immune cell abundance between different

groups were analyzed using the Wilcoxon rank-sum test and are

displayed using boxplots. The correlation between the abundance of

immune cell infiltration and co-ERSRDEG expression was assessed

using Pearson’s correlation analysis and visualized using a correlation

matrix plot created with the “ggplot2” R package.
2.11 Preliminary validation of expression of
co-ERSRDEGs in ERS A549 cell model and
embryonic mouse fibroblasts 3T3
cell model

A549 and embryonic mouse fibroblast 3T3 cell lines were

obtained from the American Type Culture Collection (ATCC).

The cells were maintained in specific media; DMEM and Ham’s F-

12K were used for embryonic mouse fibroblast 3T3 and A549 cells

respectively. The media were supplemented with 10% fetal bovine

serum and 1% penicillin-streptomycin. The cells were cultured at

37°C with 5% v/v CO2. The study consisted of control and

treatment groups. The treatment group was exposed to 1 mg/mL

tunicamycin (MCE, NJ, USA) for 24 h in embryonic mouse

fibroblast 3T3 cells and 4 mg/mL tunicamycin for 48 hours in

A549 cells. RNA was then extracted from the cells for RT-qPCR.

The relative gene expression was determined using the Equation 2

^-DDct. Primer sequences are listed in Supplementary Table S3.
2.12 Validation of expression of co-
ERSRDEGs in bleomycin-induced
pulmonary fibrosis mouse model

Male C57BL/6 mice aged 6-9 weeks, with an average weight of

20-25 g, were obtained from the Laboratory Animal Center of

Guizhou Medical University. The study protocol was reviewed and
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approved by the Animal Ethics Committee of the institution. To

induce fibrotic changes, the experimental mice received 50 mL of

bleomycin (5 mg/kg) via intratracheal administration, whereas the

control mice were administered an equal volume of phosphate

buffer (PBS). After 21 days, lung tissue samples were collected. A

portion of the sample was used for subsequent RT-qPCR. In

contrast, the remaining portion was subjected to hematoxylin-

eosin (HE) and Masson staining following the instructions in the

staining kit.
2.13 Statistical analysis

Statistical analysis was performed using R software (version

4.2.2) and the corresponding packages. All data were expressed as

the mean ± standard deviation (SD). Gene expression in the two

groups was compared using Student’s t-test, Wilcoxon test, or

Mann–Whitney U test, where appropriate. Correlation analyses

were performed using Spearman’s or Pearson’s correlation analyses.

GraphPad software (version 8.0) was used to visualize statistical

results. Two-tailed p<0.05 was considered significant.

A flowchart representing the overall concepts and procedures

employed in this study is shown in Figure 1.
3 Results

3.1 Identification of DEGs and ERSRDEGs
between IPF and control

To ensure the comparability of gene expression data across

samples, the gene expression levels of the GSE70866, GSE28042,

and GSE110147 datasets were normalized, and batch effects were

subsequently eliminated (Figures 2A–F). Furthermore, the “limma”

package was used to examine DEGs in patients with IPF and healthy

controls using p-value<0.05 and |log2FC|>0.5 as thresholds. A total

of 1,256 DEGs were identified in the GSE70866 cohort of the GEO

database. Among these genes, 499 were upregulated, and 757 were

downregulated. Similarly, the GSE28042 dataset revealed 1,294

DEGs, of which 608 were upregulated and 686 were

downregulated. Additionally, the GSE110147 dataset contained

8,139 DEGs, with 4,211 upregulated and 3,928 downregulated

genes. Figures 3A–C depict the expression patterns of DEGs

using heatmap visualization. DEGs from three datasets,

GSE70866, GSE28042, and GSE110147, were compared, and co-

DEGs were identified. A total of 90 co-DEGs were shared among

these datasets, as illustrated in a Venn diagram (Figure 3D). A

collection of 2,269 ERSRGs was acquired from the GeneCards

database and PubMed. These genes intersected with the co-DEGs,

resulting in 13 overlapping ERSRDEGs, which were further

examined. Figure 3E shows the 13 ERSRDEGs (ADM, AGRP,

BIRC3, CDA, FAM20C, IER3, MT1E, NELL2, PDGFA, RAI14,

SNCA, SOCS3, and ZNF91) in a Venn diagram. The expression

patterns of these genes in the GSE70866, GSE28042, and

GSE110147 datasets are represented using heat maps, as shown in

Figures 3, F–H, respectively.
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3.2 Functional annotation of ERSRDEGs

To gain further insight into the biological function of the 13

ERSRDEGs (ADM, AGRP, BIRC3, CDA, FAM20C, IER3, MT1E,

NELL2, PDGFA, RAI14, SNCA, SOCS3, and ZNF91) in IPF, we

performed GO enrichment analyses (Table 2). GO analysis

encompassed three categories: BP, CC, and MF. In terms of BP,

ERSRDEGs were predominantly enriched in negative regulation of

phosphate metabolism, morphogenesis of a branching epithelium,

response to insulin, response to copper ion, and negative regulation of

the G protein-coupled receptor signaling pathway (Figures 4A, B). With

regard to CC, the top two enriched were platelet alpha granule andGolgi

lumen (Figures 4A, C). In the context of MF, ERSRDEGs were closely

associated with enzyme inhibitor activity, receptor-ligand activity,

signaling receptor activator activity, hormone activity, and G protein-

coupled receptor binding (Figures 4A, D). Furthermore, a combined GO

and log FC enrichment analysis revealed that ERSRDEGswere primarily

enriched in BP pathways, as visualized in a bubble diagram (Figure 4E).
3.3 GSEA of IPF datasets

GSEA was performed to examine the relationship between gene

expression and the BP, CC, and MF implicated in patients with IPF

compared with healthy controls. The GSE70866, GSE28042, and
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GSE110147 datasets were used for this analysis. To identify significant

enrichment, the enrichment screening criteria were set at a p.adj< 0.05

and FDR value (q.Vue)< 0.05. Results showed a significant

concentration of genes associated with various pathways in patients

with IPF compared with the control group. Specifically, in the GSE70866

dataset, the genes were concentrated in pathways such as surfactant

metabolism, ECM receptor interaction, lung fibrosis, and cytokine-

cytokine receptor interaction. These results are shown in Figures 5B–E

and Table 3, as well as in the mountain maps in Figure 5A. Similarly, in

the GSE28042 dataset, genes were significantly enriched in pathways,

including interlerkin-10 signaling, oxidative stress response,

neuroinflammation, and diseases of programmed cell death. These

findings are shown in Figures 5G–J and Table 4, along with mountain

maps in Figure 5F. Furthermore, in the GSE110147 dataset, genes were

notably enriched in pathways, such as the diseases of DNA repair, cell

cycle checkpoints, apoptotic execution phase, and G2 M checkpoints.

These results are presented in Figures 6B–E and Table 5, as well as in the

mountain maps in Figure 6A.
3.4 Analysis of the GSE70866 dataset
using WGCNA

The WGCNA algorithm was used to construct the coexpression

modules in the GSE70866 dataset. Initially, genes exhibiting variance
FIGURE 1

Flowchart of data analysis. IPF, Idiopathic Pulmonary Fibrosis; WGCNA, Weighted gene coexpression network analysis; DEGs, differentially expressed
genes; ERSRDEGs, endoplasmic reticulum stress-related DEGs; SVM, support vector machine; LASSO, least absolute shrinkage and selection
operator; GSEA, gene set enrichment analysis; GO, gene ontology; ERS score, endoplasmic reticulum stress scores; ssGSEA, single-sample gene set
enrichment analysis.
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in the top 20% of all genes were selected as input genes. Subsequently,

a hierarchical clustering analysis was employed to filter out discrete

cases (Figure 7A). Furthermore, a soft threshold power of 5 was set as

the key parameter to ensure overall connectivity of the coexpression

module (Figure 7B). Subsequently, 13 modules were identified based

on the optimal soft threshold capability, as illustrated in the cluster

dendrogram (Figure 7C). The module merge cut height was then set

to 0.2 (Figure 7C), resulting in the final acquisition of 13 coexpression

modules with the gene clusters color-coded, as displayed in

Figure 7D. The correlation between module membership and IPF

samples is shown (Figure 7E). Notably, the blue module exhibited the

most significant correlation with IPF (|COR|=0.36, P=2e-05)

(Figure 7E), and its characteristic genes with the highest correlation

intersected with the 13 ERSRDEGs. The Venn diagram in Figure 7F

revealed that two genes (ADM and IER3) were common to both sets.

The expression levels of two module ERSRDEGs, ADM and IER3,

were analyzed using the Wilcoxon rank-sum test in the GSE70866
Frontiers in Immunology 07
dataset. The results indicated that both genes were highly expressed in

patients with IPF compared with normal controls (p< 0.001)

(Figure 7G). Moreover, a significant positive correlation between

the expression of the two module ERSRDEGs was observed using the

Spearman algorithm (r = 0.848, p< 0.001) (Figure 7H).
3.5 Construction of ERSRDEGs-related
diagnostic prediction model

A binary logistic regression analysis was conducted to evaluate

the diagnostic significance of the 13 DEGs (ERSRDEGs) in the

GSE70866 dataset for IPF. Subsequently, a logistic regression model

was constructed, and the results were visually represented using

forest plots (Figure 8A). Of the 13 genes, nine had odds ratios (OR)

greater than 1, and four had OR less than 1, with statistical

significance at p-value<0.05.
B
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FIGURE 2

Standardized processing of IPF datasets. (A) Boxplot of the GSE70866 data prior to normalization. (B) Boxplot of the GSE70866 data post
normalization. (C) Boxplot of the GSE28042 data prior to normalization. (D) Boxplot of the GSE28042 data post normalization. (E) Boxplot of the
GSE110147 data prior to normalization. (F) Boxplot of the GSE110147 data post normalization. IPF, idiopathic pulmonary fibrosis.
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To further narrow down the ERSRDEGs, SVM and RF models

were successively developed. The SVM model was used to determine

the optimal number of genes yielding the lowest error and highest

accuracy rates. The results showed that the SVM model achieved the

highest accuracy when all 13 genes were used (Figures 8B, C).

In addition, RF analysis was used to rank and screen the most

important diagnostic markers based on the expression levels of

ERSRDEGs in the GSE70866 dataset. ADM, AGRP, BIRC3, CDA,

FAM20C, IER3, MT1E, NELL2, PDGFA, SNCA, and ZNF91 were

the top 11 genes identified (Figures 8D, E).

Furthermore, LASSO regression was used to identify 13

ERSRDEGs based on a previous logistic regression model with
Frontiers in Immunology 08
the highest predictive value for IPF (Figure 8F, G). Among these

genes, AGRP, BIRC3, CDA, FAM20C, MT1E, NELL2, SNCA, and

ZNF91 were of high importance; thus, an 8-gene signature

consisting of these ERSRDEGs was constructed. The risk score

was calculated as follows:

RiskScore   = AGRP ∗−0:417 + BIRC3 ∗−0:296 + CDA ∗ 0:426

+ FAM20C ∗ 0:418 +MT1E ∗ 0:086 + NELL2 ∗−0:17

+ SNCA ∗ 0:731 + ZNF91 ∗−0:198

To identify more reliable diagnostic markers for ERS-related

conditions, we conducted an analysis to obtain co-ERSRDEGs. The
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FIGURE 3

Differential expression analysis of IPF datasets. (A, B) Volcano plot of DEGs in the cohort of GSE70866 (A), GSE28042 (B) and GSE110147 (C).
(D) Venn diagram illustrating overlapping genes among DEGs identified in GSE110147, GSE28042, and GSE110147. (E) €Intersection of 90 co-DEGs
with 2279 ERS-related genes. F-H Clustering heatmap of ERSRDEGs in GSE70866 dataset (F), GSE28042 dataset (G), and GSE110147 dataset (H). IPF,
idiopathic pulmonary fibrosis; DEGs, differentially expressed genes; ERS, endoplasmic reticulum stress; ERSRDEGs, ERS-related DEGs.
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results from three models, Logistic-LASSO regression, SVM, and

RF, were combined. Eight co-ERSRDEGs were identified, which

were also the eight ERSRDEGs obtained from the Logistic-LASSO

regression model (Figure 8H). A diagnostic nomogram model was

then established based on the expression of these genes, and the

expression of AGRP was found to have a significantly higher effect

on the diagnostic model than the other variables (Figure 8J). The

accuracy of the diagnostic model was assessed using a ROC curve,

which showed an AUC of 0.975 (95% CI: 0.950-0.999) for the

GSE70866 dataset, indicating high prediction accuracy (Figure 8I).

The calibration curve demonstrated that the model had good

predictive performance (Figure 8K). Additionally, DCA was

conducted to evaluate the relationship between the nomogram

and gene score in predicting the benefits and risks of different

cutoff points in the prevalence model for IPF. The results showed

that the ERSRDEG-related diagnostic model was more beneficial at

various threshold probabilities (Figure 8L).
3.6 Validation of the effect of the
diagnostic prediction model and the
expression of co-ERSRDEGs

To assess the validity of the ERSRDEG-related diagnostic model

based on the GSE70866 dataset, we evaluated the expression of eight

co-ERSRDEGs in the GSE110147 dataset. Furthermore, the

coefficients of these genes in the diagnostic model were used to

compute the risk score for each sample in the GSE110147 dataset.

Using the RiskScore and grouping information available in the

GSE110147 dataset, we constructed ROC curves and observed an

AUC of 1.000, indicating a high level of prediction accuracy

(Figure 9A). To further validate our prediction method, we
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applied it to external datasets, specifically GSE24206 and

GSE93606. The diagnostic model demonstrated a high level of

prediction accuracy in the GSE24206 dataset (AUC=0.902) and

relatively accurate prediction in the GSE93606 dataset

(AUC=0.723) (Figures 9B, C). In summary, these findings suggest

that our diagnostic prediction model holds significant value for

BALF, PBMC, and lung tissues.

The Wilcoxon rank-sum test was used to investigate variations

in the expression levels of the eight co-ERSRDEGs between patients

with IPF and healthy individuals. This analysis included three

training datasets (GSE70866, GSE28042, and GSE110147) and an

external validation dataset (GSE28042). The results indicated that

within the training set, the expression of co-ERSRDEGs was

significantly different (p< 0.01) (Figures 9D, E, H). In the

GSE24206 dataset, CDA, MT1E, NELL2, and ZNF91 expression

levels also exhibited significant differences (p< 0.05). However,

differences in the expression of AGRP, BIRC3, FAM20C, and

SNCA were not significant (Figure 9G). To evaluate the

diagnostic impact of the differences in the expression levels of co-

ERSRDEGs on IPF, ROC curves were constructed within the

GSE70866 dataset. ROC analysis revealed that, except for NELL2,

a l l co-ERSRDEGs had AUC values exceeding 0 .750

(Figures 9H–O).
3.7 Correlation analysis of expression of
co-ERSRDEGs

We employed the “RCircos” package (version 1.2.2) to annotate

the chromosomal positions of eight co-ERSRDEGs. Results showed

that these genes were predominantly located on chromosomes 1, 4,

11, 16, and 19, with chromosome 16 exhibiting the highest
TABLE 2 GO enrichment Analysis results of ERSRDEGs.

ONTOLOGY ID Description GeneRatio BgRatio pvalue p.adjust qvalue

BP GO:0045936 negative regulation of phosphate metabolic process 4/13 440/18800 0.000179 0.023676 0.013237

BP GO:0061138 morphogenesis of a branching epithelium 3/13 185/18800 0.000249 0.028034 0.015674

BP GO:0032868 response to insulin 3/13 259/18800 0.000667 0.040401 0.022587

BP GO:0046688 response to copper ion 2/13 41/18800 0.000356 0.031172 0.017428

BP GO:0045744 negative regulation of G protein-coupled receptor
signaling pathway

2/13 54/18800 0.000619 0.040401 0.022587

CC GO:0031091 platelet alpha granule 2/13 91/19594 0.001609 0.038756 0.026462

CC GO:0005796 Golgi lumen 2/13 104/19594 0.002095 0.038756 0.026462

MF GO:0004857 enzyme inhibitor activity 3/13 390/18410 0.002304 0.021062 0.008314

MF GO:0048018 receptor ligand activity 3/13 489/18410 0.004367 0.029086 0.011481

MF GO:0030546 signaling receptor activator activity 3/13 496/18410 0.004545 0.029086 0.011481

MF GO:0005179 hormone activity 2/13 122/18410 0.003239 0.025911 0.010228

MF GO:0001664 G protein-coupled receptor binding 2/13 288/18410 0.016977 0.045272 0.017871
fron
GO, Gene Ontology; BP, biological process; CC, cellular component; MF, molecular function; ERSRDEGs, Endoplasmic reticulum stress related differentially expressed genes.
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distribution (Figure 10A). This suggests a close genomic

relationship between these co-ERSRDEGs, which are in close

proximity to each other on the chromosomes.

To further investigate the correlation between these eight co-

ERSRDEGs in the GSE70866 dataset, we utilized the Spearman

algorithm to perform a correlation analysis of their expression levels

(Figure 10B). The results were visualized using a correlation

heatmap, demonstrating that most correlations between these

genes were significant (p<0.05), encompassing positive and

negative associations. Subsequently, we selected the six gene pairs

with the most significant positive or negative correlations and

depicted them using correlation scatter plots. Notably, CDA

exhibited the most significant positive correlation with FAM20C,

BIRC3 with ZNF91, and FAM20C with SNCA (Figures 10C–E).

Conversely, the most significant negative correlations were

observed between CDA and ZNF91, AGRP and CDA, and AGRP

and FAM20C (Figures 10F–H).
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3.8 Immune infiltration in IPF dataset
GSE70866 and correlation between co-
ERSRDEGs and immune cells among
different risk score groups

After identifying the group of patients with IPF from the

GSE70866 dataset, they were further divided into high- and low-

risk groups based on the median risk score obtained from the

ERSRDEG-related diagnosis model. The ssGSEA and CIBERSORT

algorithms were used to assess the differences in immune cell

infiltration levels between the high- and low-risk-score groups.

Initially, the ssGSEA algorithm was employed to calculate the

abundances of 28 different types of immune cells in both groups.

The Mann–Whitney U test was used to analyze differences in

infiltration between the two groups. The results indicated that 11

immune cell types showed significant differences in infiltration

abundance between the high- and low-risk groups (p<0.05)
B
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FIGURE 4

Results of GO enrichment analysis using ERSRDEGs. (A) Bar chart showing GO enrichment analysis of ERSRDEGs, including BP, CC, and MF. (B-D)
Ring network diagram showing GO enrichment analysis of ERSRDEGs, including BP (B), CC (C), and MF (D). Red circles and blue dots indicate
pathways and specific genes, respectively. (E) Bubble chart showing combined enrichment analysis of log FC and GO of ERSRDEGs. The blue, red,
and yellow circles represent the BP, CC, and MF, respectively. GO, gene ontology; BP, biological process; CC, cellular component; MF, molecular
function; ERSRDEGs, endoplasmic reticulum stress-related differentially expressed genes.
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(Figure 11A). These immune cells included activated dendritic

cells, CD56bright and CD56dim natural killer (NK) cells,

eosinophils, gamma delta T cells, macrophages, MDSCs,

neutrophils, plasmacytoid dendritic cells, regulatory T cells, and

T-follicular helper cells. Furthermore, the Pearson algorithm was

employed to examine the correlation between the infiltration

abundances of these 11 immune cell types in both groups. The

findings revealed predominantly positive correlations between the
Frontiers in Immunology 11
infiltration abundances of these immune cells (Figures 11B, C).

Notably, the low-risk group exhibited the strongest positive

correlation between plasmacytoid dendrit ic cel ls and

neutrophils, whereas the high-risk group demonstrated the

strongest positive correlation between activated dendritic cells

and MDSCs. Additionally, the Pearson algorithm was used to

analyze the correlation between the abundance of immune cell

infiltration and the expression levels of eight co-ERSRDEGs in
B
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FIGURE 5

Enrichment plots from GSEA in GSE70866 and GSE28042 datasets. (A, F) Mountain maps showing the GSEA results of GSE70866 (A) and GSE28042
(F) datasets. (B–E) Enrichment showed that DEG function mainly focused on surfactant metabolism (B), ECM receptor interaction (C), lung fibrosis
(D), and cytokine-cytokine receptor interaction (E) in the GSE70866 dataset. G-J Enrichment showed that DEGs function mainly focused on
interlerkin-10 signaling (G), oxidative stress response (H), neuroinflammation (I), and diseases of programmed cell death(J) in the GSE28042 dataset.
GSEA, gene set enrichment analysis; DEGs, differentially expressed genes; ECM, extracellular matrix.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1305025
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhu et al. 10.3389/fimmu.2023.1305025
both groups. The results showed a correlation between the

abundance of immune cell infiltration and expression levels of

co-ERSRDEGs. In the low-risk group, most immune cells showed

a positive association with the expression levels of co-ERSRDEGs,

except for AGRP and MT1E (Figure 11D). In the high-risk group,

most immune cells exhibited a positive correlation with the

expression levels of co-ERSRDEGs, whereas only AGRP and

CDA expression levels negatively correlated with the abundance

of immune cell infiltration (Figure 11E).

The CIBERSORT algorithm was used to calculate the infiltration

abundance of 22 different types of immune cells in both groups. The

results indicated that the infiltrating abundance of these immune cells

was not uniformly zero, with macrophages M0 and M1 showing a

substantial proportion of infiltration abundance across various

samples (Figure 12A). The Wilcoxon rank-sum test was employed

to examine the differences in the infiltration abundance of the 22

immune cell types between the high- and low-risk groups. The results

revealed that the eight immune cell types exhibited significant

differences between the two groups (p<0.05) (Figure 12B). These

eight immune cell types include activated dendritic cells, resting

dendritic cells, macrophages M1, activated mast cells, resting mast

cells, monocytes, resting memory CD4 T cells, and naïve CD4 T cells.

Furthermore, the Pearson algorithm was used to calculate the

correlation between the abundance of these eight immune cell

infiltrations and the expression levels of the eight co-ERSRDEGs in

both groups. The results demonstrated a significant correlation in

both groups, with the positive correlation being more pronounced

than the negative correlation (Figures 12C, D).
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3.9 Identification of ERS score and
prognostic prediction model

In this study, the ssGSEA algorithm was used to quantify the ERS

phenotype scores of all samples in the GSE70866 dataset. This score

was based on the expression matrix of eight co-ERSRDEGs.

Subsequently, patients with IPF were categorized into two groups,

high-ERS and low-ERS, using the median ERS phenotype score as a

threshold. To evaluate the prognostic value of the ERS score model in

predicting the outcomes of patients with IPF, Kaplan–Meier curves

were generated. The findings revealed that patients in the high ERS

score group had significantly shorter OS than those in the low ERS

score group (hazard ratio [HR] = 1.66, p = 0.034) (Figure 13A). We

also employed a ROC curve to demonstrate the efficacy of the ERS

score model in predicting IPF prognosis, with an AUC of 1.000

(Figure 13C). Additionally, a time-dependent ROC curve analysis

was performed, yielding AUC values of 0.636, 0.676, and 0.867 for

the 1-, 3-, and 5-year survival rates, respectively (Figure 13B).

Furthermore, ROC curves were constructed for individual co-

ERSRDEGs within the GSE70866 dataset to assess their prognostic

impact on IPF. The analysis revealed that except AGRP, MT1E,

NELL2, and ZNF91, the ERSRDEGs (BIRC3, CDA, FAM20C, and

SNCA) exhibited AUC values exceeding 0.750 (Figures 13D–K).

Moreover, the expression levels of certain ERSRDEGs, including

BIRC3, CDA, FAM20C, NELL2, and SNCA, were higher in the high

ERS score group than in the low ERS score group (Figure 13L). These

findings suggest that the ERS score model based on co-ERSRDEGs is a

promising prognostic tool for patients with IPF.
TABLE 3 GSEA enrichment analysis results of IPF dataset GSE70866.

Description setSize enrichmentScore NES pvalue p.adjust qvalue

REACTOME_SURFACTANT_METABOLISM 25 0.73283 2.23456 0.00001 0.00063 0.00055

KEGG_ECM_RECEPTOR_INTERACTION 84 0.56826 2.20147 0.00000 0.00002 0.00002

WP_OSTEOPONTIN_SIGNALING 13 0.84762 2.18875 0.00002 0.00129 0.00112

REACTOME_RESPONSE_TO_METAL_IONS 14 0.82312 2.15248 0.00002 0.00165 0.00144

NABA_CORE_MATRISOME 258 0.47570 2.13729 0.00000 0.00000 0.00000

WP_LUNG_FIBROSIS 60 0.52739 1.92654 0.00027 0.01103 0.00961

KEGG_CYTOKINE_CYTOKINE_RECEPTOR_INTERACTION 248 0.35950 1.60817 0.00019 0.00844 0.00735

WP_VITAMIN_D_RECEPTOR_PATHWAY 177 0.37463 1.60547 0.00077 0.02276 0.01983

KEGG_FOCAL_ADHESION 196 0.35995 1.57129 0.00123 0.03275 0.02853

REACTOME_DISEASES_OF_METABOLISM 237 0.34926 1.55973 0.00099 0.02830 0.02466

WP_BARDETBIEDL_SYNDROME 75 -0.50629 -2.02919 0.00001 0.00089 0.00078

REACTOME_TCR_SIGNALING 116 -0.48146 -2.06927 0.00000 0.00005 0.00004

REACTOME_PD_1_SIGNALING 23 -0.68568 -2.07357 0.00005 0.00340 0.00296

WP_CILIOPATHIES 144 -0.48414 -2.15279 0.00000 0.00000 0.00000

WP_JOUBERT_SYNDROME 70 -0.55116 -2.16270 0.00000 0.00015 0.00013
fron
GSEA, Gene Set Enrichment Analysis; IPF, Idiopathic Pulmonary Fibrosis.
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TABLE 4 GSEA enrichment analysis results of IPF dataset GSE28042.

setSize enrichmentScore NES pvalue p.adjust qvalue

44 0.66838 2.29882 0.00000 0.00009 0.00008

33 0.66638 2.15634 0.00002 0.00199 0.00168

56 0.58284 2.12268 0.00001 0.00116 0.00098

39 0.63297 2.10475 0.00003 0.00262 0.00222

37 0.62934 2.07420 0.00005 0.00365 0.00309

17 0.74879 2.07264 0.00009 0.00554 0.00470

12 0.83011 2.07013 0.00007 0.00483 0.00409

42 0.54594 1.85466 0.00059 0.01981 0.01677

16 0.69084 1.85322 0.00192 0.04020 0.03404

246 0.35645 1.61189 0.00009 0.00554 0.00470

128 0.38645 1.61151 0.00108 0.02637 0.02233

23 -0.71220 -2.01501 0.00021 0.01031 0.00873

TION_OF_SECOND_MESSENGERS 32 -0.66984 -2.05903 0.00004 0.00335 0.00284

13 -0.85646 -2.10829 0.00001 0.00100 0.00085

19 -0.79523 -2.20304 0.00001 0.00095 0.00080
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Description

REACTOME_INTERLEUKIN_10_SIGNALING

WP_OXIDATIVE_STRESS_RESPONSE

PID_ATF2_PATHWAY

PID_FOXM1_PATHWAY

WP_ZINC_HOMEOSTASIS

BIOCARTA_ETS_PATHWAY

WP_NEUROINFLAMMATION

REACTOME_DISEASES_OF_PROGRAMMED_CELL_DEATH

BIOCARTA_TNFR2_PATHWAY

REACTOME_LEISHMANIA_INFECTION

PID_PDGFRB_PATHWAY

KEGG_NITROGEN_METABOLISM

REACTOME_ANTIGEN_ACTIVATES_B_CELL_RECEPTOR_BCR_LEADING_TO_GENERA

BIOCARTA_AHSP_PATHWAY

BIOCARTA_TOB1_PATHWAY

GSEA, Gene Set Enrichment Analysis; IPF, Idiopathic Pulmonary Fibrosis.

https://doi.org/10.3389/fimmu.2023.1305025
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhu et al. 10.3389/fimmu.2023.1305025
B

C D E

A

FIGURE 6

Enrichment plots from GSEA in GSE110147 dataset. (A) Mountain maps showing the GSEA results of the GSE110147 dataset. (B–E) Enrichment
showed that DEGs function mainly focused on the diseases of DNA repair (B), cell cycle checkpoints (C), apoptotic execution phase (D), and G2 M
checkpoints (E). GSEA, gene set enrichment analysis; DEGs, differentially expressed genes.
TABLE 5 GSEA enrichment analysis results of IPF dataset GSE110147.

Description setSize enrichmentScore NES pvalue p.adjust qvalue

REACTOME_DISEASES_OF_DNA_REPAIR 44 0.64885 2.12879 0.00000 0.00018 0.00015

REACTOME_G2_M_DNA_DAMAGE_CHECKPOINT 51 0.63467 2.12319 0.00000 0.00008 0.00007

REACTOME_CELL_CYCLE_CHECKPOINTS 232 0.51255 2.12125 0.00000 0.00000 0.00000

REACTOME_M_PHASE 315 0.48670 2.05585 0.00000 0.00000 0.00000

PID_BARD1_PATHWAY 27 0.69763 2.05314 0.00003 0.00145 0.00122

PID_ATM_PATHWAY 27 0.69268 2.03859 0.00004 0.00177 0.00149

WP_CILIARY_LANDSCAPE 196 0.49075 1.98455 0.00000 0.00000 0.00000

PID_PLK1_PATHWAY 41 0.61679 1.98238 0.00004 0.00167 0.00141

REACTOME_APOPTOTIC_EXECUTION_PHASE 43 0.60974 1.97742 0.00005 0.00200 0.00169

BIOCARTA_ATRBRCA_PATHWAY 18 0.69285 1.86668 0.00159 0.02713 0.02284

REACTOME_MRNA_SPLICING 170 0.46992 1.86656 0.00000 0.00020 0.00017

REACTOME_G2_M_CHECKPOINTS 119 0.48982 1.86193 0.00001 0.00071 0.00060

WP_NONALCOHOLIC_FATTY_LIVER_DISEASE 140 -0.47286 -2.09864 0.00000 0.00001 0.00001

REACTOME_METALLOTHIONEINS_BIND_METALS 11 -0.88818 -2.23369 0.00000 0.00017 0.00015

REACTOME_RESPONSE_TO_METAL_IONS 14 -0.84702 -2.30462 0.00000 0.00025 0.00021
F
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GSEA, Gene Set Enrichment Analysis; IPF, Idiopathic Pulmonary Fibrosis.
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FIGURE 7

WGCNA analysis identified the coexpression modules in GSE70866 dataset. (A) Sample dendrogram of GSE70866 dataset. (B) Scale-free index
analysis for soft-threshold power and mean connectivity analysis for various soft-threshold powers. (C) Cluster of gene modules in GSE70866
dataset. (D) Module clustering dendrogram based on a dissimilarity measure (1-TOM). Each color represents one module. (E) Heatmap of the
correlation between module eigengenes and IPF, each containing the corresponding correlation and P-value. (F) Venn diagram showing overlapping
genes between ERSRDEGs and genes in MEblue. (G) Violin plot showing the differential expression analysis of ADM and IER3 between patients with
IPF and healthy individuals in the GSE70866 dataset. (H) Scatter plot of the correlation between ADM and IRE3. WGCNA, Weighted gene
coexpression network analysis; ERSRDEGs, endoplasmic reticulum stress-related differentially expressed genes; TOM, topological overlap matrix; IPF,
idiopathic pulmonary fibrosis. ***p<0.001.
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3.10 Immune infiltration in IPF dataset
GSE70866 and correlation between co-
ERSRDEGs and immune cells among
different ERS score groups

Two algorithms, ssGSEA and CIBERSORT, were utilized to

investigate the variations in the levels of immune cell infiltration

between the high and low ERS score groups.

Initially, the ssGSEA algorithm was used to determine the

abundance of 28 distinct types of immune cells in both groups.

Subsequently, the Mann–Whitney U test was used to analyze the

disparities in infiltration between the two groups. The findings

revealed that 20 immune cell types exhibited significant differences

in infiltration abundance between the high and low ERS score

groups (p<0.05) (Supplementary Figure 1A). These immune cells

included activated B cells, activated CD4 T cells, activated CD8 T

cells, activated dendritic cells, CD56bright NK cells, CD56dim NK

cells, central memory CD4 T cells, effector memory CD8 T cells,

eosinophils, gamma delta T cells, immature B cells, macrophages,

MDSC, monocytes, NK cells, NK T cells, neutrophils, plasmacytoid

dendritic cells, regulatory T cells, T follicular helper cells, and type 1

T helper cells. Furthermore, the Pearson algorithm was employed to

examine the correlation between the infiltration abundances of

these 20 immune cell types in both groups. The results indicated

predominantly positive correlations between the infiltration

abundances of these immune cells (Figures 14B, C). Notably, the

highest positive correlation was observed between activated CD8 T

cells and effector memory CD8 + T cells in both groups.

Additionally, the Pearson algorithm was used to analyze the

correlation between the abundance of immune cell infiltration

and the expression levels of eight common ERSRDEGs in both

groups. In the low ERS score group, most immune cells exhibited a

positive association with the expression levels of co-ERSRDEGs,

except for AGRP (Supplementary Figure 1D). In the high ERS score

group, most immune cells positively correlated with the expression

levels of co-ERSRDEGs (Supplementary Figure 1E).

Concurrently, the CIBERSORT algorithm was used to calculate

the infiltration abundance of 22 different types of immune cells in

both groups. The results indicated that the infiltrating abundance of

these immune cells was not uniformly zero, with macrophages M0

and M1 exhibiting a substantial proportion of infiltration

abundance across various samples (Supplementary Figure 2A).

The Wilcoxon rank-sum test was used to examine the differences

in the infiltration abundance of the 22 immune cell types between

the high and low ERS score groups. The results revealed that the

nine immune cell types exhibited significant differences between the

two groups (p<0.05) (Supplementary Figure 2B). These nine

immune cell types include resting dendritic cells, macrophages

M0, activated mast cells, resting mast cells, monocytes, activated

NK cells, resting NK cells, resting memory CD4 T cells, and gamma

delta T cells. The Pearson algorithm was used to calculate the

correlation between the abundance of these nine immune cell

infiltrations and the expression levels of the eight co-ERSRDEGs

in both groups. The results showed that there was a relatively

stronger negative correlation between immune cells and co-

ERSRDEGs in the low ERS score group, whereas there was a
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stronger positive correlation between immune cells and co-

ERSRDEGs in the high ERS score group (Supplementary Figure

2C, D).
3.11 Classification of IPF subtypes in IPF
dataset GSE70866

To illustrate the ERS-related patterns of IPF, unsupervised cluster

analysis was conducted on 112 IPF samples from the GSE70866

dataset. This analysis utilized the “ConsensusClusterPlus” R package

and focused on the expression patterns of eight co-ERSRDEGs. In the

consistency matrix of cluster 2, the intragroup correlation was higher,

and the intergroup correlation was low (Figure 14A). Compared with

clusters 2–8, the growth rate in cluster 2 was flat in the CDF plot

(Figure 14B). Furthermore, Figure 14C shows a significant increase in

the relative change in the area under the CDF curve from k = 2 to k =

5. Based on these findings, the 112 IPF samples were divided into two

subtypes, cluster 1 (n = 71) and cluster 2 (n = 41), using PCA

(Figure 14D). Kaplan–Meier curves were generated to evaluate the

prognostic implications of disease classification. The analysis revealed

that patients in cluster 2 had a significantly shorter OS than those in

cluster 1 (p=0.014) (Figure 14E). Further analysis revealed significant

differences in the gene expression patterns between the two subtypes

(Figure 14F). We then intersected the 2,633 genes from the difference

analysis with the eight co-ERSRDEG to obtain five DEGs: BIRC3,

CDA, FAM20C, NELL2, and ZNF91(Figures 14G). To better

understand the molecular characteristics that distinguish these

subtypes, the expression levels of the five DEGs were evaluated.

The results indicated that CDA, FAM20C, and NELL2 were

significantly upregulated in cluster 2, whereas BIRC3 and ZNF91

were significantly upregulated in cluster 1 (Figure 14H).
3.12 Immune infiltration in IPF dataset
GSE70866 and correlation between co-
ERSRDEGs and immune cells among
different IPF subtype groups

To investigate the disparities in the levels of immune cell

infiltration between the two subtypes of IPF, two algorithms,

ssGSEA and CIBERSORT, were utilized. Initially, the ssGSEA

algorithm was used to determine the abundance of 28 distinct

immune cell types in both IPF subtypes. Subsequently, the Mann–

Whitney U test was used to analyze the differences in infiltration

between the two subtypes. The results revealed that the five immune

cell types exhibited significant differences in infiltration abundance

between the two IPF subtypes (p<0.05) (Supplementary Figure 3A).

These immune cell types included activated CD4 T cells, effector

memory CD4 + T cells, immature B cells, memory B cells, and type

2 T helper cells. Furthermore, the Pearson algorithm was used to

examine the correlation between the infiltration abundance of these

five immune cell types in the two subtypes. The findings indicated

predominantly positive correlations between the infiltration

abundances of these immune cells (Supplementary Figure 3B, C).

Notably, cluster 1 displayed the highest positive correlation between
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1305025
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhu et al. 10.3389/fimmu.2023.1305025
activated CD4 T cells and type 2 T helper cells, whereas cluster 2

demonstrated the highest positive correlation between effector

memory CD4 T cells and memory B cells. Additionally, the

Pearson algorithm was used to analyze the correlation between

the abundance of immune cell infiltration and the expression levels

of five DEGs (BIRC3, CDA, FAM20C, NELL2, and ZNF91) in the

two subtypes. In cluster 1, most immune cells were negatively
Frontiers in Immunology 17
associated with the expression levels of the five DEGs

(Supplementary Figure 3D). In cluster 2, most immune cells

positively correlated with the expression levels of five DEGs,

except for CDA (Supplementary Figure 3E).

Concurrently, the CIBERSORT algorithm was used to calculate

the infiltration abundance of 22 distinct immune cell types in the two

subtypes. The results indicated that the infiltrating abundance of
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FIGURE 8

Construction of the ERSRDEGs-associated diagnostic model. (A) Forest plot of logistic regression model. (B) The number of genes with the most
minimal error rate obtained by the SVM algorithm. (C)The number of genes with the highest accuracy obtained by the SVM algorithm. (D)
Correlation between the error and number of trees. (E) The importance scores of 13 ERSRDEGs were calculated based on the RF model. (F, G)
Screening of characteristic genes by LASSO regression analysis. (H) Venn diagram illustrating overlapping genes among characteristic genes selected
in SVM, RF, and Logistic-LASSO models. (I) Nomogram predicting the ROC of prevalence in the GSE70866 series. (J) Nomogram of predicted
prevalence according to gene score of 8 common ERSRDEGs. (K) Calibration curves to assess the predictive power of the diagnostic model. (L) DCA
curve to evaluate the clinical value of the diagnostic model. SVM, support vector machine; ERSRDEGs, endoplasmic reticulum stress-related
differentially expressed genes; LASSO, least absolute shrinkage, and selection operator; ROC, receiver operating characteristic curve; AUC, area
under the curve; DCA, decision curve analysis.
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these immune cells was not uniformly zero, with macrophages M0

and M1 exhibiting a substantial proportion of infiltration abundance

across various samples (Supplementary Figure 4A). Furthermore, the

Pearson algorithm was used to examine the correlation between the

infiltration abundance of these 22 immune cell types in the two

subtypes. The findings revealed that the number of positively and

negatively correlated cell pairs between immune cells was
Frontiers in Immunology 18
approximately equal between the two subtypes (Supplementary

Figures 4B, C). Additionally, the Pearson algorithm was used to

calculate the correlation between the abundance of 22 immune cell

infiltrations and the expression levels of the five DEGs in the two

subtypes. The results demonstrated several positive correlations

between immune cells and the five DEGs in the two subtypes

(Supplementary Figures 4D, E).
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FIGURE 9

Validation of ERSRDEGs-associated diagnostic model and differential expression analysis of common ERSRDEGs. (A-C) Nomogram predicting the
ROC of prevalence in the GSE110147 series (A), GSE24206 series(B), and GSE93606 series (C). (D–G) The differential expression analysis of eight
common ERSRDEGs between patients with IPF and healthy individuals in GSE70866 (D), GSE28042 (E), GSE110147 (F), and GSE24206 series (G). (H-
O) The diagnostic efficacy of model key genes in dataset GSE70866, (H)AGRP, (I)BIRC3, (J)CDA, (K)FAM20C, (L) MT1E, (M) NELL2, (N) SNCA, (O)
ZNF91. “ns,” not significant (p-value >0.05). *p<0.05, **p<0.01, ***p<0.001. IPF, idiopathic pulmonary fibrosis; ERSRDEGs, endoplasmic reticulum
stress-related differentially expressed genes; ROC, receiver operating characteristic curve; AUC, area under the curve.
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3.13 Validation of expression of co-
ERSRDEGs in vivo and in vitro

A previous analysis demonstrated a strong correlation between

ERS and the diagnosis, prognosis, and classification of IPF. To

validate the mRNA expression of the eight co-ERSRDEGs, we

established A549 cell and embryonic mouse fibroblast 3T3 cell

ERS models using tunicamycin. RT-qPCR results revealed that

SNCA, AGRP, ZNF91, FAM20C, and MT1E exhibited high

expression levels, whereas CDA, BIRC3, and NELL2 were

relatively low in the tunicamycin-treated group compared with

the control group in embryonic mouse fibroblast 3T3 cells. This

difference was significant, except for MT1E (Figure 15A). Similarly,

in the A549 cell line, RT-qPCR results indicated high SNCA,
Frontiers in Immunology 19
NELL2, ZNF91, MT1E, and FAM20C expression levels. In

contrast, CDA, BIRC3, and AGRP levels were relatively lower in

the tunicamycin-treated group than in the control group. The

difference was significant, except for FAM20C (Figure 15B).

To further validate the findings of the in vitro cell experiments

and simulate the pathological process of pulmonary fibrosis in

patients, we successfully established a bleomycin-induced

pulmonary fibrosis mouse model for in vivo experiments. This

model allowed us to investigate ERS events during the development

of pulmonary fibrosis. RT-qPCR results demonstrated significantly

high expression levels of CDA, BIRC3, SNCA, AGRP, ZNF91,

FAM20C, and MT1E in the lung tissues of mice treated with

bleomycin. However, results showed that NELL2 was weakly

expressed in the bleomycin-induced lung tissues of mice.
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FIGURE 10

Correlation analysis among the expression of common ERSRDEGs. (A) The chromosomal mapping of eight common ERSRDEGs. (B) Correlation
heatmap of eight common ERSRDEGs. (C–H) Scatter plot of the correlation between CDA and FAM20C (C), BIRC3 and ZNF91 (D), FAM20 and SNCA
(E), CDA and ZNF91 (F), AGRP and CDA (G), AGRP and FAM20C (H). *p<0.05, **p<0.01, ***p<0.001. ERSRDEGs, endoplasmic reticulum stress-related
differentially expressed genes.
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However, the difference was not significant (Figure 15C).

Additionally, histological examination using HE and Masson

staining revealed significantly increased lung tissue inflammation

and collagen deposition in the bleomycin group compared with the

control group (Figure 15D).
4 Discussion

IPF is a prevalent form of interstitial lung disease characterized

by complex and multifaceted pathogenesis and progression (45).

The initial presentation of IPF is often characterized by non-specific
Frontiers in Immunology 20
symptoms, leading to significant delays in diagnosis. The

heterogeneity of IPF poses challenges to the effectiveness of

treatment strategies, resulting in a poor prognosis for affected

individuals (46). Furthermore, the prediction of the course and

prognosis of IPF on an individual basis remains challenging. In

recent years, numerous studies have been conducted to identify the

clinical, imaging, and pathological indicators that could aid in

diagnosing, predicting progression, and estimating survival in IPF

(3). However, the retrospective nature of these studies and the

inherent uncertainty associated with the employed metrics have

resulted in varying degrees of accuracy for the identified predictors.

Consequently, there is an urgent need to develop appropriate and
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FIGURE 11

Immune infiltration analysis evaluated between groups with high- and low-risk scores by the ssGSEA algorithm in GSE70866 dataset. (A) The
difference in expression of 28 immune cells between the high- and low-risk score groups. (B, C) Correlation heatmap showed the correlation
coefficient between different immune cells in low- (B) and high-risk score groups (C). (D, E) The correlation analysis between common ERSRDEGs
and specific immune cells in the low- (D) and high-risk score groups (E). “ns” not significant (p-value >0.05). *p<0.05, **p<0.01, ***p<0.001. ssGSEA,
single-sample gene-set enrichment Analysis; ERSRDEGs, endoplasmic reticulum stress-related differentially expressed genes.
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precise diagnostic and prognostic models for IPF to improve clinical

practice. ERS has been extensively investigated for its association

with IPF. Although its involvement in the pathogenesis and

progression of IPF is likely, the exact mechanism remains unclear.

Given that IPF is a complex pathophysiological process, this

study aimed to explore the significance of ERS in the diagnosis and

prognosis of IPF using samples derived from the BALF, PBMC, and

lung tissue. Initially, we identified and validated eight ERSRGs to

diagnose IPF: AGRP, BIRC3, CDA, FAM20C, MT1E, NELL2,

SNCA, and ZNF91. Additionally, we explored the association

between ERS and IPF outcomes by calculating an ERS score

based on the expression levels of eight co-ERSRDEGs. These

genes have been identified as potential protective prognostic

factors. Consistent clustering was performed to further predict the

regulatory patterns of ERS-related prognosis. This analysis revealed

two subgroups with significantly different prognoses, with cluster 2

exhibiting poorer outcomes than cluster 1. Moreover, we discovered

a correlation between the infiltration of various immune cell types
Frontiers in Immunology 21
and ERS in the lung tissue of patients with IPF, as well as differences

in immune cell infiltration between normal and IPF lung tissues.

Our findings indicated that ERS plays a crucial role in IPF

development. Notably, this study represents the first

bioinformatics investigation to elucidate the relationship between

ERS and IPF using human samples and has laid the foundation for

further exploration of ERS in the context of IPF. Therefore, the

identification of novel therapeutic targets is imperative.

In this study, diagnostic and prognostic models comprised eight

ERS-related genes. AGRP, also known as agouti-related

neuropeptide, encodes an antagonist of the melanocortin-3 and

melanocortin-4 receptors. Its role in regulating feeding behavior

through the melanocortin receptor and/or intracellular calcium

regulation suggests its involvement in weight homeostasis (47).

Previous studies on body weight homeostasis have shown a

correlation between AGRP and ERS and the inflammatory

response. However, the specific mechanism of action may be

contradictory. Zhou et al. demonstrated that antipsychotic
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FIGURE 12

Immune infiltration analysis evaluated between groups with high- and low-risk scores by the CIBERSORT algorithm in GSE70866 dataset. (A)
Histogram showing the distribution of 22 immune cell infiltration between the high- and low-risk score groups. (B) Boxplot showing the differences
in infiltrated immune cells between the high- and low-risk score groups. (C, D) The correlation analysis between common ERSRDEGs and specific
immune cells in the low- (C) and high-risk score groups (D). “ns” not significant (p-value >0.05). *p<0.05, **p<0.01, ***p<0.001. ERSRDEGs,
endoplasmic reticulum stress-related differentially expressed genes.
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medications, such as olanzapine, induce ERS in hypothalamic

neurons, leading to increased expression of neuropeptide Y and

AGRP, autophagy, and resistance to leptin and insulin (48). This

ultimately results in the inflammation of the central nervous system

(CNS), leading to weight gain. However, Hagimoto et al. showed that

glucocorticoid-induced AGRP expression is suppressed through the

NF-kB-p65 pathway in ERS (49). Currently, there is a lack of research
Frontiers in Immunology 22
examining the role of AGRP in the context of pulmonary fibrosis.

This study showed that AGRP expression has a notably greater

impact on the ERS-related diagnostic model than other co-

ERSRDEGs. Furthermore, AGRP expression was negatively

correlated with immune cell infiltration. This finding contradicts

the positive correlation between AGRP and inflammation reported

by Zhou et al., necessitating further comprehensive investigations.
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FIGURE 13

Construction of the ERS score prognostic model. (A) KM plot of overall survival between the high- and low-ERS score groups in the GSE70866
dataset. (B) ROC curve evaluated the predictive value of the model for the prognosis of patients in the discovery cohort for 1-,3-, and 5-year. (C)
ROC curve evaluated the predictive value of the model for the prognosis of patients in the discovery cohort. (D–K) ROC curves of eight common
ERSRDEGs in the discovery cohort, (D) AGRP, (E) BIRC3, (F) CDA, (G) FAM20C, (H) MT1E, (I) NELL2, (J) SNCA, (K) ZNF91. (L) The differential
expression analysis of eight common ERSRDEGs between high- and low-ERS score groups. “ns” not significant (p-value >0.05). ***p<0.001. KM,
Kaplan–Meier; ERS score, endoplasmic reticulum stress score; ROC, receiver operating characteristic curve; AUC, area under the curve; ERSRDEGs,
endoplasmic reticulum stress-related differentially expressed genes.
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BIRC3, also known as cellular IAP2, is a member of the human

inhibitor of apoptosis protein (IAP) family (50). Previous research

has demonstrated that BIRC3 is a multifunctional protein that

regulates caspases, apoptosis, inflammatory signaling, immunity,

mitogenic kinase signaling, and cell proliferation (51). In specific

cell types, such as polarized human myeloid leukemia THP-1 cells

and primary human macrophages, cIAP1 and cIAP2 are highly

expressed in M1 macrophages (52). Studies have indicated that

BIRC3 regulates immune-related lung diseases, including asthma

and Klebsiella pneumoniae pneumonia. Increased BIRC3 expression

may contribute to asthma pathogenesis by influencing eosinophilic

and allergic inflammation (53). In a mouse model of infection,

blocking the Birc3/TLR4/Myd88 signaling pathway showed a

protective effect against carbapenem-resistant K. pneumoniae

(54). Additionally, studies have revealed the involvement of ERS
Frontiers in Immunology 23
and BIRC3 in tumor regulation. SNHG1, a KLF4-regulated

lncRNA, suppresses ERS-induced apoptosis and promotes

gliomagenesis by increasing BIRC3 expression (55). BIRC3 may

also play a role in liver fibrosis by regulating the inflammatory

response. Targeting cIAPs, including BIRC3, has been suggested as

a potential therapeutic strategy for liver fibrosis by increasing

MMP9 expression induced by CCL5 chemotactic neutrophils

(56). Notably, recent studies have proposed targeting IAPs as a

potential therapy for IPF by promoting apoptosis of mesenchymal

cells. Fibroblasts from IPF tissues show increased expression of

XIAP, which is also a member of the IAP family and is associated

with resistance to apoptosis in lung fibroblasts (57). Furthermore,

research has demonstrated that the profibrotic mediator TGF-b1
could enhance the expression of both XIAP and cIAPs in murine

mesenchymal cells. Increased expression of XIAP and cIAP1 has
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FIGURE 14

Identification of IPF subtypes. (A) Consensus clustering matrix when k = 2. (B) Consensus CDF curves when k = 2 to 8. (C) Relative alterations in CDF
delta area curves. (D) PCA diagram separated clusters 1 (blue) and 2 (red) samples. (E) KM plot of overall survival between clusters 1 and 2 in
GSE70866. (F) Volcano plot of differentially expressed genes between clusters 1 and 2 in GSE70866. (G) Venn diagram showing overlapping genes
between common ERSRDEGs and DEGs between clusters 1 and 2. (H) Clustering heatmap of five overlapping ERSRDEGs between clusters 1 and 2 in
the GSE70866 dataset. IPF, idiopathic pulmonary fibrosis; CDF, cumulative distribution function; PCA, principal component analysis; KM, Kaplan–
Meier; ERSRDEGs, endoplasmic reticulum stress-related differentially expressed genes; DEGs, differentially expressed genes.
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also been observed in bleomycin-induced IPF models. Consistently,

the IAPs inhibitor AT-406 protected mice from bleomycin-induced

lung fibrosis (58). In this study, the AUC value of BIRC3 in the

diagnostic and prognostic models of IPF exceeded 0.750. Moreover,

there was a positive association between the expression levels of

BIRC3 and the extent of immune cell infiltration. These findings

suggest that BIRC3 is important in the context of IPF, and further

investigation is warranted to elucidate its underlying mechanism.

Metallothionein (MT) is a low-molecular-weight protein with a

high cysteine content that binds to metals and is present in all

eukaryotes. In humans, MT is categorized into four subfamilies:

MT1, MT2 (also known as MT2A), MT3, and MT4 (59). MT1 is

involved in ERS regulation Zn treatment prevents type 1 diabetes-

induced hepatic oxidative damage, ERS, and cell death by

upregulating hepatic MT expression (60). MT also protects

against ERS-induced cardiac anomalies, possibly by attenuating

cardiac autophagy (61). Furthermore, MT1 plays a role in the

differentiation and functioning of immune cells. It positively

regulates the differentiation of CD4+ T cells into Tregs and

negatively regulates the differentiation of CD4+ T cells into Tr1
Frontiers in Immunology 24
and Th17 cells (62). MT1 may also regulate lung diseases, such as

chronic obstructive pulmonary disease (COPD), by affecting

immune responses. Researchers identified a subpopulation of

macrophages with high MT expression in patients with advanced

COPD (63). Moreover, MT1 regulates pulmonary fibrosis, and its

induction attenuates the progression of lung fibrosis in mice

exposed to long-term intermittent hypoxia (64). In this study,

MT1 expression in BALF and PBMC was significantly higher in

patients with IPF than in healthy individuals. Conversely, the

expression of MT1 in the lung tissue was lower in patients with

IPF than in healthy controls. Furthermore, the AUC value of MT1

in the diagnostic model for IPF was 0.755, indicating its potential as

a diagnostic marker for this condition. Interestingly, a negative

association was observed between the expression levels of MT1 and

extent of immune cell infiltration. This finding is in contrast to

previous studies investigating the relationship between MT1 and

inflammation, suggesting the need for further investigation.

Alpha-synuclein (SNCA) is a member of the synuclein protein

family, which includes a-, b-, and g-synuclein, as well as synoretin
(65). It is primarily expressed in regions of the adult CNS associated
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FIGURE 15

Expression of eight common ERSRDEGs genes verified via RT-qPCR in A549 cells, embryonic mouse fibroblasts 3T3 cells, and bleomycin-induced
pulmonary fibrosis in mice. The experimental groups included DMSO and treatment groups in vitro. The treatment group was exposed to 1 mg/mL
tunicamycin for 24 h in embryonic mouse fibroblasts 3T3 cells and 4 mg/mL tunicamycin for 48 h in A549 cells. The experimental group was
induced with bleomycin (5 mg/kg), whereas the control group was treated with PBS in vivo. After 21 days, lung tissues were collected for RT-qPCR,
HE, and Masson staining. (A, B) The expression of eight common ERSRDEGs between tunicamycin treatment and DMSO groups in embryonic
mouse fibroblasts 3T3 (A) and A549 (B) cells. (C) The expression of eight common ERSRDEGs between bleomycin treatment and PBS groups in
mice. (D) HE and Masson staining results of bleomycin treatment and PBS groups. *p<0.05, **p<0.01, ***p<0.001. DMSO, dimethyl sulfoxide; RT-
qPCR, real-time quantitative PCR; ERSRDEGs, endoplasmic reticulum stress-related differentially expressed genes.
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with synaptic plasticity (66). SNCA and ERS have been implicated

in several neurological disorders. The aggregation of SNCA disrupts

the ability of neurons to respond to misfolded proteins in the ER. It

has been suggested that enhancing multiple proteostatic pathways is

therapeutically beneficial in Parkinson’s disease (PD) (67).

Additionally, SNCA is involved in ERS induced by manganese

through the PERK signaling pathway in brain slice cultures (68).

SNCA and inflammation also play a role in the development and

progression of neurological diseases, including PD. Intracellular

translocation of toxic SNCA species could trigger hyperactivity in

microglia, activate astrocytes, upregulate the expression of

proinflammatory factors, and recruit peripheral immune cells to

the vicinity of preapoptotic and apoptotic dopaminergic neurons in

the CNS, all of which could contribute to neuronal dysfunction (69).

Studies have shown that SNCA is involved in the regulation of renal

fibrosis. Disruption of SNCA signaling in renal proximal tubular

epithelial cells contributes to the pathogenesis of renal

tubulointerstitial fibrosis by promoting a partial epithelial-to-

mesenchymal transition and accumulation of ECM (70). This

study showed that SNCA expression exhibited a notable increase

in the high ERS score group compared with the low ERS score

group among patients diagnosed with IPF. Additionally, the AUC

value of SNCA in the diagnostic and prognostic models for IPF

exceeded 0.750, indicating its potential as a valuable diagnostic and

prognostic marker for this particular condition. Furthermore, a

positive correlation was observed between SNCA expression and

the extent of immune cell infiltration. Collectively, these findings

suggest that SNCA plays a significant role in the development and

progression of pulmonary fibrosis via ERS.

Cytidine deaminase (CDA) is an enzyme that plays a crucial

role in the pyrimidine salvage pathway (71). Family with sequence

similarity 20 member C (FAM20C), previously known as Golgi

casein kinase (G-CK), is a protein specifically localized in the Golgi

apparatus (72). NELL2 is a glycoprotein involved in the

development of neural cells and guidance of axons, including

their repulsion (73). Zinc finger protein 91 (ZNF91) is a nuclear

protein that is 63.5 kDa in size and exhibits structural motifs

characteristic of transcription factors (73). These proteins were

associated with the GO enrichment analysis results of ERSRDEGs.

ERSRDEGs were enriched in the negative regulation of the

phosphate metabolic process and G protein-coupled receptor

signaling pathway. Additionally, they were enriched in cellular

components of the Golgi lumen. Regarding MF, ERSRDEGs were

closely associated with enzyme inhibitors, receptor ligands, and

signaling receptor activator activities.

This study showed significant differences in the expression of

AGRP, BIRC3, CDA, FAM20C, MT1E, NELL2, SNCA, and ZNF91

between patients with IPF and healthy controls. These were also

significantly correlated with immune cell infiltration. Furthermore,

our in vivo and in vitro experiments demonstrated that the expression

of these molecules differed between the tunicamycin and bleomycin

groups compared with the normal control group. This suggests that

these molecules are involved in the development of IPF via ERS and

inflammatory responses. However, it is important to note that the

inconsistent trend in their expression may be attributed to the

different sources of samples analyzed in our database, including
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BALF, PBMC, and lung tissue. Additionally, the A549 cells used in

our in vitro experiments represent alveolar epithelial cells, whereas

the 3T3 cells represent lung fibroblasts. Therefore, AGRP, NELL2,

FAM20C, and MT1E may exert varying effects on alveolar epithelial

cells and lung fibroblasts. Moreover, our in vivo experiments used

bleomycin to induce pulmonary fibrosis in mice, which may not fully

reflect the pathophysiological processes of IPF in humans.

Furthermore, the stress state of the ER in mice might not have

been fully represented in our in vivo experiments without the

addition of tunicamycin. An important consideration regarding the

use of animal models is that they may not completely mimic the

pathophysiology of IPF. Nevertheless, animal models provide detailed

mechanistic insights that are difficult to obtain from human studies.

In addition, we did not assess the protein levels of these molecules.

Therefore, further investigation is required to explore the changes in

protein levels and necessitate including more BALF, blood, and lung

tissue samples from patients with IPF for verification.

Recent advances have shed light on the role of the immune

system in IPF, revealing that immune dysregulation is a crucial factor

in the pathophysiology of the disease (14, 15). Both human and

mouse studies have provided evidence that monocytes are recruited

to the lungs in response to tissue injury and subsequently differentiate

into long-lived alveolar macrophages (Ams) (74). These Ams play a

pivotal role in promoting fibrosis through various mechanisms,

including the production of TGF-b (75), chemokine ligand 18

(CCL18) (76), chitinase 3-like protein 1 (CHI3L1) (77), matrix

metalloproteinases (MMPs) (78), and activation of the Wnt/b-
catenin pathway (79). These processes ultimately lead to fibroblast

activation, myofibroblast differentiation, and ECM remodeling.

Importantly, several of these profibrotic mechanisms are associated

with M2 polarization in Ams (79). Th17 cells, CD8+ T cells, and

Tregs have been observed to contribute to the progression of fibrosis,

whereas Th1 cells and tissue-resident memory CD4+ T cells have

shown potential protective effects (15). In accordance with previous

studies, our findings demonstrated a higher abundance of monocytes

and macrophages in the high-risk group than in the low-risk group,

suggesting a potential association between elevated levels of these

immune cells and IPF progression. Additionally, we observed a

decrease in the number of resting memory CD4+ T cells in the

BALF of the high-risk group, indicating the potential protective role

of these cells in IPF. Furthermore, significant differences were

observed in the dendritic cells, mast cells, NK cells, neutrophils,

and myeloid-derived suppressor cells (MDSC) between the high- and

low-risk groups. Notably, a significant correlation was observed

between most ERSRDEGs and various immune cell populations.

However, the precise contribution of these immune cells to IPF

pathogenesis requires further investigation.

This study established a correlation between ERS and its associated

genes in IPF diagnosis and progression. However, this study had some

limitations. First, it relied on data from the GEO database, which may

have introduced potential biases. Despite including multiple datasets,

the sample size was relatively small, which may have affected the

generalizability of our findings. Second, the majority of the datasets

lacked crucial clinical information such as pulmonary function

parameters, St. George’s respiratory questionnaire scores, and the use

of antifibrotic medications. Lastly, the relationship between the risk
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score and immune activity requires further investigation through basic

experiments. Therefore, additional research is necessary to validate the

clinical significance of these results.
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SUPPLEMENTARY FIGURE 1

Immune infiltration analysis evaluated between groups with high and low ERS
scores by the ssGSEA algorithm in GSE70866 dataset. (A) The difference in

expression of 28 immune cells between the high- and low-ERS score groups.
(B, C) Correlation heatmap showed the correlation coefficient between

different immune cells in the low-(B) and high-ERS(C) score groups. (D, E)
The correlation analysis between common ERSRDEGs and specific immune
cells in the low-(D) and high-ERS(E) score groups. “ns”, not significant (p-

value >0.05). *p<0.05, **p<0.01, ***p<0.001. ssGSEA, single-sample gene-set
enrichment analysis; ERS score, endoplasmic reticulum stress score;

ERSRDEGs, endoplasmic reticulum stress-related differential ly
expressed genes.

SUPPLEMENTARY FIGURE 2

Immune infiltration analysis evaluated between groups with high and low ERS

scores by the CIBERSORT algorithm in GSE70866 dataset. (A)Histogram showing
the distribution of 22 immune cell infiltration between the high- and low-ERS

score groups. (B) Boxplot showing the differences in infiltrated immune cells
between the high- and low-ERS score groups. (C, D) The correlation analysis

between common ERSRDEGs and specific immune cells in the low-(C) and high-

ERS(D) score groups. “ns”, not significant (p-value >0.05). *p<0.05, **p<0.01,
***p<0.001. ERS score, endoplasmic reticulum stress score; ERSRDEGs,

endoplasmic reticulum stress-related differentially expressed genes.

SUPPLEMENTARY FIGURE 3

Immune infiltration analysis evaluated between clusters 1 and 2 by the ssGSEA

algorithm in GSE70866 dataset. (A) The difference in expression of 28 immune

cells between clusters 1 and 2. (B, C)Correlation heatmap showed the correlation
coefficient between different immune cells in clusters 1(B) and 2(C). (D, E) The
correlation analysis between common ERSRDEGs and specific immune cells in
clusters 1 (D) and 2 (E). “ns”, not significant (p-value >0.05). *p<0.05, **p<0.01,

***p<0.001. ssGSEA, single-sample gene-set enrichment analysis; ERSRDEGs,
endoplasmic reticulum stress-related differentially expressed genes.

SUPPLEMENTARY FIGURE 4

Immune infiltration analysis evaluated between clusters 1 and 2 by the

CIBERSORT algorithm in GSE70866 dataset. (A) Histogram showing the
distribution of 22 immune cell infiltration between clusters 1 and 2. (B, C)
Correlation heatmap showed the correlation coefficient between different
immune cells in clusters 1(B) and 2(C). (D, E) The correlation analysis between

common ERSRDEGs and specific immune cells in clusters 1 (D) and 2 (E).
*p<0.05, **p<0.01, ***p<0.001. ERSRDEGs, endoplasmic reticulum stress-

related differentially expressed genes.
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