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H2-O deficiency promotes
regulatory T cell differentiation
and CD4 T cell hyperactivity
Robin A. Welsh, Nianbin Song, Chan-Su Park †,
J. David Peske and Scheherazade Sadegh-Nasseri*

Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, United States
Regulatory T cells (Treg) are crucial immune modulators, yet the exact

mechanism of thymic Treg development remains controversial. Here, we

present the first direct evidence for H2-O, an MHC class II peptide editing

molecular chaperon, on selection of thymic Tregs. We identified that lack of

H2-O in the thymic medulla promotes thymic Treg development and leads

to an increased peripheral Treg frequency. Single-cell RNA-sequencing

(scRNA-seq) analysis of splenic CD4 T cells revealed not only an

enrichment of effector-like Tregs, but also activated CD4 T cells in the

absence of H2-O. Our data support two concepts; a) lack of H2-O

expression in the thymic medulla creates an environment permissive to

Treg development and, b) that loss of H2-O drives increased basal auto-

stimulation of CD4 T cells. These findings can help in better understanding of

predispositions to autoimmunity and design of therapeutics for treatment of

autoimmune diseases.
KEYWORDS

immunology, class II antigen presentation, regulatory T cells, thymic selection, CD4
T cells
Introduction

T cells are key players in humoral immune responses. Upon infection with a

pathogen, CD4 T cells utilize their T cell receptor (TCR) to survey for peptides bound

to MHC class II molecules (pMHCII) presented by professional antigen presenting

cells (APCs). Identification of cognate pMHCII complexes by the TCR leads to CD4 T

cell activation and ultimately clearance of the foreign pathogen. Faulty activation,

however, can lead to deleterious inflammation causing possible autoimmune diseases

and cancer development. Hence, multiple regulatory processes exist to ensure T cell

activation remains in check.

Regulation of T cell activation begins during thymic development where immature

thymocytes are screened for self-reactivity. Broadly divided into positive and negative
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selection, this process ensures that CD4 T cells expressing high

avidity self-reactive TCRs are either eliminated (1), or become CD4

regulatory T cells (Tregs) (2). MHC Class II antigen processing

machinery expressed by medullary thymic epithelium cells

(mTECs) and thymic antigen presenting cells (APCs) are critical

for screening for auto-reactive T cells. Two chaperone proteins, H2-

M (murine; human, HLA-DM), and H2-O (murine; human, HLA-

DO) are major components of the MHC II processing pathway.

While H2-M is expressed in all APCs, H2-O is expressed in the

thymic medulla, B cells and various dendritic cell subpopulations (3,

4). H2-M plays a critical role in MHC class II antigen processing by

dissociating the Class II Invariant Chain peptide (CLIP) from the

newly synthesized MHC II. Dissociation of CLIP promotes a

peptide-receptive MHC II conformation to which denatured

protein antigens can be screened for the best MHC II groove

fitting epitopes. However, a peptide-receptive MHC II

conformation is highly transient and in the absence of suitable

peptides readily reverts to a closed conformation (5–8). We have

proposed that H2-O binds to MHC II in receptive conformation (9)

and works cooperatively with H2-M to stabilize the peptide-

receptive MHC II conformation for an optimized epitope

selection process (10). Together, H2-M and H2-O molecules can

ensure that the best MHC II groove fitting epitopes are selected for

presentation to cognate CD4 T cells.

While the exact mechanism of Treg selection remains to be fully

understood (11), two critical requirements have been recognized as

necessary for a successful thymic Treg development. First, thymic

Treg development requires relatively strong TCR signaling in the

thymic medulla (12), and second, Treg development relies on

signaling by the common g chain (gC) cytokines, mainly IL-2, for

driving Foxp3 expression (13). While a strong TCR signaling during

negative selection normally leads to CD4 T cell deletion (1), a

somewhat weaker TCR signaling has been suggested to promote

Treg selection (11, 14, 15). TCR signaling is affected by both the

nature and density of the presented self-peptides (16, 17). If

epitopes are in high abundance and more ubiquitously expressed

in the medulla, then cognate CD4 T cells will undergo clonal

deletion. However, if epitopes are in lower abundance and have a

sparser expression, leading to discontinuous TCR stimulation, then

cognate CD4 T cells might undergo Treg selection. This model of

Treg selection relies on the level of TCR signaling that medulla

localized CD4 single-positive (SP) T cells receive. As loss of H2-O in

naïve peripheral B cells has been shown to alter both the repertoire

and density of presented peptides (18, 19) we questioned if loss of

H2-O in the thymus could affect whether CD4 T cells are signaled

for deletion, or survival during thymic deletion. Should a lower

density of self pMHCII be presented in the thymic medulla, an

increased number of self-reactive CD4 T cells might escape deletion

leading to an increased frequency of auto-reactive T cell clones in

the periphery. Or, alternatively, presentation of a lower density of

self pMHCII could promote selection of regulatory T cells. Here, we

demonstrate that loss of H2-O generates a more stimulatory in vivo

environment impacting both the thymic development and

peripheral activation of regulatory T cells.
Frontiers in Immunology 02
Results

Loss of H2-O increases the activation state
of auditing medulla CD4 T cells

Previously, we demonstrated that loss of H2-O expression

correlated with both an increased B cell presentation of low-affinity

MHC II peptides, and an increased frequency of a MOG35-55 specific,

self-reactive CD4 T cell (18). Because of H2-O expression in the

medullary thymus we speculated that H2-O deficiency might lead to

presentation of lower densities of high-affinity self-peptides in the

medulla, thereby causing altered clonal deletion. Based upon findings

by Breed et al. positively selected (TCR-b+ CD5+) medulla CD4 T

cells can be subdivided into two main populations, “Auditing” (CCR7

+ Caspase-3neg) and “Clonally Deleted” (CCR7+ Caspase-3pos) T cells

(20). Using this strategy, we examined the levels of positively selected

(TCR-b+CD5+) CD4 T cells undergoing auditing (CCR7+ CD4

+Caspase-3neg) or clonal deletion (CCR7+ CD4+Caspase-3pos) in 6

week old male and female H2-O WT and H2-O mice (Figure 1;

Supplementary Figure 1). Loss of H2-O was found to significantly

increase the expression of the activation marker CD69 on CD4 T cells

undergoing active self-auditing (Figure 1A), but not those selected for

clonal deletion (Figure 1B).

CD69 in combination with MHC-I defines 3 medullary

maturation stages: semi-mature (CD69+ MHC-I -), mature 1

(CD69+ MHC-I +), and mature 2 (CD69- MHC-I -) (20).

Subdivision of auditing H2-O-KO CD4 T cells identified a

significant increase in CD4 T cells with a Mature 1 phenotype

(Figure 1C middle). Conversely, both the semi-mature and mature

2 stages were decreased in H2-O KOmice (Figure 1C left/right). No

differences in any maturation stage were found in the clonally

deleted CD4 T cell population (Supplementary Figure 2).

Furthermore, H2-O deficiency, did not appear to alter the rate of

CD4 T cells undergoing clonal deletion (Figure 1C). Importantly,

no differences were observed in thymocytes undergoing positive

selection (Supplementary Figure 3). These data suggest that loss of

H2-O drives a more stimulatory thymic medulla environment, but

with similar levels of clonal deletion. It is therefore likely that the

increased peripheral frequencies of MOG-specific CD4 T cells

previously identified is due to increased peripheral expansion of

the MOG-reactive clone, not a general alteration in clonal deletion.
H2-O KO thymi have increased regulatory
T cell development

With increased levels of peripheral Tregs previously identified

in H2-O KO mice (18), we also questioned if H2-O deficiency was

affecting Treg selection. In fact, one model of thymic Treg selection

centers around the concept of antigen density (14, 21). Within this

“mosaic” model, sporadic MHC-TCR interactions with sparsely

presented self-epitopes leads to Treg development. Since it has been

shown that peripheral loss of H2-O leads to alterations in peptide

presentation (18, 19, 22), we postulated that altering the level of self-
frontiersin.org
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epitopes present in the medulla could alter Treg selection. Analysis

of CD4 single-positive T cells identified an increased frequency of

CD25+Foxp3+ T cells in H2-O KO mice (Figure 2A). Furthermore,

H2-O KO thymic Tregs (tTregs) expressed higher levels of the high

affinity IL-2 receptor (CD25) (Figure 2B/left), and the orphan

nuclear receptor Nur77 (Figure 2B/right). As Nur77 has been

associated with the level of TCR engagement (23), increased

Nur77 expression strongly indicates that absence of H2-O leads

to increased TCR engagement suggesting an increased self-
Frontiers in Immunology 03
reactivity. Finally, maturation state analysis found that H2-O KO

tTregs were enriched in the M1 stage (Figure 2C).

Since peripheral Tregs are known to recirculate back to the

thymus (24) we investigated what percentage of the identified tTreg

pool in H2-OWT and H2-O KO thymi came from the periphery. As

show in Figure 2D, similar levels of recirculating (CCR6+ CD73+)

Tregs were identified in both H2-O WT and H2-O KO thymi.

Supporting the identification of increased M1 stage Tregs, CCR6-

CD73+ (mature) Tregs were statistically increased in H2-O KOmice.
A B

D

C

FIGURE 1

Loss of thymic H2-O increases the activation state of auditing CD4 T cells (A) Left: representative contour plots showing total CD69 expression in
auditing (Caspase-3 negative) signaled (TCR-B+CD5+) CCR7+CD4+ T cells from 6-week-old H2-O WT (Top) and H2-O KO (Bottom) thymi. Right:
Combined CD69 expression data from 5 repeat experiments. N= 18 mice per genotype (B) Right: representative contour plots showing total CD69
expression in Clonally deleted (Caspase-3 positive) signaled (TCR-B+CD5+) CCR7+CD4+ T cells from 6-week-old H2-O WT (Top) and H2-O KO
(Bottom) thymi. Left: Combined CD69 expression data from 5 repeat experiments. N= 18 mice per genotype (C) Top: representative contour plots
showing the subdivision of auditing (Caspase-3 negative) signaled (TCR-B+CD5+) CCR7+CD4+ T cells from 6-week-old H2-O WT (Left) and H2-O
KO (Right) thymi into three maturation stages: Semi-Mature (SM), Mature 1 (M1), and Mature 2 (M2). Bottom: Cumulative maturation state data from
5 repeat experiments, N = 18 mice per genotype. Expression has been normalized to the average H2-O WT levels within each experiment to allow
for comparison across experiments. Raw percentage data can be found in Supplementary Figure 3. (D) Frequency of medulla specific (CCR7+) CD4
T cells selected for clonal deleted (Caspase-3+) ns, not significant,*<0.05, **<0.001, ***<0.0001, ****<0.00001 Statistics: unpaired student T-test.
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Nomajor differences were found in the level of naïve (CCR6- CD73-)

Tregs. These findings suggest that the increased Treg levels observed

in H2-O KO thymi are likely due to an increased de novo Treg

selection not an increased recirculation of peripheral Treg.
Loss of H2-O correlates with increased
peripheral CD4 T cell activation

Considering the observation that lack of H2-O did not appear to

alter clonal deletion frequencies but did affect the level of thymic
Frontiers in Immunology 04
CD4 T cell activation, we next evaluated whether peripheral loss of

H2-O also increased CD4 T cells activation. Unimmunized H2-O

KO spleens had an increased frequency of CD4 T cells co-

expressing the key activation markers CD44+ and CD69+

(Figure 3A) and the tissue homing marker CCR7 (Figure 3B). We

further assessed the levels of “non-activated” (CCR7+ CD62L+)

versus “activated” (CCR7- CD62L-) CD4 T cells (25), and found

lower frequencies of non-activated CD4 T cells in H2-O KO mice

(Figure 3C, left). Importantly, this correlated with an increase in

percentage of activated CD4 T cells (Figure 3C, right). Collectively,

these phenotypic analyses support the idea that loss of H2-O leads
A

B

D

C

FIGURE 2

H2-O KO thymi have increased regulatory T cell levels. (A) Left: representative contour plots showing the frequency of Tregs (CD25+ Foxp3+) cells
in the CD4 single-positive thymus population. Right: cumulative percentage of Foxp3+ CD25+ cells within the CD4 single-positive thymus
population in H2-O WT (white) or H2-O KO (red) cells. Data from 3 replicate experiments, N= 16 mice per genotype. (B) Geometric mean
fluorescence intensity (gMFI) of CD25 (left), Nur77 (right) expressed by Foxp3+ CD4+ T cells in the thymus of H2-O WT (white) or H2-O KO (red)
mice. (C) Subdivision of Treg cells into three maturation stages: Semi-Mature (Left), Mature 1 (Middle), and Mature 2 (Right). Data from 2 replicate
experiments. (D) Left: representative contour plots showing the frequency of Naive (CCR6- CD73-), Mature (CCR6- CD73+), and Recirculating
(CCR6+ CD73+) Foxp3+ CD25+ Tregs in 6-week-old H2-O WT and H2-O KO thymi. Right: Summary plots showing the frequency of Naive (CCR6-
CD73-), Mature (CCR6- CD73+), and Recirculating (CCR6+ CD73+) Foxp3+ CD25+ Tregs from 2 independent repeat experiments, N= 6 mice per
group. ns = not significant, * = <0.05, ** = <0.001. Statistics: unpaired student T-test.
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to increased basal levels of activated CD4 T cells in unimmunized

H2-O KO mice.

As discussed above, H2-O KO thymi promoted Tregs selection.

Consistent with these observations and our previously published

data (18, 26), H2-O KO spleens had an increased frequency of

CD25+ Foxp3+ Tregs (Figure 3D). Furthermore, H2-O KO Tregs

showed decreased levels of CD62L (Figure 3E) and increased levels

of Nur77 (Figure 3F) indicating a larger proportion of Tregs cells

are likely more activated and circulating through the periphery of

H2-O KO mice.
Single cell RNA-sequencing of H2-O KO
splenic CD4 T cells confirms
increased activation

Based upon the strong FACS data above exhibiting increased

numbers of Tregs, and more activated CD4 T cells, we attempted

single-cell RNA-sequencing (scRNA-seq) to gain a more holistic

unbiased characterization. CD3+ CD4+ NK1.1- CD19- cells were

sorted from spleens of 3 unimmunized H2-O WT and 3

unimmunized H2-O KO mice and subjected to 10x Genomics

scRNA-seq analyses. In total, 11 distinct CD4 T cell clusters were

identified (Figure 4A; Supplementary Figure 4). Separation of the

clusters based upon H2-O expression identified a dramatic increase
Frontiers in Immunology 05
in cluster 0, cluster 2 and cluster 3 in the H2-O KO samples.

Conversely, clusters 1 and 4 were significantly increased in H2-O

WT samples. Further refinement based upon expression of CD44

and CD62L (Sell) showed that most of clusters 0, 5 and 1 were naïve

(CD44- CD62L+) CD4 T cells and CD44+CD62L- effector CD4 T

cells were mainly located in clusters 2, 3, and 4. Supplementary

Figure 5 shows key genes significantly upregulated in Clusters 0, 1,

2, 3, and 4. No detectable difference was observed in cells expressing

central memory markers (CD44+ CD62L+) within Cluster

0 (Figure 4B).

Comparing the genes from Clusters 0, 1 and 5 to the

published CD4 T cell datasets using the “My Geneset” function

on the Immunological Genome Project (www.immgen.org)

suggested that upregulated genes (Log2Avg Fold-change (FC)

0.5) were present in both “naïve” and “activated” CD4 T cell

datasets (Figure 4C). Based upon the high expression of CCR7

however, these clusters were labeled as “non-activated”. Clusters

3, 6, 7, and 11 aligned with mainly an “activated” CD4 T

phenotype. Cluster 3 was found to have increased expression

of the activation marker CD44, while Cluster 11 expressed high

Ki67. Clusters 2 and 4 contained the known Treg genes Foxp3

and Il2ra (CD25) (Supplementary Table 1). Clusters 8, 9, and 10

were small populations of Macrophages and NKT cell

(Supplementary Table 1). Condensing the cluster analysis

further supported our initial FACS data that unimmunized
A B

D E F

C

FIGURE 3

H2-O KO mice have an increased activated peripheral CD4 T cell population (A) Basal levels of CD44 and CD69 expressed by H2-O WT (white) and
H2-O KO (red) splenic CD4 T cells. Increased CD69 expression, a marker of recent activation showed increased levels on H2-O KO CD4 T cells
(B) Percentage of CD4+ T cells expressing the lymphoid tissue homing receptor CCR7 (C) CCR7 and CD62L expression levels in unimmunized
splenic CD4 T cells (D) Frequency of Foxp3+CD25+ cells in splenic CD4+ T cell population of unimmunized mice (E) H2-O KO peripheral Tregs
express decreased levels of naïve (CD44+ CD62L+) expressing cells (F) Normalized Nur77 gMFI levels in Foxp3+CD25+ Treg cells in H2-O WT
(white) and H2-O KO (red) cells. To account for experimental variation the average Nur77 gMFI level in H2-O WT samples was calculated. gMFI
levels in both H2-O WT and H2-O KO samples were then divided by the calculated H2-O WT average. An increased Nur77 ratio indicates increased
Nur77 gMFI levels. Summary of 3 repeat experiments. *<0.05, **<0.001, ***<0.0001,****<0.00001.
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H2-O-KO mice have a decreased frequency of “Non-activated”

CD4 T cells (68.90% avg H2-O KO vs 74.17% avg H2-O WT with

a coinciding increase in “Activated” (14.14% avg H2-O KO vs

8.53% avg H2-O WT) CD4 T cells (Figure 4D).

To test whether the higher activated state in H2-O KO T cells

were possibly induced by the in vivo environment, we performed an

adoptive transfer experiment of Treg depleted naïve Thy1.1+ CD4+
Frontiers in Immunology 06
T cells from H2-OWTmice into either unimmunized Thy1.2+ H2-

O WT, or Thy1.2+ H2-O KO hosts. Seven days post-transfer we

observed that H2-O KO hosts induced significantly more in vivo

proliferation of the Thy1.1+WT donor cells as compared to the H2-

O WT hosts (Figure 4E). These data further support our working

model that loss of H2-O promotes increased T cell activation by

APCs presenting a wider range of self-epitopes (18).
A B

D E

C

FIGURE 4

Loss of H2-O function causes increased basal CD4 cell activation. (A) scRNA-seq clustering of CD4 T cells after Seurat analysis. Data represents the
average of of 3 biological replicates per genotype. (B) Co-expression of CD44 (top) and CD62L (bottom) within either H2-O WT (left) or H2-O KO
(right) clusters. (C) Breakdown of clusters in H2-O WT (Left) or H2-O KO (Right) samples. Clusters are grouped based upon, (1) known CD4 T cell
subset markers and (2) gene comparison to published CD4 T cell data sets available on the Immunological Genome Project (www.immgen.org).
Identified CD4 Cell phenotypes were: Non-activated, Activated, and Regulatory T cells. ”Other” refers to a minor macrophage and NKT cell
contamination from the sorting process. (D) Distribution of the for the Non-activated and Activated phenotypes across the H2-O WT and H2-O KO
biological replicates (N = 3 mice per genotype). (E) In vivo proliferation of adoptively transferred naïve Thy1.1+ CD4 T cells (Thy1.1+ CD3+ CD4+
CD44- CD25-) after 7 days in either Thy1.2 H2-O WT (white) or Thy1.2 H2-O KO (red) hosts. Pooled data from 2 independent experiments (N= 6
H2-O WT, 5 H2-O KO). ns = not significant, * = <0.05, ** = <0.001, ***= <0.0001, **** = <0.00001. Statistics: unpaired student T-test.
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H2-O KO Tregs have a more
activated phenotype

Initial analyses of the two Treg clusters revealed that the

frequency of Clusters 2 and 4 were roughly equal in H2-O WT

samples, whereas H2-O KO samples had an overrepresentation of

Cluster 2 (Figure 5A). Further analysis showed that both clusters 2

and 4 expressed the classic Treg genes, Foxp3 (Figure 5B), IL2ra

[CD25] (Figure 5C), Pdcd1 [PD-1] (Figure 5D), and CTLA-4

(Supplementary Table 1). However, we noted that the Foxp3+

cells in cluster 2 segregated into two populations based upon

CD25 expression, Foxp3+ CD25Low and Foxp3+ CD25+, with a
Frontiers in Immunology 07
distinct enrichment of the Foxp3+ CD25Low populations in H2-O

KO samples. This was noteworthy as it has been shown that CD25-

low FOXP3+ Treg are associated with a more inflammatory state

(27). Cluster 2 analysis also identified a small number of cells that

expressed the Th17 transcription factor Rorc (RORy), but only in

cells from H2-O KO mice (Supplementary Figures 5, 6). These

findings support the association of H2-O with a less

inflammatory environment.

Also identified with the Treg clusters was the transcription

factor Ikzf2 [Helios], a marker of stable Treg lineage commitment in

inflammatory conditions (28), and a controversial marker of thymic

Tregs (29–32). FACS analysis of Helios protein expression not only
A B

D

E
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FIGURE 5

The H2-O KO Treg population has a more effector like phenotype. (A) (Left) distribution of the two scRNA-seq Treg clusters in either H2-O WT (left)
or H2-O KO (right) samples. (Right) Expression of key Treg phenotypic markers: Foxp3 (Top) and CD25 [Il2ra] (Bottom). (B) Expression of Foxp3 in
H2-O WT (Left) or H2-O KO (Right) clusters. (C) Expression of CD25 (IL2ra) in H2-O WT (Left) or H2-O KO (Right) clusters. (D) Expression of PD-1
(Pdcd1) in H2-O WT (Left) or H2-O KO (Right) clusters. (E) Subdivision of the splenic CD4+ T cell population by Foxp3 and Helios expression. (F)
Comparison of cluster 2 upregulated genes (Log2Avg FC >0.5) in H2-O WT and H2-KO samples to a published (Miragaia et al.) splenic effector Treg
genetic profile. ns = not significant, * = <0.05, ** = <0.001, ***= <0.0001. Statistics: unpaired student T-test.
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supported the scRNA-Seq data that both H2-O WT and H2-O KO

CD4 Tregs express Helios but also revealed that H2-O KO mice

have an increased frequency of Helios+Foxp3+ Tregs (Figure 5E).

Since UMAPs preserve information about the distance between

clusters (33) we hypothesized that Tregs from Cluster 2 were

transcriptional distinct from those in Cluster 4. Comparison of

the Cluster 2 genetic signature with a published Treg data set (34)

indicated that these cells are likely effector-like Tregs. Furthermore,

breaking down Cluster 2 showed that H2-O KO Tregs had a larger

fold change in expression of the core effector gene signature

(Figure 5F). We propose that this activated Treg state is likely

driven by the increased basal CD4 T cell activation. Expansion of

this Treg population could certainly be a mechanism controlling

spontaneous autoimmunity in H2-O KO mice.

In summary, both scRNA-seq and FACs analyses showed that

H2-O KO mice have an increased frequency of both conventional

and regulatory CD4 T cells in the spleens of unimmunized mice.

Loss of thymic H2-O expression correlated with an increased tTreg

population that was not from peripheral recirculation and have

received increased TCR stimulation which suggests increased

autoreactivity. Furthermore, increased activation of conventional

splenic CD4 T cells is likely a driving factor for the increased

effector-like Treg status that was identified by scRNA-seq analyses

of H2-O-KO CD4 cells.
Discussion

In this study, we have refined our understanding of how loss of

H2-O alters CD4 T cell activity in vivo. Thymic analysis of medulla

localized CD4 T cells pointed to a novel role for H2-O on CD4 T

cells undergoing self-auditing. Importantly, lack of H2-O

expression led to an increased frequency of both thymic and

peripheral Tregs.

Tregs play a fundamental role in maintenance of homeostasis,

hence a better understanding of the mechanism of their

development is highly desirable and the subject of numerous

studies (14, 21). Our studies here are the first attempt in

demonstrating that H2-O is a critical player in Treg development.

While the exact mechanism by which thymic Treg cells are selected

remains somewhat uncertain, recent studies support the idea that

intermittent TCR signaling along with cytokine signaling drive Treg

development (15). These findings and others (35–39) support a

more avidity based model of Treg selection, in which alterations to

the density of self-ligands present in the medulla will have

differential effects on CD4 T cell selection. Intermittent TCR

signaling as the driving force in Treg selection is very relevant to

our understanding of howHLA-DO contributes to epitope selection

during antigen processing. HLA-DO in complex with HLA-DM

leads to better refinement of the epitopes from denatured antigens,

promoting selection of the best fitting epitopes in the groove of

MHC II molecules (10, 40). While this idea conflicts with the

original model of how DO functions (41), recent studies using

multiple human HLA-DO variants showed that certain variants

enhanced DM activity (42). As such, when DO is present, higher

affinity peptides are more likely to be presented. Conversely, in the
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absence of DO a larger percent of lower affinity epitopes are

selected. Indeed, we have recently reported that peptides eluted

from H2-O KO mice expressing either murine I-Ab (18) or human

HLA-DR1 (Welsh et al, unpublished data) were of a lower general

affinity. Accordingly, presentation of a larger portion of lower

affinity peptides in the thymic medulla of H2-O KO mice is

possible. Intermittent TCR signaling is typically generated by

either pMHCII that are less stable (16, 43–45), or TCR/pMHC of

lower affinity (46). Our findings here support the former. We

associate increased Treg development as a consequence of the

presentation of lower affinity peptides to self-auditing CD4 T cells.

Due to the continuous egress of mature CD4 T cells from the

thymus, we also analyzed splenic CD4 T cells from unimmunized

H2-O WT and H2-O KO mice. H2-O KO splenic CD4 T cells in

unimmunized mice revealed an increased frequency of

CD44hiCD69+ antigen experienced CD4 T cells, which suggests

an increased level of antigen-specific TCR signaling in H2-O KO

mice. As previously implied (47), a simple explanation for this

activated state is incomplete thymic deletion in H2-O KO mice.

While we were able to show that H2-O KO mice failed to delete

specific CD4 clonal populations (18), detection of differences at the

global levels did not show significant changes between the two

genotypes. Nonetheless, we suggest that presentations of different

arrays of self-antigens as well as their lower densities on thymic

medulla leads to a less than optimal thymic deletion of self-reactive

CD4 T cells and their routing to the periphery. Similar to activated

CD4 T cells in the periphery, H2-O KO Treg cells also had a more

effector-like phenotype, indicating enhanced Treg activation in

unimmunized mice (34, 48).

In conclusion, our studies add a new dimension to our

understanding of the role of H2-O in both CD4 T cell selection

and activation. For the first time, we report on thymic negative

selection in H2-O KO mice and demonstrate that loss of H2-O

enhances thymic selection of regulatory T cells. Once in the

periphery, an increased proportion of H2-O KO Tregs appear to

be activated in a TCR dependent manner. These effector-like Tregs

will likely help control increased basal CD4 T cell activation.

However, the exact mechanism by which increased Treg cells are

selected in the H2-O KO thymus remains to be determined. While

we propose that alterations in medulla pMHCII-TCR avidity

interactions could lead to enhanced Treg selection, increased

presentation of self-antigens in a more tissue restricted antigenic

(TRA) manner could also be possible (14).
Methods

Mice

Male and female C57BL/6J (H2-O WT, stock no: 000664),

Female B6.PL-Thy1a/CyJ (stock no: 000406) were purchased

from Jackson Laboratories and bred in house. Generation of the

H2-O knock-out mice has been previously described (49) and mice

bred in house. Unless otherwise stated analyzed mice were 6-8

weeks. All mouse procedures were approved by the Johns Hopkins
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University Animal Care and Use Committee and were following

relevant ethical regulations.
Antibodies/reagents

Flow Cytometry: anti-CD3e (17A2), anti-CD4 (RM4-5), anti-

CD5 (53-7.3), anti-CD8a (53-6.7), CD11c (N418), anti-CD19

(ID3), anti-CD25 (PC61), anti-CD44 (IM7), anti-CD45R/B220

(RA3-6B2), anti-CD62L (MEL-14), anti-CD69 (H1.2F3), anti-

CD197/CCR7 (4B12), anti-NK1.1 (PK136), anti-TCRb (H57-597),

anti-TCRgd (GL3), anti-Cleaved Caspase 3 (D3E9) Cell signaling

(Danvers, MA); Foxp3 (150D), anti-Helios (22F6), anti-Nur77

(12.14), Fixable viability dye eFluor 780 (eBioscience).

FACs Sorting: anti-CD3e, anti-CD4, anti-CD19, anti-NK1.1,

Propidium iodide. Briefly, 30,000 live CD4 T cells [Gating: CD3+,

CD4, CD19-, NK1.1-, PI-] were FACs sorted from the spleens of 3

unimmunized 10 week-old H2-O WT and 3 unimmunized 10

week-old unimmunized H2-O KO female mice.
Cell staining

For cleaved caspase 3 staining (20) homogenized mice thymocyte

cells were stained with anti-CCR7/CD197 at a final dilution of 1:50 for

30 min at 37°C prior to additional surface stains. Following surface

staining, cells were fixed with Cytofix/Cytoperm (BD Biosciences) for

20 min at 4°C. Cells were then washed with Perm/Wash buffer (BD

Biosciences) twice. Cells were stained with anti–cleaved caspase 3 at a

1:50 dilution at 23°C for 30 min.

For transcription factor staining, cells were incubated with

surface antibody at 4°C for 20 min, permeabilized at 4°C for 30

min using a Foxp3/Transcription factor buffer set (Invitrogen,

ThermoFisher Scientific), and then stained with anti–Foxp3 and/

or anti-Helios at 23°C for 30 min.
Adoptive cell transfer

Naïve CD4 T cells were isolated from the pooled spleens and LNs

of 4 week old Thy1.1 expressing C57BL/6J mice using the EasySep

Mouse Naive CD4 T cell Isolation Kit (StemCell Technologies).

Isolated cells were stained with eFluor 450 viability dye

(eBiosciences) according to manufactures directions. 3x106 dye

labeled Thy1.1 cells were IV injected into 10 week old H2-O WT or

H2-O KO hosts. Transferred cells were recovered 7 days post-transfer.
scRNA-sequencing

Library & sequencing
The samples were prepared using the 10x Genomics Chromium

Next GEMSingle Cell 5’ Library andGel Bead Kit v1.1, ChromiumNext

GEMChip andDual IndexKit TN Set A. They were run on the Illumina

NovaSeq6000 with a run configuration of 28bp x 10bp x 10bp x 91bp.
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Analysis
Analyses of T-cell scRNA-seq were performed with the package

Seurat (50), as follows. Data was filtered to remove cells with low

gene count (<200), large number of UMIs (>12,000) and high (>5%)

fraction of mitochondrial reads. Expression levels of genes were log-

normalized, and the most variable 2000 genes were selected for

linear dimensionality reduction with Principal Component Analysis

(PCA). The first 15 principal components were then used to

performed unsupervised clustering using the Seurat SNN

clustering package, with a resolution of 0.2. To identify cell types,

potential markers for each cluster were calculated as the set of genes

significantly differentially expressed in each cluster compared to all

others, using the function FindAllMarkers, and by searching

existing literature and marker databases. Lastly, differentially

expressed genes for each cell type between conditions were

determined using the function FindMarkers with the default

function (bimod).

Defining clusters – Genes with an average fold-change

(avgFC) >0.5 and an adjusted p-value <0.05 were run against

CD4 T cell data sets available on the Immunological Genome

Project (https://www.immgen.org/) using the “My Geneset” data

browser function.

Statistical testing
GraphPad Prism was used for all statistical analyses. A standard

Student T-test was used for estimation of statistical significance. Data is

shown as mean ± SEM. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001.
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SUPPLEMENTARY FIGURE 1

Gating strategy used for detection of Auditing vs Clonally Deleted Medulla

CD4 T cells Red arrows indicate how Auditing vs Clonal Deletion was

identified in 6-week-old H2-O WT and H2-O KO thymi. Blue arrows
indicate additional gating corresponding to . Black Arrows indicate

additional gating corresponding to (Figure 1B).

SUPPLEMENTARY FIGURE 2

The frequency of auditing Mature 1 CD4 T cells was increased in H2-O KO

thyme (A). Percentage of auditing (Caspase-3 negative) CD4 T cells in the
Semi-mature (CD69+ MHC-I neg), Mature 1 (CD69+ MHC-1+), and Mature 2

(CD69- MHC-I+) in H2-O WT (white) and H2-O KO (red) mice N= 18 mice

per group (B). Percentage of clonally deleted (Caspase-3+) CD4 T cells in the
Semi-mature (CD69+ MHC-I neg), Mature 1 (CD69+ MHC-1+), and Mature 2

(CD69- MHC-I+) in H2-O WT (white) and H2-O KO (red) mice. N= 18 mice
per group Statistical Testing: unpaired student T-test.

SUPPLEMENTARY FIGURE 3

Positive Selection is not affected by loss of H2-O (A). Representative plots

showing CD4, CD8 and Double Positive (DP) percentages in H2-O WT (Top)
and H2-O KO (Bottom) (B). Summary plots of the single-positive CD4 (Top)

and CD8 (Bottom) percentages from 5 repeat experiments. (C). (Left)
representative flow plots showing the “Signaled” vs “Non-signaled”

thymocytes in H2-O WT (Top) or H2-O KO (Bottom). (Right) Summary
plots of >5 repeat experiments. (D). Frequency of signaled CCR7+ medulla

CD4 T cells in H2-O WT (white) and H2-O KO (red) mice.

SUPPLEMENTARY FIGURE 4

Top: breakdown of H2-O KO (right) and H2-O WT (Left) Seurat clustering
Bottom: Seurat clustering for each individual biological replicate.

SUPPLEMENTARY FIGURE 5

Key genes in Clusters 0-4. (Top) Top genes (Avg(log2)FC >1, p-value<0.05) for

clusters 0-4 in concatenated data. (Bottom) Key gene expression broken into
H2-O WT (left) or H2-O KO (right).

SUPPLEMENTARY FIGURE 6

Rorc expression is found within H2-O KO Tregs. Red outline indicates that
minor RORy expression was found in H2-O KO cluster 2.
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