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Immunoglobulin G (IgG) antibodies are a critical component of the adaptive

immune system, binding to and neutralizing pathogens and other foreign

substances. Recent advances in molecular antibody biology and structural

protein engineering enabled the modification of IgG antibodies to enhance

their therapeutic potential. This review summarizes recent progress in both

natural and engineered structural modifications of IgG antibodies, including

allotypic variation, glycosylation, Fc engineering, and Fc gamma receptor

binding optimization. We discuss the functional consequences of these

modifications to highlight their potential for therapeutical applications.
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Introduction

Antibodies, also known as immunoglobulins (Ig), are among the most abundant

protein components in the human blood, constituting about 20% of the total protein in

plasma by weight. The five major classes of Ig in humans are IgG (70-85%), followed by

IgA (5-15%), then IgM (5-10%), with trace amounts of IgD (~0.25%) and IgE (<0.25%

of the total serum Igs) (1, 2). These glycoproteins share similar structures and

composition (82–96% protein and 4–18% carbohydrate), but differ in size, charge,

amino acid sequence and effector function. The most abundant isotype in healthy

human serum, IgG, can further be divided into four subclasses: IgG1 (60–70% in

plasma), IgG2 (20–30%), IgG3 (5–8%) and IgG4 (1–3%).

IgG antibodies are major effector molecules of the humoral immune system. They

provide a link between the adaptive immune system and the effector mechanisms of the

innate immune system through high affinity antigen-specific recognition of foreign

structures. This can result in either simply blocking the interactions of the foreign
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molecules with their ligands or in the formation of high avidity

interactions with innate molecules, such as complement, and

effector cells through Fc gamma receptors (FcgRs), and the

neonatal Fc receptor (FcRn) (Figure 1) inducing effector

functions (4). Variation in the IgG subclass structures shapes the

biological effector activities, in broad terms, IgG1 and IgG3 are

more potent in inducing these effector functions, while IgG2 and

IgG4 do less so.

Given the extensive scope of the research on IgG antibody

modifications, this review focuses only on the major natural and

engineered changes, and provides literature references for further

reading on variants not covered. We will discuss how they affect

structure and functional modalities of IgG themselves and binding

to various IgG receptors, introduced below.
Complement

Both IgM and IgG target-bound antibodies can activate the

classical complement pathway via the initial binding of hexameric

C1q. Of the four IgG subclasses, IgG1 and IgG3 are the most

efficient activators of the classical complement pathway; IgG2 and

IgG4 (serine in position 331 severely reduces complement binding)

require high antigen densities or repeated polysaccharide structures

(5, 6). However, given that monomeric IgG has a low binding
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affinity to the individual globular heads of C1q, it requires

multimerization to form a polyvalent, ideally hexameric, high

avidity interaction platform for C1q (7–11). The process of

multimerization (or hexamerization) is highly dependent on the

size of the antigen, expression level, spatial distribution and

mobility but also the epitope position, binding angle, hinge length

and flexibility (10, 12). Especially the hinge length can influence

how and where complement fragments of C4 are deposited (13).

These distinctions will be discussed in more detail below.
FcgRs

Humans express five FcgRs: FcgRI, FcgRIIa, FcgRIIb/c, FcgRIIIa,
and FcgRIIIb. IgG1 and IgG3 bind with higher affinity than IgG2 and

IgG4 to FcgRs on effector cells (Table 1). However, the structural

determinants responsible for the subclass-specific affinity variation are

still largely unknown, except for binding to FcgRI, which is reduced for
IgG4 due to the presence of S331 and F234 in comparison to P331 and

L234 in IgG3 (14) and IgG1 (15). In addition, monomeric IgG2 Abs

only bind FcgRIIa, most likely due to their short hinges lacking G236

(16). It is important to note that complexed IgG2 was found to bind

FcgRIIIa 158V, presumably due to multivalency-induced avidity

effects, that might be relevant in (auto) immune responses (17). The

interaction of IgG antibodies with FcgRs on effector cells has been

recognized as one of the most critical immune response determinants

against infections (18–23). Induced effector functions are also

influenced by natural (allotypes) and engineered amino acid changes

in the Fc region of IgG antibodies, glycosylation profiles, FcgR
polymorphisms as well as FcgR expression profiles on different

immune cells.
FcRn

IgG antibodies also bind FcRn, which mediates their half-life,

placental transport, and bidirectional transportation to mucosal

surfaces (24, 25) and orchestrates cellular responses to immune

complexes (26–29). The interaction with FcRn is highly pH

dependent and only occurs at acidic pH (pH < 6.5) as present in the

endosomes. After recycling or transport to the cell surface, the IgG is

released again at physiological pH, as present outside of the cells.

Naturally occurring or bio-engineered mutations can impact the

interaction with FcRn.
Alternative receptors

IgG also bind less studied and underappreciated effector

molecules, including the two members of the FcR-like (FcRL)

family (FcRL4 and FcRL5) (30, 31), and tripartite motif-

containing protein 21 (TRIM21) (32, 33). Although controversial,

DC-SIGN has been described to bind to sialylated IgG (34, 35).

However, more recent studies found no detectable binding of

human IgG Fc to DC-SIGN, indicating that DC-SIGN might not

be an IgG receptor after all, at least not in humans (36–38).
FIGURE 1

Interaction of IgG with Fc effector molecules. Schematic
representation of IgG and its Fc-engaging molecules (complement
component (C1q), Fc gamma receptors (FcgRs), the neonatal Fc
receptor (FcRn), Tripartite motif 21 (TRIM21), and Fc receptor-like
(FcRL) molecules through which antibodies exert their biological
activity. For each ligand, the binding site on IgG and the
stoichiometry of the interaction with IgG is indicated. Adapted
from (3).
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TABLE 1 Properties of human IgG subclasses.

Structure IgG1 IgG2 IgG3 IgG4

H chain type g1 g2 g3 g4

Molecular mass (kDa) 146 146 170 146

Amino acids in hinge region 15 12 47-62† 12

Disulfide bonds in hinge region 2 4 11 2

Ig H constant gene IGHG1 IGHG2 IGHG3 IGHG4

Alleles of IGHG 15 18 29 8

N-linked glycans per H chain 1 1 2† 1

O-linked glycans per H chain 0 0 3 0

Biology

Mean adult serum level (g/L) 6.98 3.8 0.51 0.56

Proportion of total IgG (%) 43-75 16-48 1.7-7.5 0.8-11.7

Half-life (days) 21 21 7/~21† 21

Placental transfer +++ ++ ++/+++† ++

Ab targets

Proteins ++ +/- ++ ++*

Polysaccharides + ++ + +

Allergens + (-) (-) ++*

Binding capacity

Complement (C1q) ++ + +++ +/-

FcgRI +++ - +++ ++

FcgRIIa ++ (+)/++‡ ++ +

FcgRIIb/c + +/- ++ ++

FcgRIIIa ++‡/+++§ +/-§ ++†‡/+++† -/++§

FcgRIIIb +‡§ +§ +‡§ +/-§

FcRn (at pH <6.5) +++ +++ ++/+++† +++

FcRL4 - - + +

FcRL5 ++ + + ++

TRIM21 +++ +++ +++ +++

Binding to Protein A +++ +++ -/+++† +++

Binding to Protein G +++ +++ +++ +++

Effector functions

Complement (CDC) ++ +†# +++ -

Phagocytosis (ADCP) +++ +‡ +++ +

Cytotoxicity (ADCC) +++ +†‡ +++† +
F
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† IgG allotype-specific
‡ FcgR allotype-specific
* after repeated exposure
§ depending on IgG fucosylation status
# against repeated/polysaccharide structures
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FcRL molecules, which are part of the Ig superfamily and

mainly expressed on B cells, interact with IgG antibodies (39).

FcRL4 only binds IgG3 and IgG4, while FcRL5 is able to bind all IgG

subclasses (30, 40). The exact binding epitope of FcRL5 on IgG has

not been described yet, but a complex binding interaction was

hypothesized, in which both the Fab- and Fc-fragments of IgG are

involved (40).

Human IgG also binds to TRIM21, an intracellular cytosolic IgG

receptor and E3-ligase, with nanomolar affinity through its PRYSPRY

domain, which is highly conserved (41, 42). TRIM21 is relevant in the

context of antibody-dependent intracellular neutralization of viruses

and transcriptional activation of several immune regulator genes (33).

The neutralization itself activates proteasome-dependent degradation

of the antibodybased targets that also seemtobe activated inmouse tau

immunotherapy models (43).

Herewediscuss natural andengineered structuralmodificationsof

IgG antibodies that can impact the interactions with complement,

FcgRs, FcRn and resulting downstream effector functions.
Structure of IgG antibodies

IgG antibodies are composed of two distinct fragments, the

antigen-binding Fab and the Fc domain, which interacts with
Frontiers in Immunology 04
effector molecules of the immune system (Figure 2A). IgG

molecules are generally composed of two identical g H

polypeptide chains of 50 kDa and two identical k or l L

polypeptide chains of 25 kDa, linked via inter-chain disulfide

bonds. Each H chain consists of an N-terminal variable domain

(VH) and three constant domains (CH1, CH2, CH3) connected by a

flexible stretch of polypeptide chain, known as the hinge region. The

encoding human Ig H constant (IGHC) genes are IGHG3, IGHG1,

IGHG2, and IGHG4, from 5’ to 3’ in the IGH locus on chromosome

14q32.33 (44). The L chains also consist of an N-terminal variable

domain (VL) and a constant domain (CL). In association with the

VH and CH1 domains, the L chains form the Fab regions, allowing

the V regions to shape the antigen-binding region (45).

Rearrangement of gene segments and somatic mutations generate

variations in the amino acid sequence of the N-terminal domains.

This results in variable regions, containing six hypervariable loops,

known as complementarity determining regions (CDRs) (46),

which together form the antigen recognition site (paratrope) in

the Fab region. The lower hinge region and the CH2/CH3 domains

form the Fc region, which interacts with effector molecules and

immune cells. The four IgG subclasses show a homology of more

than 90% on the amino acid sequence level of their “constant”

domains, but are highly divergent in the hinges and upper CH2

domains. These regions are crucial for binding to FcgR (mainly the
A
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FIGURE 2

Structural modifications of IgG antibodies. (A) IgG1-4 antibodies consist of four polypeptide chains, composed of two identical heavy (H; light blue)
chains of 50 kDa and two identical light (L; dark blue) chains of 25 KDa, linked together by interchain disulfide bonds. Each H chain consists of an N-
terminal variable domain (VH) and three constant domains (CH1, CH2, and CH3). IgG molecules are joined by a flexible stretch of polypeptide chain
between CH1 and CH2, known as the hinge region. The VH and CH1 domains and the L chains form the fragment antigen binding (Fab) region. The
lower hinge region and the CH2/CH3 domains form the fragment crystalline (Fc) region, which interacts with effector molecules and cells. (B) The
length (IgG1: 15 amino acid residues, IgG2: 12 residues, IgG3: 32-64 residues, and IgG4: 12 residues) and flexibility of the hinge region varies among
the IgG subclasses. (C) Subclass differences in hinge flexibility are also impacted by differential number of inter-chain disulfide bonds (IgG3: 11
bonds; IgG1 & IgG4: two bonds; IgG2: four bonds), both IgG2 and IgG4 are found as several isomers. Darker disulfide bonds indicate that they are
linked to the light chain due to light chain reshuffling of the C-C bonds. (D) IgG4 antibodies can split into two half-molecules (one H chain + one L
chain) that can then randomly form complete monovalent-bispecific Abs, which is either termed half molecule exchange or Fab arm exchanged.
(E) Within the CH2 region is one N-linked glycosylation site containing carbohydrate groups attached to asparagine 297. The highly conserved
glycan has a heptasaccharide core and variable extensions, such as fucose, galactose and/or sialic acid (dashed line). Additional N-linked sites have
been reported in the antigen-binding region and allotypic variants of IgG3 at position asparagine 392. (F) The hinge region of IgG3 exhibits O-linked
glycosylation sites.
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residues L234, L235, D265 and S298) and C1q, influencing various

effector functions such as phagocytosis, antibody-dependent cell-

mediated cytotoxicity (ADCC), and complement activation.
Structural variation in the hinge region

The length and flexibility of the hinge region varies among the

IgG subclasses (Figure 2B) (47). This affects the conformations of

the Fab arms relative to the Fc domain as well as to each other and

allows the Fab arms to bind to multiple targets and the Fc to interact

independently with effector molecules of the immune system. There

are ongoing efforts to determine the diversity of conformational

structures and flexibility of the IgG molecules with particle electron

tomography (48). This flexibility is strongly affected by the hinge

length which varies considerably between the subclasses (IgG1: 15

amino acid residues, IgG2: 12 residues, IgG3: 32-64 residues, and

IgG4: 12 residues; Table 1).

The lower hinge region of IgG2 (encoded by the CH2 exon)

lacks one of the double glycines found at position 236-237. This and

up to four inter-heavy chain disulfide bridges restrict the flexibility

of the IgG2 molecule (16, 49, 50). Similarly, the shorter hinge of

IgG4 gives it less flexibility than the one of IgG1 (51). IgG3 has a

much longer hinge region than any other IgG subclass (containing

up to 62 amino acid residues), but its length is allotype-specific

(discussed below). Recently, Bashirova et al. detected a single

individual carrying an allele with five IGHG3 hinge exon (77

amino acid residues) (52).

An IgG3 hinge region can consist of up to 2x21 prolines and 11

disulfide bridges, which results in a poly-proline helix with limited

flexibility (51). However, the Fab fragments in an IgG3 molecule are

relatively far away from the Fc fragment, giving the entire molecule

a greater reach with consequences for downstream effector

function, such as ADCC and complement activation (3, 53). The

relative flexibility of the Fab arms and the Fc differs following the

same order of the hinge length: lgG3 > lgG1 > lgG4 > lgG2 (47).
Inter-chain disulfide bonds

Another structural difference between the human IgG

subclasses is the linkage of the H and L chain by disulfide bonds.

This bond links the carboxy-terminal cysteine of the L chain to the

cysteine at position 220 (in IgG1) or at position 131 (in IgG2, IgG3,

and IgG4) in the CH1 domain. A pair of cysteines in close proximity

will form a disulfide bond that fixes and stabilizes the tertiary

structure of an IgG molecule, which is essential for the function of

the molecule (54). Besides subclass differences in hinge flexibility

due to differential number of inter-chain disulfide bonds (IgG3: 11

bonds; IgG1 & IgG4: two bonds; IgG2: four bonds), both IgG2 and

IgG4 are found as several isomers, in which the hinge disulfide

bonds are differentially interconnected (51) (Figure 2C).

Three main isomeric variants of the IgG2 hinge have been

described (IgG2A, B and A/B) (49, 55). These structural isomers

were first found in recombinant monoclonal IgG2, however, were

later confirmed to be present in serum from healthy and diseases
Frontiers in Immunology 05
subjects. Their presence is a consequence of alternative disulfide

bond formation between the C-terminal cysteine of the LC and a

cysteine in the CH1 domain of the heavy chain (55) and was found

to be more prevalent in IgG2 with kappa LCs (56). The IgG2A

isomer may confer more flexibility to the Fab arms relative to

IgG2B, which can have consequences for downstream effector

functions, even though FcgR binding does not seem to be

different for the two isomers (57). This seems to strongly affect

how IgG2 interacts and cross-links its target, which can lead to

superagonistic antibodies when targeting cellular antigens. These

superagonistic effects are independent of the Fc (58).

The two isomers of IgG4 differ in the disulfide bonding of hinge

cysteines that are classically bonding the two H chains. However,

these disulfide bonds are in flux, as they are a subject of reduction

and re-oxidation, forming intra-chain disulfide bonds between

cysteines found at positions 226 and 229, resulting in non-

covalently linked half-molecules in addition to covalently linked

inter-chain isomers (59, 60).
IgG4 Fab arm exchange

IgG4 antibodies are unique and dynamic molecules due to their

ability to undergo a process called Fab arm exchange (FAE;

Figure 2D). In vivo, an IgG4 antibody can reassemble after

secretion, recombining two halves of two random IgG4 (one H

chain and one L chain) to form functionally monovalent-bispecific

antibodies (59, 60).

Two amino acids seem required for FAE in vivo. One is the

serine at position 228 in the core hinge region of IgG4, and the other

one is arginine at position 409, which results in weaker CH3-CH3

interactions (60, 61). These two amino acids at positions 228 and

409 are unique to IgG4, which might cause a conformational change

that could explain the poor FcgR and C1q binding properties of

IgG4 (62). Interestingly, the arginine residue at position 409 is

polymorphic as the IGHG4*03 allele harbors a lysine at that

position (allotypes discussed below). Nevertheless, this allotype,

regardless of containing S228 is not prone to FAE, showing that

both serine at position 228 and arginine in position 409 are

essential (59).

IgG4 antibodies that underwent FAE cannot effectively

crosslink the target antigen. This effect in combination with the

requirement for repeated antigen exposure, low affinity to activating

FcgRs and complement, may contribute to the anti-inflammatory

properties of IgG4 (59, 63). In this way, the strong immune effector

functions otherwise provided by IgG1, IgG3 and even IgG2, are

likely to be toned down after class switching to IgG4, both by the

lesser interactions Fc-receptors and complement, but also due to its

monovalency. IgG4 is therefore generally regarded as less important

subclass in the autoimmune setting. However, IgG4 can still be

highly pathogenic, for example in the form of (blocking)

autoantibodies in pemphigus (64), primary membranous

nephropathy (65, 66), or in IgG4-related disease (67). Elevated

levels of serum IgG4 have also been associated with asthma (68) and

tissue eosinophilia (69). Even more intriguingly, the monovalency

of IgG4 may even be required in myasthenia gravis when targeting
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muscle-specific kinase (MuSK) where monovalency of IgG4 can be

required to block neuromuscular signaling and produce

pathogenicity (70–72).
Interindividual variations of IgG
antibodies: allotypes

Allotypes describe antibody genetic markers (Gm) on the

constant regions of antibodies, likely found across all isotypes and

light chains, but most studied for the four IgG subclasses (Figure 3).

A large number of polymorphic IgG variants were originally

discovered due to serological reactivities to IgG originating from

other individuals (alloreactivity) (73), which were used to study

population variations (74). However, sequencing efforts of the IgG

genes from different ethnic groups revealed that even more

polymorphic variants exist, especially for IgG3 (75, 76). Non-

synonymous mutations are the basis for differences in primary

amino acid sequences between polymorphic variants. Polymorphic

variants have been identified on the g1-4, a2, and ϵ H chains of the

subclasses IgG1-4, IgA2 and IgE, and on the k L chain (Km

allotypes) (77–79). Currently, 27 Gm polymorphisms have been

identified and categorized in the ImMunoGeneTics information

system (IMGT), which correspond to changes in the amino acid
Frontiers in Immunology 06
sequence of the constant region (encoded by 15 IGHG1, 18 IGHG2,

29 IGHG3, and 8 IGHG4). An overview of all the IgG allotypes,

which differ in amino acid sequence, is presented in Figure 3.

However, numerous additional single mutations do exist on a

genetic level, which do not result in amino acid changes and are

not shown in the figure (79). Recently, 28 novel variant sites in

IGHG1-3 alleles were discovered in seven genetically isolated

Brazilian population (76). In addition, 11 novel alleles and 17

extensions of known IGHG and IGHM alleles were observed in a

study using a novel sequencing technique (80). This demonstrates

that the diversity of the IGHG genomic region is still far from being

fully characterized in whole genome sequencing databases (81).
Haplotypes and non-coding allotype-
associated regions

IgG allotypes were found to correlate with plasma IgG levels

(82, 83), which has been hypothesized to be the result of variation in

the non-coding switch regions or unfavorable RNA transcripts. IgG

allotypes can affect class-switching efficiency and thereby serum

isotype and subclass concentrations (83–86). The concentration of

IgG1 is lower in individuals with the IGHG1*03 allele in

combination with IGHG2*02 and any of IGHG3*01/*04/*06/*09/
FIGURE 3

Amino acid variation between IgG allotypes. Variation at the amino acid level between IgG allotypes within the IgG1, IgG2, IgG3, and IgG4 subclasses
according to the Reference to ImMunoGeneTics information system (IMGT). For each domain, CH1, hinge, CH2 and CH3, amino acid differences
between polymorphic variants are indicated. Polymorphisms in the hinge region are identified by the presence or absence of hinge exons (A, B) (3).
Additional ‘silent’ mutations exist but are only visible on the genetic level. Historical nomenclature (Gm), based on serology, are included, but
indicated in italics for new alleles, that have not been assigned a name to in accordance with Gm system.
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*11/*12 as compared with those who lack this combination (82).

IgG3 polymorphisms within sterile promoter region that undergo

transcription preceding class switching could affect both class-

switching efficiency directly and antibody serum levels (83, 85).

This could explain why higher lgG3 levels were found in individuals

carrying IGHG3*01/*04/*06/*09/*11/*12 compared to IGHG3*14/

*15/*16 (82).

IgG1 allotypes have also been associated with changes in

antibody subclass distribution, magnitude and functionality in

specific responses, such as to HIV envelope glycoprotein

vaccination (86) or to opsonized herpes simplex virus-infected

fibroblasts (87–89). The IGHG2*02 allele containing a V282M

substitution in the CH2 domain and a P189T substitution in the

CH1 domain seems to grant a functional advantage against bacterial

infections, but the mechanism behind this is not understood (90).

IgG3 allotypes with longer half-life (discussed below) and good

transplacental transport (R435H) (91, 92), although produced at

lower levels (83), may provide better protection against infectious

diseases (93). Other reported associations between human IgG

allotypes and disease conditions include autoimmunity (94, 95)

and cancer (96, 97).
Functional consequences due to
allotypic diversity

IgG3 is the most polymorphic subclass due to various levels of

molecular diversity observed with the IGHG3 alleles (Figure 3).

IgG3 allotypic variations can have structural and functional

consequences, such as shorter hinge regions and extended half-

life compared to other allotypes (17, 91). The hinge region is

encoded by one A exon, and from one to three 15 amino acid

long B exons, depending on the G3m alleles, so it can vary from 32

to 62 amino acids and can influence structural conformations (75).

The length of the hinge region can influence the capacity of IgG3

allotypes to induce effector functions, such as ADCC, likely through

altered proximity at the immunological synapse (3). It has also been

demonstrated that IgG3 allotypes with a phenylalanine at position

296 (IGHG3*11 and IGHG3*12), or a tryptophan at position 292

(IGHG3*18 and IGHG3*19) exhibit a lower affinity to FcgRIIIa and
ADCC activity. In addition, IgG3 allotypes with a leucine at position

291 (IGHG3*14, IGHG3*15, and IGHG3*16) also showed reduced

ability to mediate ADCC, but without apparent changes in affinity

to FcgRIIIa (3). The same study also found that IgG3 antibodies

with a short hinge, e.g., IGHG3*04 (2 exons), exhibited the

strongest ADCC capacity, but this was not reflected by an

increased affinity for the receptor FcgRIIIa (3). This reduced

hinge length is similarly associated with increased ADCC against

HIV infected cell lines (98), but also increased inflammation and

death in cerebral malaria (99). This shorter synapse due to the

shorter IgG3 hinge seems to reflect on the capacity of anti-CD20

antibodies to increase ADCC against CD20+ tumor cells (100).

Curiously, this enhancement of ADCC by shorter distance between

effector and target cell was suggested to result in less phagocytosis

(98, 100), which may quench antibody inflammatory properties.
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The two IgG3 variants IGHG3*01m (GenBank : MK679684)

and IGHG3*17, both carry mutations at amino acid positions 419

(glutamic acid) and 392 (lysine) respectively. Although these

positions do not define these allotypes, they are implicated in

improved binding to FcgRIII and FcgRIIb receptors and enhanced

ADCC responses in anti-HIV antibody responses (81).

In addition, polymorphisms in the CH3 domain affect the CH3-

CH3 interdomain interactions (60), with potential consequences for

both complement activation (60, 101) and aggregation dynamics

(102, 103). IgG3 binds with a higher affinity to C1q in comparison

to other IgG subclasses (104). While this affinity is believed to be

associated with the enhanced flexibility of IgG3 rather than the

length of its hinge region (105) under conditions of low antigen

density (106). A more recent study showed that antigen density and

antibody hinge length play an important role in antibody-mediated

CDC. In addition, the study identified that although the differences

between IgG1, IgG3 and IgG4 allotypes were minor, the allelic

variant IGHG2*06, containing a unique serine at position 378 in the

CH3 domain, showed less efficient complement activation and CDC

compared to other IgG2 polymorphisms (107).

IgG3 has a shorter half-life (~ seven days) than the other three

subclasses (21 days). This is because FcRn-mediated transport of

IgG3 is inhibited in the presence of IgG1 which seems to be a net

result of a less compatible pH-dependent binding of IgG3

containing arginine at position 435, a key-interacting site for

FcRn binding (91). However, individuals with certain IgG3

allotypes (Figure 3), harbor a histidine at position 435, which

makes their IgG3 half-life comparable with that of IgG1 (91). The

same rational applies to FcRn placental transport of the different

IgG3 variants (92). In addition, amino acid modifications remote

from the FcRn binding site can also affect IgG binding to FcRn (108,

109). Specific allotypes also influence the purification of human

IgG3 from serum samples, as only allotypes containing a histidine

residue at position 435 can be purified by using protein A (110). To

purify IgG3 allotypes without a histidine at position 435, protein G

can be used (110).

The functional differences of IgG allotypes, including the

impact of differences in the hinge domain, on expression levels,

half-life, FcgR and FcRn binding (111), complement activation (7,

111, 112), antigen binding, and immunogenicity are still

understudied and relatively unknown. Allotypes may also be

relevant to understand the pathogenesis of different infectious

diseases, and to exploit immune responses to develop novel

antibody-based therapeutics or vaccines.
Glycosylation

Just like most proteins, antibodies can be glycosylated as a post-

translational modification. The glycosylation, and differences

thereof, in the Fc and Fab domains of the antibody has a critical

impact on antibody function e.g., complement activation or ADCC,

which will be discussed in the paragraphs below. Antibodies can

contain O-linked glycans added to serines or threonines, or N-

linked glycans added to asparagine (N), if so-called NxS/T-motives
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are present, which consist of an asparagine, then any amino acid

except proline, followed by a serine or threonine. Both O- and N-

linked glycan additions occur in the lumen of the endoplasmic

reticulum or Golgi apparatus (113). The composition of N-linked

glycans seems to be in part regulated by the type of antigen, a range

of B cell stimuli, including stress, disease, cytokine activity, and

innate immune signaling receptors (114, 115). Besides V(D)J

recombination, somatic hypermutation, and class switch

recombination, N-linked glycosylation can be considered as an

additional mechanism of antibody diversification (116, 117).
N-linked glycosylation of IgG

IgG generally contains a single highly conserved N-linked

glycan at position 297. The core structure of the IgG N-linked

glycans comprises N-acetylglucosamine (GlcNAc) and mannose

residues with possible extensions with galactose, sialic acid, core

fucosylation, and bisection of GlcNAc residues (115). Bisection

describes an additional GlcNAc branch on the first mannose residue

on an N-linked glycan (56) (Figure 2E). The relative abundance of

the different glycoforms for global IgG can be influenced and altered

by multiple factors, including age, pregnancy, sex (118), epigenetics

(119), disease state (120–122). The glycans at N297 can influence

the quaternary structure of the Fc region and therefore the antibody

stability (123, 124). It also has a great impact on the ability of

antibodies to bind to FcgRs and complement (125, 126), which

consequently modulates effector functions, such as ADCC and

complement-dependent cytotoxicity (CDC) (22, 127–133). For

instance, the removal of glycans at this position (N297) abrogates

binding to all FcgRs and C1q except for the high affinity FcgRI
which retains minor binding after deglycosylation (134).

The core fucose affects binding to FcgRIIIa/b (127, 135), with

non-fucosylated antibodies binding FcgRIII much stronger than

fucosylated antibodies. The absence of fucose translates to an up to

20-fold higher FcgRIIIa affinity (127, 136, 137). This effect can be

even further increased to ~40-fold for FcgRIIIa by hyper-

galactosylation of afucosylated IgG1 (128). These elevated

affinities seem to translate to even higher enhancement of Natural

Killer (NK) cell-mediated ADCC (127, 128, 130, 138, 139). The

importance of afucosylated IgG-induced immune responses in

humans has been identified in various diseases (22, 140–146).

Additionally, antigen-specific glycosylation can vary significantly

depending on the nature of the antigen as seen in some infections

(21, 141, 146, 147), and vaccinations (148–150). Despite its

relevance, the context in which afucosylated antibody responses

are formed, remains understudied.

Recent data also suggests the functional importance of increased

Fc galactosylation and sialylation after both infection (146) and

vaccination (148, 150, 151). Whereas galactose has a positive effect

on IgG binding to FcgRs especially in combination with

afucosylation (152), sialylation seems to have either no or minor

negative effects on the binding to FcgR (128, 153). However, human

IgG antibodies containing terminal sialic acid on their Fc N-glycans

have been shown to reduce ADCC (154). In addition, studies on

intravenous immunoglobulin (IVIg) activity in models of
Frontiers in Immunology 08
inflammatory arthritis, immune thrombocytopenia and

epidermolysis bullosa acquisita showed that cleavage of the

terminal sialic acid residues of the Fc fragment of IVIg can

reduce its anti-inflammatory activity (155–157). However,

whether this effect is also true in humans, and if it is channeled

through DC-SIGN and similar receptors remains highly

controversial as discussed above (37, 38).

IgG-Fc galactosylation seems to promote C1q binding and

complement activity (133, 158), whereas the effect of IgG-Fc

sialylation on this is conflicting, showing either increased,

decreased or no binding to C1q due to sialylation (128, 129, 133,

153, 159, 160). The relative abundance of bisected GlcNAc residues

seems to have no effect on either FcgR- or complement-mediated

activities (128). Other modifications, e.g. carbamylation of IgG

antibodies (161), and omitting clipping of C-terminal lysins (162)

negatively impact IgG hexamerization as well. However, little is

known about the importance of the biological implications of these

changes. Interestingly, it has been shown that glycosylation patterns

between allotypes within subclasses are quite similar in terms of

fucosylation and sialylation, but substantial differences in bisection

and galactosylation were observed between IgG3 allotypes (3).

In addition to N297 glycan site in the CH2 domain, one IgG2

and several IgG3 allotypes also contain an additional site at position

392 in the CH3 domain (163). Although occupancy of a glycan at

297 is virtually 100%, the frequency and impact on antibody-

mediated functions of N-linked glycan at the 392 position

are unknown.
Fab N-linked glycosylation

N-linked glycosylation sites in the VH and VL regions have been

observed in 10-25% of all serum IgG (117), which can contribute to

both antibody stability (164), and modulate antigen binding (116,

165). In comparison to Fc glycans, the IgG variable domain glycans

contain low levels of fucose and higher proportions of sialic acids,

bisecting GlcNAc and galactose (166). It has been demonstrated

that the presence of Fab glycans on human monoclonal antibodies

can increase Fab binding affinity up to two-fold in an antigen-

dependent manner (116), notably on anti-citrullinated protein

antibodies in rheumatoid arthritis (167). In general, IgG4

antibodies have a 2-fold higher propensity to acquire Fab glycans

compared to the other IgG subclasses, or similar to what is observed

in IgE (116, 117, 168). This indicates a differential selection pressure

of N-linked glycosylation site acquisition during affinity maturation

of B cells, which depends on the frequency of immunization,

antigen type, antibody isotype, subclass, and the location within

the V region (117, 164, 169).

N-linked glycosylation motifs are generally not encoded by

germline V, D or J segments, however potential glycosylation

sites, requiring only a single base pair change during affinity

maturation to emerge, are present in the CDR loops (116, 170).

Recently, N-linked Fab glycans have been demonstrated to

negatively affect FcRn-mediated binding in cells and therefore

also FcRn-mediated placental transport of IgG in humans. The

mechanism seems to involve a direct steric hindrance with the bulky
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Fab glycan clashing with the cellular membrane, further

exaggerating the steric effect imposed by the Fab region on

binding to membrane associated FcRn (171, 172). Variable

domain glycans are postulated to convey a selective advantage

through interaction with lectins and/or microbiota (170).

Furthermore, B cell receptors expressing variable domain glycans

also stay longer on the B cell surface, enhance B cell activation, and

may contribute to the breach of tolerance of autoreactive B cells

autoimmune disease (173). Elevated levels of Fab glycosylation have

now been reported for several types of autoantibodies (168, 174),

perhaps enriched due to the continuous antigen-exposure.
O-linked glycosylation

O-linked glycosylation sites have only been found in the hinge

region of IgG3, but not in the other IgG subclasses (175). O-glycans

contain a N-acetylgalactosamine (GalNAc) and galactose residues,

which may be sialylated (Figure 2F). Approximately 10% of IgG3

derived glycopeptides from human polyclonal serum samples

contain O-linked glycans (175). Each IgG3 can contain up to

three O-linked glycans at threonine (T) residues at triple repeat

regions (TH2-7, TH3-7, TH4-7) on each side of the hinge region

(163, 175). The IgG3 hinge region has a high degree of surface

accessibility (176), which may explain the lower degree of O-linked

glycosylation observed in IgG3 allotypes with a shorter hinge region

(175). Although the function of O-glycosylation is still unknown, it

might aid to protect the antibody from proteolytic cleavage or

maintain the extended conformation and flexibility of IgG3

hinge regions.
Antibody protein engineering to
impact effector functions

Besides natural relevant amino acid residues, many engineered

mutations have been described that can either enhance, reduce, or

abolish antibody interactions with complement, FcgRs and

FcRn (Table 2).
Mutations to modulate
complement binding

Two main ways of influencing complement activation are on

the one hand affecting hexamerization, and on the other hand direct

impact on C1q binding. Multiple mutations have been described

that impact complement activation in either or both

ways (Figure 4).

In the work of Strasser et al., the dynamics of IgG hexamer

formation was studied by atomic force microscopy using an

artificial surface (10, 11). They describe two different pathways to

recruit IgG molecules into hexamers: from solution and through

lateral diffusion of IgG-bound surface antigens in the cellular

membrane (10, 11). At least four C1q globular heads, meaning
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engagement with four IgG antibodies, seem to be needed for

efficient complement activation (9). Extensive binding subsites

were found at the CH2 domains of IgG for the binding of the

globular heads of C1q, one at the FG loop at position 325-331 (also

important for the binding of FcgRs), one at the BC loop at position

266-272, and one at the DE loop at position 294-300 (9). The amino

acid residues within these regions most critical for the binding of

C1q are D270, K322, K326, P329, P331 (naturally a serine in IgG4

antibodies), E333 and K334 (183, 186, 233). Targeting these

residues with point mutations, such as D270A (5), P329G/A (5,

183) or K322A (183, 233) can abolish C1q binding. Additionally,

the G236/7A (GAGA) variant of IgG1 has been found to abrogate

binding to C1q and downstream effector functions completely (16).

K326W, K326W+E333S (WS), S267E+H268F+S324T (EFT) or

S267E+H268F+S324T+G236A+I332E (EFT+AE) can increase

C1q binding and CDC activity up to 47-fold (181, 193, 234).

Another variant, comprising of the CH1 and hinge regions of

IgG1 along with the Fc portion of IgG3 (1133), exhibited

enhanced CDC that exceeded wild-type levels without gaining full

recovery by protein A binding (101). Reconstituting the C-terminal

part of the (IgG3-derived) CH3 domain with that of IgG1 again

(113F), eliminated the protein A binding deficiency without

compromising the enhanced CDC activity (101).

In addition to mutations that directly enhance C1q, amino acids

outside this direct region have also been found that promote Fc : Fc

interactions (188). Only very few fulfill the needs essential to use

this for therapeutic antibody development (no multimer formation

in solution and good pharmacokinetic properties). Variants E430G

and E345K have been selected and are exploited as HexaBody

Technology (188). Several studies have demonstrated that

incorporating either one of these single mutations leads to

increased complement activation and CDC of numerous cell

types (133, 235–240). The single point mutations K439E and

S440K can each be used to inhibit Fc : Fc interactions and

subsequent complement activation via charge repulsion, which

can in turn be overcome by using double mutants or mixtures

containing each mutants (7, 133). The use of two variants which

complement each other to gain function is the basis of the

conceptual idea for the HexElect technology (241), in which

hexamerization and subsequent complement activation is made

dependent on the expression of two targets on the same cell.

Although the hexamerization of IgG antibodies primarily occurs

after antigen binding, the triple mutation E345R+E430G+S440Y

(RGY) allows hexamerization in solution in a concentration and

pH-dependent manner (7, 8, 188, 242).
IgG-Fc substitutions to modulate
FcgR binding

Many mutations have been described for the modulation of

FcgR binding (Table 2; Figure 5).

IgG2 Abs, which naturally only bind FcgRIIa and lack G236,

gain binding to both FcgRI and FcgRIIIa after insertion of glycine at

position 236 (16). Likewise, IgG1 antibodies lacking G236 lose
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1304365
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


TABLE 2 Amino acid modifications influencing effector molecule binding and function.

Function

RIIIb FcRn C1q ADCC ADCP CDC t1/
2

Reference

(15)

(14)

(16, 177)

(16)

(178)

(179)

(7, 179, 180)

(179)

(179)

(181, 182)

(181)

(179, 183)

(179, 184)

(179, 182, 185)

(179)

(183)

(181)

(186)

(179)

(178)

(182)

(179, 183)

(14, 187)

(177, 184)

(183, 186)
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Fc effector molecules

Modification or mutation
(EU numbering)

Abbreviation Subclass FcgRI FcgRIIa FcgRIIb FcgRIIIa Fc

IgG1 IgG2 IgG3 IgG4 R131 H131 V158 F158

E233P x

L234F x

G236A GA x

G237A x

P238D x

S239A x

I253A x

S254A x

D265A x

S267E x

H268F x

D270A x

R292A x

N297(A/Q/G) NA x

S298N x

K322A x

S324T x

K326W x

A327Q x

L328E x

L328F x

P329A x

P331S x x

I332E x

E333A x
g
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TABLE 2 Continued

Function

IIb FcRn C1q ADCC ADCP CDC t1/
2

Reference

(183)

(7)

(179)

(188)

(7)

(7, 189)

(189)

(7)

(7)

(190)

(191)

(192)

(17)

(193)

(194)

(16)

(195)

(196, 197)

(177, 181)

(186)

(177, 181,
182, 198)

199)

(200)

(201)

(201)

(201)
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Fc effector molecules

Modification or mutation
(EU numbering)

Abbreviation Subclass FcgRI FcgRIIa FcgRIIb FcgRIIIa FcgR

K338A x

E345R Arg345 x

E380A x

E430G x

H433A x

N434A x

N435W x

K439E x

S440K x

C221D/D222C x

S228P/L235E x

F234A/L235A x

L234A/L235A LALA x x

L234A/L235E x

L234A/G237A x

G236A/G237A GAGA x

G236N/H268D x

G236R/L328R RR x

G236A/I332E AE x

K236W/E333S KWES x

S239D/I332E DE or SDIE x

P247I/A339Q x

T250Q/M428L QL x

M252Y/T256D YD x

T256D/T307Q DQ x

T256D/T307W DW x
I
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TABLE 2 Continued

Function

IIb FcRn C1q ADCC ADCP CDC t1/
2

Reference

(202)

(178, 182, 196)

(181)

(203)

(186)

(186)

(186)

(14)

(179)

(204)

(205)

(15, 183)

(193)

(206)

(207, 208)

(208)

(206, 208)

(208)

(208)

(209)

(210)

(211)

(177, 184)

(212)

(198)

(198)

(Continued)
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Fc effector molecules

Modification or mutation
(EU numbering)

Abbreviation Subclass FcgRI FcgRIIa FcgRIIb FcgRIIIa FcgR

P257I/Q311I PIQI x

S267E/L328F SE/LF x

H268F/S324T FT or HFST x

S298G/T299A Ga x

K326A/E333A x

K326M/E333S x

K326W/E333S WS x

A330S/P331S x

E380A/N434A x

M428L/N434S MN or LS x

H433K/N434F HN or KF x

E233P/L234V/L235A x

L234A/L235A/K322A x

L234F/L235E/K322A x

L234F/L235Q/K322Q FQQ x

L234A/L235A/P329G LALAPG x

L234F/L235E/P331S FES x

L234S/L235T/G236R x

L234A/L235A/G237A x

L234F/L235E/D265A FEA x

L234Y/G236W/S298A YWA x

L235A/G237A/E318A x

G236A/S239D/I332E GASDIE x

G236A/A330L/I332E GAALIE x

S239D/S298A/I332E x

S239D/A330L/I332E SDALIE
or DLE

x

I
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TABLE 2 Continued

Function

IIb FcRn C1q ADCC ADCP CDC t1/
2

Reference

(204, 213)

(214, 215)

(216)

(204, 213)

(217, 218)

(181)

(219)

(179)

(179, 220)

(221)

(15)

(198, 204, 213)

(204, 213)

(7)

(202, 204, 213)

(179, 204, 213)

(16)

(204, 213)

(182, 222, 223)

(181)

(177, 198,
204, 213)

(196, 204, 213)

(204, 213)

(181; 204; 213)

(224)

(204; 213)
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Fc effector molecules

Modification or mutation
(EU numbering)

Abbreviation Subclass FcgRI FcgRIIa FcgRIIb FcgRIIIa FcgR

T250Q/M428L/N434S QLS x

M252Y/S254T/T256E YTE or MST x

I253A/H310A/H435A IHH x

P257I/M428L/N434S x

V259I/N315D/N434Y C6A-74 x

S267E/H268F/S324T EFT x

H285D/T307Q/A378V DQV x

S298A/E333A/K334A AAA x

T307A/E380A/N434A x

L309D/Q311H/N434S DHS x

A327G/A330S/P331S x

I332E/M428L/N434S x

E333A/M428L/N434S ALS x

E345R/E430G/S440Y RGY x

D376V/M428L/N434S x

E380A/M428L/N434S x

L234A/L235A/N297A/P329G x

L234A/L235A/M428L/N434S x

G236A/S239D/A330L/I332E GASDALIE x

S239D/H268F/S324T/I332E x

S239D/I332E/M428L/N434S SDIE LS x

P257I/Q311I/M428L/N434S PIQI LS x

S267E/L328F/M428L/N434S SE/LF LS x

H268F/S324T/M428L/N434S HFST LS x

H268Q/V309L/A330S/P331S IgG2m4 x

T307A/E380A/M428L/N434S x
I
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TABLE 2 Continued

Function

FcgRIIIb FcRn C1q ADCC ADCP CDC t1/
2

Reference

(225)

(226, 227)

(226, 228, 229)

(177, 184,
204, 213)

(181, 211)

(204, 213)

(184, 198,
204, 213)

(204, 213, 214)

(214, 230)

(181, 204, 213)

(217, 218)

(7, 204, 213)

(203, 204, 213)

(214)

(178)

(15, 183)

(231, 232)

(194)

(181, 204, 213)
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Fc effector molecules

Modification or mutation
(EU numbering)

Abbreviation Subclass FcgRI FcgRIIa FcgRIIb FcgRIIIa

E233P/L234V/L235A/DG236/S267K x

L235V/F243L/R292P/Y300L/P396L VPLIL x

F243L/R292P/Y300L/V305I/P396L Variant
18(LPLIL)

x

G236A/S239D/I332E/M428L/N434S x

G236A/S267E/H268F/S324T/I332E EFT-EA x

S239D/S298A/I332E/M428L/N434S x

S239D/A330L/I332E/M428L/N434S x

M252Y/S254T/T256E/M428L/N434S YTE LS x

M252Y/S254T/T256E/H433K/N434F YTE-KF or
MST/HN

x

S267E/H268F/S324T/M428L/N434S SEHFST x

N315D/A330V/N361D/A378V/N434Y T5A-74 x

E345R/E430G/S440Y/M428L/N434S RGY LS x

G236A/S239D/A330L/I332E/
M428L/N434S

x

M252Y/ S254T/T256Y + S239D/
A330L/I332E

YTE-SDALIE x

E233D/G237D/P238D/H268D/
P271G/A330R

V12 x

E233P/L234V/L235A/DG236 + A327G/
A330S/P331S

x

L234A/L235A/G237A/P238S/ H268A/
A330S/P331S

IgG2c4d x

V234A/G237A/P238S/H268A/V309L/
A330S/P331S

IgG2s x

G236A/S267E/H268F/S324T/I332E/
M428L/N434S

EFT-EA LS x

black = blocking, red = decreased, grey = unchanged, blue = increased.
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binding to all FcgRs (except for reduced binding to FcgRI) (16, 177).
Variants of IgG1 expressing alanine instead of glycine at the

adjacent position 237 have reduced FcgRI affinity and reduced

FcgRIIIa-mediated ADCC (243), which also highlights the overall

importance of the double G at position 236-7 in IgG for FcgR
interaction. Another mutation of IgG1 in the lower hinge region

that reduces binding to FcgRI due to antibodies which blocked the

functions of active antibodies is E233P (15).

The G236A mutation in combination with S239D/I332E (DE)

mutations in the IgG1 antibody, increases the binding affinity to

FcgRI (3-fold), FcgRIIa (70-fold), FcgRIIb (13-fold) and FcgRIIIa
(31-fold) (177). Despite the enhanced affinity to the inhibitory

FcgRIIb, this triple mutation enhanced ADCP by macrophages

(177). The addition of A330L to G236A/S239D/I332E

(GASDALIE) resulted in increased affinity to FcgRIIa (25-fold)

and FcgRIIIa F158 (30-fold), while FcgRIIb affinity was only

slightly increased (182, 223).

The H268F/S324T (FT) double substitution resulted in

decreased FcgRI, FcgRIIa-131R and FcgRIIb binding (181).

However, the addition of the DE and G236A/I332E (AE)

substitutions to the FT variant improved FcgR binding

considerably. The combination of FT + DE resulted in enhanced

binding to FcgRs, particularly to FcgRIIIa, whereas the combination

of FT + AT resulted in selective enhancement for FcgRIIa and

FcgRIIIa binding. These variants enhanced effector functions

accordingly (ADCC: up to 22-fold; ADCP: up to 4.7-fold). The

S267E/H268F + S324T variant (EFT) increased binding to FcgRIIa-
R131 and FcgRIIb significantly. Combination with the AE

substitution produced a variant (EFT + AE) with increased

FcgRIIa affinity and FcgRIIIa binding slightly better than native

IgG1 (181). Whereas, the amino acid substitutions S267E/L328F

when introduced into IgG1, resulted in increased affinity to FcgRIIb
(430-fold) with minimal changes in binding to FcgRI, FcgRIIa-131H
and no binding to FcgRIIa-158V (196). The mutation P238D also

enhanced binding to FcgRIIb, while either completely abolishing or

significantly reducing binding to FcgRI, FcgRIIa-131H and FcgRIIa-
158V (178). This mutation (P238D) in combination with five

additional amino acid substitutions E233D/G237D/H268D/

P271G/A330R (termed V12) enhanced binding to FcgRIIb even

more (~217-fold) (178, 211, 244). Other sets of substitutions

described to enhance IgG1 binding to FcgRIIb encompass

G236N/H268D and G236N/H268D/A330K, which are

abbreviated V2 and V3, respectively (195). IgG1 with V12-, V2-

or V3- bearing Fcs were found to engage FcgRIIb for its rather

recently discovered recycling function (244), and demonstrated

efficient soluble target clearance in vivo when combined with

antigen-sweeping Fabs (195, 244, 245). Strongly reduced binding

to FcgRIIa-131R, but also to both FcgRIIb and FcgRIIa-158F, can be

achieved by a single mutation D270A. This mutation does not affect

binding to either FcgRI, FcgRIIa-131H, or FcRn (179).

Both the combination of S298A, E333A, and K334A

mutations (AAA) in an IgG1 antibody in combination with DE

improved the affinity to both allotypes of FcgRIIIa (179, 198).

However, an increase in binding to the inhibitory FcgRIIb was
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also observed with the DE double mutant (198). By the addition

of a leucine at position 330, S239D/A330L/I332E (DLE), this

effect was reversed. The DLE mutations cause an open

conformation of the Fc by separating the two CH2 by

introducing additional hydrogen bonds between S239D/I332E

in the Fc and lysine at position 158 in the FcgRIIIa (206). In

addition, Mimoto et al. showed that antibodies with mutations

L234Y, G236W, and S298A (YWA), in one heavy chain and DLE

in the other, mediated ADCC of tumor antigen-expressing cells at

a higher capacity than antibodies that contained only the YWA or

DLE mutations (210). Combinations of F243L, R292P, Y300L,

V305I, and P396L (variant 18) mutations had an improved Fc

binding to FcgRIIa and FcgRIIIa (10-fold) without increasing

binding to the inhibitory FcgRIIb receptor (<2-fold), resulting in

>100-fold increase ADCC activity (226, 228, 229). However, this

combination of mutations has evolved to L235V, F243L, R292P,

Y300L, and P396L in follow-up studies (227, 246).

To reduce or prevent IgG binding to FcgRs, a single mutation of

leucine to glutamic acid at position 235 is sufficient for reduced

binding (100-fold) to the FcgRs on U937 cells (247). The removal of

G236 in IgG1 abrogates binding to all FcgR, with negligible trace

binding still detectable for FcgRI and minor effect on C1q binding

and complement activity (16). A refined IgG1 variation was found

which comprises the combination of L234A and L235A (LALA),

which reduced detectable binding to FcgRI, FcgRIIa, and FcgRIIIa,
but also complement, significantly (192, 248). The use of LALA

appears to be more effective than either L234A or L235A alone and

only in combination, low to undetectable binding to the high

affinity Fc receptor FcgRI can be achieved (14). Although the

LALA mutations do not completely abrogate FcgR binding,

several antibodies have by now been approved with this Fc

configuration, for example the humanized anti-IL36R and anti-

CD3 IgG1-based antibodies spesolimab and teplizumab,

respectively (249). The LALA mutations have also provided a

foundation for the modification of other mutations. LALA in

combination with P331S can eliminate binding to FcgRs
completely without disrupting the overall conformation of the Fc

(206, 208). Similarly, LALA combined with glycine at position 329

(LALA-PG) was an enhancement over LALA mutations alone as

the combination eliminated all Fc-mediated effector functions,

including complement (191, 250). The LALA-PG containing

bispecific anti-CD20 x CD3 IgG1 glofitamab was approved for

the treatment of relapsed or refractory diffuse large B cell lymphoma

(251). Moreover, more than ten monoclonal antibodies with the

same Fc configuration are currently in clinical development (252).

Similarly, the LALA-PG mutations with a N297A substitution,

resulting in non-glycosylated Fc, also have no detectable binding

to any FcgR (16, 208). On top of that, Engelberts et al. showed that

the combination of L234F/L235E/D265A resulted in no detectable

binding to FcgRI, and reduced binding to both the low affinity FcgRs
and C1q (209, 253). In addition, the mutations G236R/L328R either

reduced or completely abrogated binding to the FcgRs (FcgRIIa-
131R and FcgRIIa-158F were not assessed) and the S267E

substitution reduced binding for all low affinity FcgRs (196). A
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substitution to lysine at position 267 combined with a series of

E233P/L234V/L235A mutations and a deletion of residue G236

showed a lack of binding to all FcgRs (FcgRIIa-158F was not

assessed) (225). Together, this points to a crucial role of this

lower hinge region to regulate the binding to FcgRs.
Other crucial mutations in various combinations that can

eliminate FcgRI, FcgRIIa, FcgRIIb, and FcgRIIIa binding include

proline 233, alanine 237, and alanine 318 (179, 250). Glycine 237

and glutamic acid 318 are both essential for FcgRII binding (14).

Another double mutation is S228P and L235E (SPLE or PE) (254).

The SPLE mutations have been introduced into IgG4, although

IgG4 has low binding to FcgRs in general due to the phenylalanine

at position 234 (255). In addition, it has been shown that S228P

stabilizes the structure of IgG4 and prevention of FAE in vivo. The

Fc variant of IgG2 (referred to as IgG2s), with V234A/G237A/

P238S/H268A/V309L/A330S/P331S substitutions showed no

binding to FcgRs and C1q, resulting in the total lack of inducing

any immune effector functions (194).

As mentioned before, an alternative strategy to minimize

effector functions is to remove the N-linked glycosylation site at

amino acid residue 297 in the CH2 domain (256). Point mutations,

such as N297A, N297Q and N297G (257), have all been used to this

end and N297A and N297G have been incorporated in approved

therapeutic mAbs, such as atezolizumab (anti-PD-L1) and

mosunetuzumab (anti-CD3xCD20), respectively (258, 259).

Interestingly, there have been multiple studies attempting to re-

engineer effector function into aglycosylated Fc domains, in order to

facilitate the use of prokaryotic expression systems. They showed

that engineered deglycosylated Fc variants including substitutions

at S298G/T299A (203), N297D/S298T/K326I/A327Y/L328G

(DTT-IYG) (260), S298G/T299A/K326I/A327Y/L328G/E382V/

N390D/M428L (AglycoT-Fc1004-IYG) (261), and E382V/M428I

(262, 263) restore FcgR binding and effector functions.
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IgG-Fc substitutions to modulate
FcRn binding

Reduced binding to human FcRn was observed, when each of

the interface residues I253, H310 and H435 was substituted to

alanine (264). Combining the three substitutions I253A, H310A

and H435A (IHH) in an IgG1 completely abrogates binding to

human FcRn (216). The IHH and the H435A variants are now

commonly used as non-FcRn binding variants (216, 265, 266)

Efforts have also been made to influence the IgG-FcRn

interaction to increase serum half-life. A study used rationally

designed libraries targeting the IgG-FcRn interface around

residues 252 to 256 and 433 to 436, which among others

identified an IgG1 Fc variant, bearing M252Y, S254T and T256E

(YTE) substitutions. This YTE variant exhibited stronger binding to

human FcRn (4-fold) at acidic pH without increased binding at

neutral pH, and therefore causing increased antibody half-life and

serum persistence (214, 215, 267). The YTE-mutated anti-

respiratory syncytial virus (RSV) IgG1 nirsevimab has recently

been approved as prevention therapy for young children at risk,

exhibiting a reported serum half-life of 71 days (268). Following this

rational, different variants have been discovered to enhance in vivo

half-life of IgG antibodies, all based on the same conceptual

principle: increasing the binding to FcRn at acidic pH and

efficient release at neutral pH. An IgG1 variant with H433K and

N434F (KF) substitutions (205) showed enhanced binding to FcRn

at endosomal pH (16-fold) and extended half-life in nonhuman

primates (NHP) (269). A similar pH-dependent affinity to both

human and NHP FcRn was found for the single substitution at

position 434 from either asparagine to alanine (~2-fold) or to

tryptophan (80-fold), which exhibited prolonged half-life in

NHPs compared to wild type IgG (189). Another IgG Fc variant

proven to both exhibit 11-fold enhancement in binding affinity to
FIGURE 4

Amino acid mutation sites with impact on IgG hexamerization and C1q binding. Ribbon structure of dimeric IgG-Fc regions with highlighted amino
acids involved in antibody hexamerization and Fc interaction with complement (C1q).
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FcRn and extend half-life in humans bears M428L and N434S

substitutions (LS) (270).

Again, the extended half-life of the LS variant is attributed to the

reduced off-rate at pH 6.0 and without increasing binding to FcRn

at neutral pH. However, an increased in vivo efficacy might depend

on the disease model system and target kind, given that the same

variant in human FcRn and FcgR transgenic mice did not

outperform wild type IgG, despite exhibiting significantly longer

half-life (271). Therapeutic antibodies containing an LS variant

substituted Fc is are being evaluated in multiple human clinical

trials (270). The anti-C5 complement inhibitor ravulizumab was

recently approved (272), exhibiting a serum half-life of 56.6 days in

patients with generalized myasthenia gravis (273). In addition, The

LS variant has also been incorporated in neutralizing monoclonal

antibodies (tixagevimab, cilgavimab amubarvimab and

romtusevimab) against severe acute respiratory syndrome

coronavirus 2 (SARS-CoV-2) (274, 275), all with an extended

half-life.
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Comparable FcRn binding profiles were described for the single

amino acid substitution M428L and the combination of T250Q/

M428L, which both achieved significantly slower clearance compared

to wild type IgG in rhesus monkeys (276). T250Q/M428L and V308P

bearing IgG4s have been found to exhibit prolonged in vivo half-life

in cynomolgus monkeys (277). Another effort resulted in the

identification of three double mutant variants with a half-life

comparable to that of the LS variant in both human FcRn

transgenic mice and cynomolgus monkeys, comprising either

M252Y/T256D (YD), T256D/T307Q (DQ) or T256D/T307W

(DW) substitutions (201). Shortly after, the triple mutant L309D,

Q311H and N434S (DHS) was described, which was validated in a

human FcRn, FcgR and IgG1 transgenic mouse model and even

outperformed the YTE and LS variants regarding their half-life (221).

However, the prolonged half-life of the YTE (267) and KF (205, 269)

variants in combination (YTE-KF or MST-HN) exhibits increased

binding to FcRn (20-fold) at both low (pH ≤ 6.5) and neutral pH

(278). This YTE-KF variant binds FcRn strong enough to antagonize
FIGURE 5

Amino acid mutation sites with impact on FcgR and FcRn binding. Ribbon structure of dimeric IgG-Fc regions with highlighted amino acids involved
in FcgR and FcRn binding.
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the IgG-FcRn interaction and was found to specifically reduce IgG

levels in vivo. Such an Fc fragment is called an Abdeg (antibody that

enhances IgG degradation) (279),which is being clinically investigated

under the name efgartigimod for the treatment of IgG-mediated

autoimmune diseases and has recently been approved for the

treatment of generalized myasthenia gravis (280–282). Other

variants with enhanced binding to FcRn at both physiological and

acidic pH include M252Y/N286E/N434Y (YEY) and M252Y/V308P/

N434Y (YPY) (283), which have been found to utilize FcRn for

improved soluble target clearance in NHP when combined with

antigen sweeping Fabs (284).

Whereas FcgR binding and N-linked glycosylation are generally

thought to not affect in vivo half-life of IgG (285) and not to affect

transport across the placenta (286), a single amino acid deletion at

position 294 in IgG1 (DE294) was found to result in hypersialylated

variants, which exhibited longer half-life than their non-DE294
counterparts in human FcRn transgenic mice (218). This was also

confirmed for variants bearing half-life extension substitutions found

by the same group, such as V259I/N315D/N434Y (C6A-74) and

N315D/A330V/N361D/A378V/N434Y (T5A-74) (217, 218). Other

than IgGFcmutationswhich affect the interaction of IgGwith FcRnor

FcRn-mediated processes, several groups have found an impact of the

Fabs (171), Fab glycans (172), possibly their flexibility is also involved

(50), physicochemical properties (109, 287, 288), and antigen-binding

on FcRn binding and cellular transport (289, 290).

It is important to highlight that amino acid substitutions, such

as LS or YTE, which affect FcRn binding, often also influence the

interaction with FcgR (and C1q) and thereby their effector function

profile, which is a critical consideration to make depending on

therapeutic target and purpose (219, 221, 291).
Outlook: therapeutical antibodies

The number of novel antibody-based molecules undergoing a first

regulatory review is at a record level but the number of approved drugs

has not kept pace (292). Although we have learned a lot about specific

amino acid residues that are required for enhancing or inhibiting

antibody-mediated effector functions, the development of antibody-

based therapeutics to counteract biological processes may require

more than just modifying the sequence of antibody-based molecules

to modulate its interaction with the host immune system (293). It has

been shown that IgG variants without core fucosylation cause elevated

ADCC, through increased FcgRIIIa affinity (56, 127, 128, 146), which
has resulted in next-generation glyco-engineered therapeutic

antibodies that lack core fucosylation for targeting tumors (292).

Some examples include mogamulizumab (KW-0761, AMG-761),

which is an afucosylated humanized IgG1 targeting CC chemokine

receptor 4 for the treatment of patients with relapsed or refractory

adult T-cell lymphoma (294). Another approved afucosulated

humanized IgG1 is benralizumab (MEDI-563) which engages IL-5

Receptor a-chain in the treatment of severe eosinophilic asthma (295).

Currently only IgG1, IgG2 and IgG4 antibodies are being

considered for therapeutic purposes, but especially IgG3 (most

potent subclass in mediating Fc effector functions) and IgG

polymorphisms could be utilized to enhance antibody-mediated
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effector function via to differential binding to endogenous FcgRs
and complement proteins (93). Studies have found that monoclonal

antibodies with identical variable regions, but different IgG subclasses

and allotypes can mediate enhanced Fc effector function, modulated

by the hinge length and naturally occurring amino acid substitutions

(3, 81, 98). IgG3 is currently not used for any therapeutic antibodies

due to its short half-life and large number of alleles which may result

in anti-allotypic effects. However, IgG3 variants such as IGHG3*17,

*18, and *19 have a half-life equivalent to IgG1 and there is no

evidence that allelic mismatch causes any clinical adverse effects (81,

91, 296, 297). Therefore, next generation therapeutic antibodies

should consider utilizing IgG3 backbones due to the greater

molecular flexibility and stronger affinity to FcgRs and C1q.

Despite being the least abundant IgG in human plasma, IgG4

antibodies, but also mutations such as LALA, are used therapeutically

whenweak or ‘silenced’ effector functions are needed.As of 2019,more

than 30 biopharmaceuticals with an IgG4-based Fc fragment were

approved or were in late-stage clinical development (298). Recently,

bispecificmonoclonal antibodies have emerged as a growing new class

of therapeutics with a wide spread of bispecific antibodies across all

stages of clinical trials and platforms (259, 299), some of which were

inspired by IgG4 FAE (300–302). Other current areas of development

of improved IgG4-based therapeutics focuses on half-life modulation,

stability, and inhibiting downstream processes. For example, it has

been demonstrated that IgG4 monoclonal antibodies with the S228P/

L235E/R409K mutations, not capable of half-molecule exchange,

showed less of a tendency to aggregate at low pH than S228P/L235E

variants and stabilization of IgG4 antibodies in non-exchanging

formats (303). The E357Q/S364K-L368D/K370S variant resulted in

aCH3 region that remainedmore stable than that of native IgG4 (225).

TheYTEmutations seem tohave themost improved pharmacokinetic

properties in combination with reduced effector functions (267, 304).

Although it is possible to learn through natural and engineered

Fc modifications, new approaches are needed to consider and

screen variants containing multiple mutations, asymmetric

binding modes, glycan profiles and effector molecule binding,

especially when hexamerization or bispecific antibodies come in

play (305, 306). The antibody modifications should be substituted

into next generation therapeutic antibodies, but also in monitoring

of therapeutically administered IgG (307). Understanding the key

determinants that shape antibody-mediated functions is crucial in

designing more effective antibody-based therapeutics. Therefore,

exploring the associations between IgG allotypes and/or glycan

profiles and effector functions, including poorly understood

mechanisms such as TRIM21 binding, could open new strategies

in the development of therapeutic antibodies. With growing

understanding of antibody-mediated immune responses and the

constant development of molecular technologies, the future for

tailored and effective antibody-based therapeutics seems limitless.
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Verpalen R, et al. Functional monovalency amplifies the pathogenicity of anti-MuSK
IgG4 in myasthenia gravis. Proc Natl Acad Sci United States America (2021) 118:
e2020635118. doi: 10.1073/pnas.2020635118

71. Vergoossen DLE, Augustinus R, Huijbers MG. MuSK antibodies, lessons learned
from poly- and monoclonality. J Autoimmun (2020) 112:102488. doi: 10.1016/
j.jaut.2020.102488

72. Rispens T, Huijbers MG. The unique properties of IgG4 and its roles in health
and disease. Nat Rev Immunol (2023) 23(11):763–78. doi: 10.1038/s41577-023-00871-z

73. de Lange GG. Polymorphisms of human immunoglobulins: Gm, Am, Em and
Km allotypes. Exp Clin immunogenetics (1989) 6:7–17.

74. Dugoujon JM, Hazout S, Loirat F, Mourrieras B, Crouau-Roy B, Sanchez-Mazas
A. GM haplotype diversity of 82 populations over the world suggests a centrifugal
model of human migrations. Am J Phys Anthropology: Off Publ Am Assoc Phys
Anthropologists (2004) 125:175–92. doi: 10.1002/ajpa.10405

75. Dard P, Lefranc M-P, Osipova L, Sanchez-Mazas A. DNA sequence variability of
IGHG3 alleles associated to the main G3m haplotypes in human populations. Eur J
Hum Genet (2001) 9:765–72. doi: 10.1038/sj.ejhg.5200700
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