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Preeclampsia is one of the leading causes of maternal and fetal morbidity and

mortality worldwide. Preeclampsia is linked to mitochondrial dysfunction as a

contributing factor in its progression. This study aimed to develop a novel

diagnostic model based on mitochondria-related genes(MRGs) for preeclampsia

using machine learning and further investigate the association of the MRGs and

immune infiltration landscape in preeclampsia. In this research, we analyzed

GSE75010 database and screened 552 DE-MRGs between preeclampsia samples

and normal samples. Enrichment assays indicated that 552 DE-MRGs were mainly

related to energy metabolism pathway and several different diseases. Then, we

performed LASSO and SVM-RFE and identified three critical diagnostic genes for

preeclampsia, including CPOX, DEGS1 and SH3BP5. In addition, we developed a

novel diagnostic model using the above three genes and its diagnostic value was

confirmed in GSE44711, GSE75010 datasets and our cohorts. Importantly, the

results of RT-PCR confirmed the expressions of CPOX, DEGS1 and SH3BP5 were

distinctly increased in preeclampsia samples compared with normal samples. The

results of the CIBERSORT algorithm revealed a striking dissimilarity between the

immune cells found in preeclampsia samples and those found in normal samples.

In addition, we found that the levels of SH3BP5 were closely associated with

several immune cells, highlighting its potential involved in immune

microenvironment of preeclampsia. Overall, this study has provided a novel

diagnostic model and diagnostic genes for preeclampsia while also revealing the

association between MRGs and immune infiltration. These findings offer valuable

insights for further research and treatment of preeclampsia.
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Introduction

Preeclampsia represents a pregnancy-associated syndrome

typified by elevated blood pressure and the presence of protein in

the urine. This condition initiates a spectrum of pathophysiological

mechanisms, encompassing endothelial dysfunction, systemic

inflammation, and compromised implantation processes (1, 2).

Approximately 5-8% of pregnancies are affected by preeclampsia

worldwide. While the overall frequency is lower in industrialized

countries, it is higher in some parts of the world that are still

developing (3, 4). Primiparity (first pregnancy), advanced or young

maternal age, hypertension, renal disease, diabetes, obesity, multiple

gestations (twins or triplets), and some hereditary variables all

enhance the likelihood of developing preeclampsia. Although

preeclampsia has been documented all across the world, its

incidence varies considerably depending on location (5, 6). These

variations in geographic distribution may be influenced by factors

such as diet, lifestyle, and genetic predisposition. Preeclampsia’s

pathogenesis remains a mystery, despite decades of research into its

possible causes. Only timely termination of pregnancy, along with

hypertension control and close monitoring of mother and baby, has

been shown to be successful in the treatment of preeclampsia (7–9).

Therefore, reducing the risk of unfavorable maternal and fetal

outcomes requires early discovery, correct diagnosis, and effective

care of individuals with preeclampsia.

Mitochondria are an important component of the cellular

machinery. They generate cellular energy in the form of

adenosine triphosphate (ATP), hence they are often called “the

powerhouses of the cell.” (10). The outer membrane of a

mitochondrial cell surrounds the inner membrane, creating a

double-membrane structure. The inner membrane is highly

efficient in producing energy due to its many folds, or cristae,

which enhance the membrane’s surface area (11). Mitochondrial

DNA (mtDNA) is contained within mitochondria, along with

several proteins involved in the process of producing energy (12).

Mitochondria are essential for cellular energy metabolism.

However, there is evidence from a subset of research suggesting

that mitochondrial activity is impaired and energy metabolism is

disrupted in patients with preeclampsia. This could lead to a

shortage of cellular energy, which in turn could harm a pregnant

woman’s organs. Oxidative stress has also been linked to

mitochondria (13, 14). To put it simply, oxidative stress is a

process that can cause damage to cells and tissues. Some studies

have found that preeclampsia patients have elevated levels of

oxidative stress, which can lead to cell death and inflammatory

reactions. Oxidative stress has been linked to mitochondrial

malfunction (15, 16). Additionally, mitochondria have their own

DNA, separate from that of the cell nucleus. Because mitochondria

produce so many free radicals during the energy generating process,

mitochondrial DNA is especially susceptible to oxidative damage

and other sorts of injury (17). Some studies suggest that in

preeclampsia patients, damage to mitochondrial DNA may be

elevated, which could be related to the pathogenesis of

preeclampsia (18–20). More importantly, some mitochondria-

related genes have been reported to exhibit a dysregulated level in

preeclampsia (21–23). Thus, certain crucial mitochondrial-related
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genes may emerge as novel diagnostic biomarkers for preeclampsia.

In addition, understanding the intricate relationship between

mitochondria and preeclampsia is essential for advancing

research and potential treatments.

Machine learning is a branch of artificial intelligence (AI) that

focuses on researching how to use computer systems to automate

learning and improvement of tasks without explicit programming

(24). Its core idea is to enable computer systems to make predictions

or decisions by discovering patterns and regularities from data.

Image recognition, NLP, medical diagnosis, financial forecasting,

and autonomous cars are just few of the many areas where machine

learning has found success. Machine learning has becoming

increasingly important in the medical industry, especially in

genomics and illness diagnostics (25, 26). Transcriptomics is a

method for analyzing the abundance of gene expression data

collected from within cells. Many scientists are now combining

machine learning with transcriptomics sequencing to pinpoint

important diagnostic genes. Transcriptomic data can be used by

machine learning algorithms to identify cell kinds, disease states,

and physiological circumstances. Classification algorithms can be

used, for instance, to determine which genes show statistically

significant expression differences between people with cancer and

those without the disease (27, 28). New gene markers or

biomarkers, useful for early disease diagnosis, prognosis

prediction, and treatment selection, can be found with the help of

machine learning-based techniques. These algorithms can examine

massive amounts of data to pinpoint which genes are connected

with a disease’s development and response to treatment. In

conclusion, using machine learning in transcriptome sequencing

and illness diagnosis gene study helps speed up medical research

and improve diagnostic accuracy. It assists scientists in discovering

novel gene markers, comprehending disease mechanisms,

predicting patients’ disease risks, and providing more precise

treatment strategies for individuals. Despite the widespread use of

machine learning in medical research, its application for identifying

novel biomarkers in preeclampsia remains underexplored. This gap

in the literature highlights the need for research exploring the

potential of machine learning in uncovering biomarkers specific

to preeclampsia. In this context, our study aims to bridge this gap by

leveraging machine learning techniques in transcriptome

sequencing to identify novel biomarkers based on mitochondrial-

related genes(MRGs) for preeclampsia.

Up to date, there has been no studies to utilize machine learning

for the analysis of MRGs, to screen for pivotal diagnostic genes, and

to construct a diagnostic model. In this study, we aimed to developed

a novel diagnostic model using MRGs based on Machine learning. In

addition, we further analyzed the association between the critical

genes and immune infiltration. In summary, our research not only

presented a pioneering diagnostic model for preeclampsia based on

MRGs and machine learning but also provided crucial insights into

the molecular intricacies underpinning the relationship between

MRGs and preeclampsia. Moreover, our findings regarding the

association with immune infiltration had potential implications for

advancing therapeutic strategies, opening avenues for targeted

interventions and personalized treatment approaches in the realm

of preeclampsia management.
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Materials and methods

Serum samples

In this study, 12 preeclampsia patients aged 25 to 40 and 12

healthy donors aged 23 to 40 were enrolled from the First Affiliated

Hospital of Xi’an Jiaotong University. In addition, we collected

blood samples from 12 preeclampsia patients and 12 participants,

all at gestational weeks 20 to 25. The patients had not received any

therapy for preeclampsia before sample collection. All participants

provided written informed consent. This study was approved by the

Ethics Committee of the First Affiliated Hospital of Xi’an Jiaotong

University. The blood samples were centrifuged at 1,500 × g in a

refrigerated centrifuge (Eppendorf Centrifuge 5430R; Eppendorf,

Hamburg, Germany) for 12 min. This process effectively separated

the serum from the cellular components of the blood. The

centrifugation step was conducted under standard laboratory

conditions to ensure reproducibility and consistency in the

experimental procedure. The blood samples were stored at -80 °C

until use.
Quantitative RT-PCR

TRIzol LS reagent (#10296010, Invitrogen) was used to extract

the total RNA from each sample. HiFiScript cDNA Synthesis Kit

(CWBIO, China) was used for reverse transcription of total RNA to

produce cDNA. gene expression levels were assessed through

quantitative real-time polymerase chain reaction (qRT-PCR)

utilizing the Ultra SYBR Mixture, manufactured by Vazyme in

China. The RT-qPCR was performed with cycling conditions as

follows: 15 min. 50°C, 2 min. 95°C, (15 s 95°C, 32 s 60°C), 45 cycles.

To ensure accuracy, the relative gene expression levels were

standardized against the expression levels of GAPDH and were

calculated utilizing the 2^(-DDCt) method. The primers used in this

study were shown below: for CPOX, 5’- GCTGGGGTG

AGCATTTCTGTT-3 ’ (forward), 5 ’- GCATGAGGATTC

TTGGGGTGG-3 ’(reverse); for DEGS1, 5 ’- GAGATCCT

GGCAAAGTATCCAGA-3’ (forward), 5’- CAAACGCATAGG

CCCCAAA-3 ’ (reverse) ; SH3BP5, 5 ’ - GAGCGAGCTG

GTGCATAAGG-3 ’ (forward), 5 ’- TGGACTTGTTGATG

GCTCTCT-3’(reverse); GAPDH, 5’- ACAACTTTGGTAT

CGTGGAAGG-3 ’ (forward), 5 ’- GCCATCACGCCACAG

TTTC -3’(reverse).
Data source

Gene Expression Omnibus (GEO) is an online biological

information resource maintained by the National Center for

Biotechnology Information (NCBI) in the United States. GEO is

designed to store and share gene expression data, providing a

publicly accessible platform for researchers, biologists, and

bioinformaticians to store, retrieve, analyze, and share large-scale

gene expression and functional genomics data. GEO is a global
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expression data to the platform. This facilitates data sharing and

accessibility, thereby promoting scientific collaboration and data

reuse. GEO offers a range of tools and resources for data analysis

and visualization, helping researchers interpret and unearth

biological information within the data. These tools assist

researchers in identifying gene expression patterns, biological

pathways, and genes associated with diseases. Two RNA-sequence

files of preeclampsia samples and normal samples were extracted

from the GEO datasets, including GSE44711 and GSE75010

datasets. Furthermore, we screened MRGs with a count of 1513

from MSigDB (https://www.gsea-msigdb.org/gsea/msigdb).
Differential expression analysis

From the GSE75010 database, we sourced the expression

profiles for 1513 MRGs present in preeclampsia samples and

normal samples. Then, using the R platform, we employed the

student’s t-test to identify any MRGs exhibiting differential

expression between the two sample sets. If the p-value was less

than 0.05, it was considered to be statistically significant.
Functional enrichment analyses

Gene Ontology(GO) analysis, is a bioinformatics tool and

method used to study and interpret the biological functions and

processes within large-scale genomics data. GO analysis relies on

the Gene Ontology database, which is a maintained and regularly

updated standardized biological terminology repository used to

describe the functions, cellular components, and biological

processes of genes and proteins. GO analysis was performed on

DE-MRGs using EnrichGO function in the R package

“clusterProfiler”. “clusterProfiler” is a commonly used R package

in the field of bioinformatics, employed for functional enrichment

analysis and visualization. It is typically utilized to interpret high-

throughput experimental data, such as gene expression or

proteomics data, to identify functional features of a set of genes

or proteins (29). GO analysis helps reveal the functions of the

identified genes in terms of cellular molecular functions, biological

processes, and cellular components. Kyoto Encyclopedia of Genes

and Genomes Analysis(KEGG) analysis is a bioinformatics method

used to study and interpret biological pathways and metabolic

pathways within genomics data. It relies on the KEGG database,

which provides detailed information about biological pathways,

metabolic pathways, and associated genes, assisting researchers in

gaining a deeper understanding of the roles and interactions of

genes and proteins in biological processes. The KEGG database

contains information about various biological pathways and

metabolic pathways, spanning multiple species. These pathways

describe the interactions and signaling between different biological

molecules within an organism, including genes, proteins,

metabolites, and more. The KEGG database is a crucial resource

for comprehending the regulation mechanisms of gene functions
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and biological processes. KEGG analysis was performed using the

EnrichKEGG function of the R package “clusterProfiler”. KEGG

analysis is introduced to explain the involvement of these genes in

the metabolism and signaling pathways within biological systems.

Gene Set Enrichment Analysis(GSEA) is a bioinformatics method

used to analyze and interpret the enrichment of biological processes

and pathways in gene expression data. Its primary objective is to

determine whether a set of genes is enriched in specific biological

pathways or functional collections, thereby aiding researchers in

understanding the biological significance of gene expression data.

The R “clusterProfiler” package’s gseGO, gseKEGG, and

gsePathway functions were used to conduct the GSEA. GSEA

possesses significant advantages in studying the overall trends of

gene sets, allowing for a more comprehensive understanding of the

functions of these genes within specific diseases. Enrichment

analyses utilizing Disease Ontology (DO) were executed on DE-

MRGs through the utilization of the “clusterProfiler” and “DOSE”

packages within the R programming environment. The threshold

conditions were a significance level of p-value less than 0.05 and an

adjusted p-value less than 0.05.
Identification of optimal diagnostic gene
biomarkers for preeclampsia

The least absolute shrinkage and selection operator (LASSO) is

a widely used regularization technique in machine learning and

statistics (30). It was introduced by Robert Tibshirani in 1996 and is

primarily used for linear regression, though it has been extended to

other models as well. The LASSO algorithm is designed to address

the issue of overfitting and perform feature selection by adding a

penalty term to the linear regression cost function. The glmnet

package was employed to implement the LASSO algorithm, which

played a pivotal role in dimensionality reduction of the dataset.

Specifically, it was used to identify the DE-MRGs when comparing

preeclampsia patients with normal samples. Through this feature

selection process, the LASSO algorithm aided in pinpointing key

gene biomarkers associated with preeclampsia. Support vector

machine-recursive feature elimination (SVM-RFE) is a feature

selection technique used in machine learning (31, 32). It

combines the principles of Support Vector Machines (SVM) and

recursive feature elimination (RFE) to identify and rank the most

important features in a dataset. The SVM is a robust supervised

learning technique for classification and regression. The method

finds a hyperplane that maximally splits data points into their

respective classes. Meanwhile, an SVM-RFE model was constructed

using an SVM package, and its performance was compared based

on the average misclassification rates observed in 10-fold cross-

validation. Additionally, the identification of optimal gene

biomarkers for preeclampsia involved the convergence of

biomarkers selected by both algorithms. The diagnostic potential

of these optimal gene biomarkers was evaluated through the

calculation of receiver operating characteristic (ROC) curves.

Furthermore, to classify samples in the GSE75010 database, a

logistic regression model was constructed using marker genes.
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Immune infiltration analysis

CIBERSORT is a computational algorithm and tool used in the

field of bioinformatics and genomics to estimate the composition of

cell types within a mixed cell population, typically based on gene

expression data (33). The name CIBERSORT stands for “Cell-type

Identification By Estimating Relative Subsets of RNA Transcripts.”

This method is particularly valuable in the analysis of bulk gene

expression data, where the goal is to deconvolute the gene expression

profiles of different cell types within a tissue or sample. CIBERSORT

is widely applied in the study of tumor microenvironments, immune

cell infiltration, and related fields (34, 35). Through CIBERSORT,

researchers can gain a more comprehensive understanding of the

presence and relative proportions of different cell types in the

samples, providing robust support for further biological

investigations. Using CIBERSORT, we calculated the percentages of

several immune cell types present in low-expression and high-

expression cohorts. The sum of the predicted values for the various

immune cell types gives each sample a total score of one.
Statistical analysis

R 4.1.0 was used for all data manipulation, statistical analysis,

and visualization. The statistical significance of differences between

two groups was determined using either the Student’s t-test or the

Wilcoxon rank-sum test. All tests were two-tailed, and a

significance level of P 0.05 was considered to have been reached.
Results

Identification of DE-MRGs in
preeclampsia patients

Firstly, a retrospective analysis was performed on the data

obtained from a total of 80 preeclampsia cases and 77 normal

samples from the GSE75010 datasets. The DE-MRGs of the

metadata were analyzed using the limma package. A total of 552

DE-MRGs were obtained: 188 genes were significantly upregulated

and 364 genes were significantly downregulated (Figure 1A).
Functional correlation analysis

Then, we performed Functional Correlation Analysis to explore

the possible function of 552 DE-MRGs in preeclampsia progression.

The results of GO analysis revealed that 552 DE-MRGs were mainly

enriched in mitochondrial transport, regulation of mitochondrion

organization, energy derivation by oxidation of organic

compounds, mitochondrial inner membrane, mitochondrial

matrix, mitochondrial protein-containing complex, electron

transfer activity, oxidoreductase activity, acting on NAD(P)H and

NAD(P)H dehydrogenase (quinone) activity (Figure 1B). Then, our

group carried out KEGG assays and observed that 552 DE-MRGs
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were mainly associated with Huntington’s disease, Parkinson’s

disease, Alzheimer’s disease, Oxidative phosphorylation and

Valine, leucine and isoleucine degradation (Figure 1C). Moreover,

the results of DO analysis revealed that 552 DE-MRGs were mainly

related to autonomic nervous system neoplasm, neuroblastoma,

peripheral nervous system neoplasm, inherited metabolic disorder,

tauopathy, Alzheimer’s disease and muscular disease (Figure 1D).
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Identification of diagnostic genes
using LASSO

Our aim was to estimate the diagnostic power of DE-MRGs by

considering the disparities between preeclamptic and healthy

populations. Next, we used a machine learning algorithm called

LASSO on the GSE75010 dataset to screen the significant DE-
A

B

DC

FIGURE 1

Identification of DE-MRGs in preeclampsia samples and Functional Correlation Analysis. (A) Violin plots were employed to visually represent the
differential expression patterns of DE-MRGs between samples derived from individuals with preeclampsia and those from individuals with normal
pregnancy. (B) GO enrichment analyses were conducted to unveil the functional implications of the identified DE-MRGs. (C) Enrichment analyses
based on the KEGG were employed to elucidate the pathway-level significance of the identified genes. (D) Enrichment analyses utilizing the Disease
Ontology (DO) were performed to ascertain the disease-relevant associations of the identified genes.
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MRGs in order to differentiate preeclampsia from normal samples.

The LASSO logistic regression approach was used to extract 19

characteristics associated with preeclampsia, with the penalty

parameters tuned using 10-fold cross-validation (Figures 2A, B).

The results of correlation analysis of 19 genes were shown in

Figure 2C and we observed that many of these genes exhibit

significant positive or negative correlations. In addition,
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Chromosomal locations of candidate 19 genes were shown in

Figure 2D. We built a logistic regression model using the R

package glm based on these 19 marker genes, and the resulting

ROC curves showed that the model successfully distinguished

between normal and preeclampsia samples (AUC = 0.950)

(Figure 2E). Furthermore, ROC curves were developed for the 19

marker genes to highlight their efficacy in discriminating
A B

D E F

G

C

FIGURE 2

Nineteen DE-MRGs were identified as diagnostic genes for preeclampsia using LASSO. (A, B) Preeclampsia-related features were selected using the
LASSO logistic regression algorithm, with penalty parameter adjustment achieved via a stringent 10-fold cross-validation process. (C) The
examination of interrelationships among the 19 diagnostic genes involved a comprehensive correlation analysis. (D) Chromosomal locations of 19
genes. (E) Preeclampsia AUC determined using a logistic regression model. (F) ROC curves were generated to assess the performance of the 19
marker genes. (G) The expression profiles of the 19 genes in samples from individuals with preeclampsia. *p<0.05, **p<0.01, ***p<0.001.
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preeclampsia from normal data. Figure 2F demonstrated that the

AUC was higher than 0.6 for all genes and their expression pattern

was shown in Figure 2G.
Identification of diagnostic genes using
SVM-RFE

Next, we used the SVM-RFE technique to narrow down the 552

DE-MRGs and zero in on the best set of feature genes. The best

feature genes, totaling 19, were then determined (Figures 3A, B).

The results of correlation analysis of 19 genes were shown in

Figure 3C. In addition, chromosomal locations of candidate 19

genes were shown in Figure 3D. We built a logistic regression model

using the R package glm based on these 19 marker genes, and the

resulting ROC curves showed that the model successfully

distinguished between normal and preeclampsia samples (AUC =

0.952) (Figure 3E). Furthermore, ROC curves were developed for

the 19 marker genes to highlight their efficacy in discriminating

preeclampsia from normal data. Figure 3F displayed that the AUC

was higher than 0.6 for the vast majority of genes and their

expression pattern was shown in Figure 3G.
A novel diagnostic mode was developed
using both LASSO and SVM-RFE

To developed a better diagnostic model using DE-MRGs, we

used a Venn diagram to obtain the intersection of LASSO and

SVM-RFE, resulting in the identification of three overlapping genes,

including CPOX, DEGS1 and SH3BP5 (Figure 4A). Next, we

established a novel diagnostic model by combining CPOX,

DEGS1, and SH3BP5. The ROC analysis showed that the 3-

marker gene-based logistic regression model successfully

distinguished between normal and preeclampsia samples (AUC =

0.871) (Figure 4B). In addition, the AUC for all three genes was

greater than 0.7. Moreover, the diagnostic value of the new model

was further confirmed in GSE44711 (Figure 4C) and our cohort

(Figure 4D). Compared to normal samples, preeclampsia samples

showed markedly elevated expression of CPOX, DEGS1, and

SH3BP5, as determined by RT-PCR (Figure 4E).
Relationship between CPOX, DEGS1 and
SH3BP5 with the proportion of infiltrating
immune cells

Using the CIBERSORT method, we confirmed that there was a

correlation between the expression of CPOX, DEGS1, and SH3BP5,

as well as the immune system. Compared to control samples,

preeclampsia samples showed a dysregulated amount of several

immune cells, such as B cells memory, Plasma cells, NK cells

resting, NK cells activated, Macrophages M2, Eosinophils and

Neutrophils (Figure 5A). Then, we found that the level of

SH3BP5 was positively associated with the levels of T cells CD4

naïve(cor=0.311, p = 0.005), Dendritic cells activated(cor= 0.293, p=
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0.009), Eosinophils(cor= 0.261, p= 0.019), NK cells resting(cor=

0.233, p= 0.037) and Monocytes(cor= 0.221, p= 0.049), while

negatively associated with Macrophages M2(cor= -0.284, p=

0.0101) (Figure 5B). The levels of CPOX were positively

associated with the levels of Eosinophils(cor= 0.222, p= 0.048)

(Figure 5C). In addition, The levels of DEGS1 were positively NK

cells resting(cor= 0.261, p= 0.019) and Dendritic cells activated

(cor= 0.251, p= 0.025) (Figure 5D).
Discussion

Preeclampsia, as a severe complication posing a threat to the

health of both pregnant women and fetuses, has long been a subject

of significant concern (36, 37). The prognosis of preeclampsia

involves two crucial aspects: the mother and the fetus. Treatment

and control in a timely manner can save the life of the mother.

Organ malfunction and potentially fatal consequences can result

from poorly treated preeclampsia (38). Women who have had

preeclampsia during pregnancy may also be more likely to have

cardiovascular disease and hypertension later in life. Fetal growth

limitation, intrauterine distress, premature birth, and even stillbirth

have all been linked to preeclampsia because of its effect on the

fetus’s blood supply and oxygen delivery (15, 39). Therefore,

eclampsia poses significant challenges to the fetal prognosis as

well. Early diagnosis of eclampsia is of utmost importance

because it provides an opportunity for intervention and reduces

the risks for both the mother and the fetus. At present, the most

popular strategies for early identification of eclampsia are routine

blood pressure readings and tests for proteinuria. Monitoring of

clinical symptoms, blood tests, and ultrasound exams can also be

used for detection at an early stage. However, there are restrictions

on the use of these techniques. Detection may be difficult at first

since early symptoms are often subtle. In addition, repeated testing

and close observation are often necessary to arrive at a

correct diagnosis.

Preeclampsia is a common pregnancy complication that typically

occurs in the later stages of pregnancy and is characterized by

symptoms such as high blood pressure and proteinuria (40). While

the exact cause of pre-eclampsia is not fully understood, research

suggests that mitochondria may play a role in its pathogenesis.

Mitochondria are tiny structures within cells responsible for energy

production and maintaining normal cellular functions. Studies have

indicated that there may be abnormalities in mitochondrial function in

the cells of pre-eclampsia patients (41, 42). This relationship can be

explored in several ways: Firstly, Damage to cells from an excess of

oxygen free radical generation occurs in pre-eclampsia patients due to

oxidative stress. Oxygen free radicals are generated mostly by

mitochondria. Pre-eclampsia is known to be worsened by oxidative

stress, whichmay be further exacerbated bymitochondrial dysfunction.

Second, it has been hypothesized that decreased energy production by

mitochondria contributes to the symptoms of preeclampsia, which

include elevated blood pressure and proteinuria. Since mitochondria

are the cells’ principal source of energy, any disruption in their function

could lead to a decrease in cellular energy and, in turn, the development

of preeclampsia. Additionally, pre-eclampsia involves abnormalities in
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the immune system, including heightened immune responses. Some

studies suggest that mitochondrial dysfunction may be linked to

immune system abnormalities, potentially leading to irregular

immune responses and the initiation of preeclampsia. In this study,

we firstly analyzed GSE75010 datasets and screened 552 DE-MRGs

between preeclampsia samples and normal samples. Through
Frontiers in Immunology 08
functional correlation analysis of 552 DE-MRGs, we have obtained a

series of crucial findings regarding the pathogenesis of pre-eclampsia.

Firstly, based on the results of GO analysis, these genes are primarily

enriched in biological processes andmolecular functions closely related

to mitochondrial function, including mitochondrial transport,

regulation of mitochondrial organization, and energy derivation
A B

D E F

G

C

FIGURE 3

Nineteen DE-MRGs were identified as diagnostic genes for preeclampsia using SVM-RFE. (A, B) To narrow down the DE-MRGs and find the best set
of feature genes, the SVM-RFE algorithm was used. (C) The correlation analysis of 19 diagnostic genes. (D) Chromosomal locations of 19 genes. (E)
Preeclampsia AUC determined using a logistic regression model. (F) ROC curves for the 19 marker genes. (G) The expression pattern of 19 genes in
preeclampsia samples. *p<0.05, **p<0.01, ***p<0.001.
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through the oxidation of organic compounds. This strongly suggests

the significant role of mitochondria in the pathological processes of

preeclampsia. In addition, the KEGG analysis reveals that these genes

are associated with neurodegenerative diseases such as Huntington’s

disease, Parkinson’s disease, Alzheimer’s disease, as well as processes

like oxidative phosphorylation and the degradation of branched-chain

amino acids. This further underscores the potential regulatory role of

mitochondria in neurodegenerative diseases and abnormalities in

energy metabolism, which are relevant to the pathogenesis of

preeclampsia. Lastly, the DO analysis indicates that these genes are

related to various diseases and disease categories, including autonomic

nervous system neoplasms, neuroblastomas, inherited metabolic

disorders, tauopathies, Alzheimer’s disease, and muscular diseases.

This suggests a possible link between mitochondrial dysfunction and

the development and progression of these diseases, which also have

intersections with preeclampsia. Overall, these results provide
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compelling evidence that mitochondrial function is important to the

development of preeclampsia. Mitochondrial regulation of energy

metabolism, oxidative stress, and nervous system-related pathways

may all play a role in the etiology of preeclampsia. These findings

have important implications for future diagnostic and therapeutic

strategies, as they shed light on the pathogenic underpinnings of

pre-eclampsia.

LASSO is a statistical method used for regression analysis and

feature selection. It was initially introduced by the statistician Robert

Tibshirani in 1996 and has found widespread application in the fields

of data modeling and feature selection (43). In the context of screening

diagnostic genes, LASSO is highly valuable in the domains of molecular

biology and bioinformatics. When researchers need to sift through

large-scale gene expression data to identify key genes associated with a

specific disease or biological process, LASSO can be instrumental. By

incorporating L1 regularization into linear regression models, LASSO
A B

D

E

C

FIGURE 4

A novel diagnostic model was developed using LASSO and SVM-RFE. (A) The marker genes obtained from the LASSO and SVM-RFE models. (B–D)
The diagnostic value of the new model was confirmed in G GSE75010, GSE44711 datasets and our cohort. (E) The expressing pattern of CPOX,
DEGS1 and SH3BP5 in preeclampsia samples and normal samples from our cohort. *p<0.05, ***p<0.001.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1304165
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Huang et al. 10.3389/fimmu.2023.1304165
automatically shrinks the coefficients of irrelevant or weakly related

genes to zero, effectively excluding them and retaining only the genes

that are relevant to the disease or biological process of interest (44). In

this study, we performed LASSO analysis using 552 DE-MRGs and

screened 19 critical diagnostic genes for preeclampsia. Then, we

developed a novel diagnostic model using the above 19 diagnostic

genes and it exhibited a strong diagnostic ability with AUC=0.950.

SVM-RFE is a machine learning method primarily used for feature

selection, particularly for identifying important features or genes

relevant to diagnostic or classification tasks (45). It reduces the

dimensionality of high-dimensional data, thereby enhancing the

efficiency and generalization capability of models. In addition, by

selecting the most important features, SVM-RFE significantly

improves the performance of classification models, making them

more discriminative and accurate. Most importantly, this process is

automated and does not require subjective human intervention,

helping eliminate researcher bias (46, 47). Overall, SVM-RFE is a

powerful tool used for selecting genes or features relevant to diagnostic

tasks. It combines the classification capabilities of Support Vector

Machines with the feature selection strategy of Recursive Feature

Elimination, enhancing the performance of classification models,

mitigating the curse of dimensionality, and automating the feature

selection process. This method finds extensive application in
Frontiers in Immunology 10
bioinformatics and medical research, particularly in tasks related to

diagnostics, biomarker identification, and other related endeavors. In

this study, we also performed SVM-RFE and screened 19 critical

diagnostic genes for preeclampsia. Then, we also developed a novel

diagnosticmodel using the 19 diagnostic genes and it exhibited a strong

ability in screening preeclampsia samples from normal samples. Our

findings suggested the strong ability in screening diagnostic genes.

To further optimize the diagnostic model, we integrated two

machine learning algorithms and identified three crucial overlapping

genes, including CPOX, DEGS1 and SH3BP5. CPOX is a gene that

encodes an enzyme in the human body. This enzyme plays a crucial

role in the heme biosynthesis pathway, facilitating the conversion of a

precursor molecule called Coproporphyrinogen into heme (48). Heme

is a critical component of hemoglobin and other hemoproteins,

essential for the transport of oxygen throughout the body. Mutations

or abnormalities in the CPOX gene can disrupt the heme biosynthesis

pathway, potentially leading to genetic disorders such as porphyria

(49). Porphyria is a group of rare inherited diseases, including subtypes

like Porphyria Cutanea Tarda (PCT). PCT is one of the most common

forms of porphyria and typically manifests with skin sensitivity and

skin symptoms upon exposure to light. To date, the function of CPOX

in preeclampsia has not been investigated. The protein encoded by the

DEGS1 gene is an enzyme that plays a crucial role in lipid metabolism
A B

DC

FIGURE 5

An in-depth analysis of the immune landscape to gain a comprehensive understanding of how the immune system performs and interacts within
preeclampsia. (A) The CIBERSORT algorithm was employed to investigate disparities in the immune microenvironment between individuals with
preeclampsia and a control group comprising normal samples. (B–D) Correlation between SH3BP5, CPOX and DEGS1 and infiltrating immune cells
in preeclampsia samples.
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within the body. It is involved in regulating the synthesis of

sphingolipids, which are vital lipid molecules with key functions in

the nervous system (50, 51). Specifically, the DEGS1 protein

participates in the conversion of dihydroceramide, a precursor

molecule, into ceramide. Ceramide is a type of lipid molecule that

plays essential roles in building cell membranes, maintaining cell

structure, and participating in cell signaling processes. In the nervous

system, particularly in the formation of myelin sheaths, ceramides are

critical components for preserving the normal functioning of nerve

cells and protecting nerve fibers. Therefore, the normal function of the

DEGS1 gene is of paramount importance for maintaining the health of

the nervous system and ensuring proper lipid metabolism.

Abnormalities in the DEGS1 gene or protein may be associated with

neurological disorders or other related health issues. However, the

expression and function of DEGS1 preeclampsia have not been

investigated. SH3BP5 is a protein that plays a crucial role in the

immune system and cell signaling. It contains multiple functional

domains, including the SH3 (Src homology 3) domain, which is used

for protein-protein interactions (52). SH3BP5 interacts with other

proteins through these domains, participating in the regulation of

cell signal transduction. In the immune system, SH3BP5 plays a

significant role, especially in the regulation of the activation of T cells

and B cells. It plays a key role in the signaling of T cell receptors,

influencing the activation and function of T cells, thereby regulating

immune responses (53, 54). Abnormal expression or malfunction of

SH3BP5 was associated with certain diseases and disease processes,

including leukemia, lymphoma, and autoimmune diseases.

Additionally, SH3BP5, through its interactions with other proteins, is

involved in the regulation of multiple signaling pathways, including

Ras-MAPK, PI3K-Akt, and NF-kB pathways, affecting cell survival,

proliferation, differentiation, and immune responses, among other

critical cellular functions. However, the function of SH3BP5 in

Preeclampsia progression remained unknown. In this study, we

found that the expressions of CPOX, DEGS1 and SH3BP5 were

highly expressed in preeclampsia samples in GSE44711 and

GSE75010 datasets and our cohort. The high expression of CPOX,

DEGS1, and SH3BP5 may be associated with the pathogenesis of

preeclampsia. The abnormal expression of these genes may play a role

in the development of preeclampsia. Then, we developed a novel

diagnostic model using CPOX, DEGS1, and SH3BP5 and it showed a

strong ability in screening preeclampsia samples from normal samples.

In addition, its diagnostic value was further confirmed in GSE44711

datasets and our cohorts. Our findings highlighted the potential of this

newmodel used as a novel diagnostic biomarker. Our study established

a diagnostic model based on MRGs, demonstrating excellent accuracy

in the early identification of preeclampsia patients. This not only

provided pregnant women with opportunities for earlier intervention

but also equipped clinicians with more precise tools for managing cases

of preeclampsia. From a public policy perspective, our findings may

contribute to the formulation of relevant policies to ensure appropriate

attention for women at higher risk of preeclampsia. This included

reinforcing regular trimester screenings for pregnant women using our

model, promoting broader screening, and implementing preventive

measures. These initiatives have the potential to enhance the overall

health of pregnant women and play a positive role in public health.

Nevertheless, it was imperative to acknowledge the inherent potential
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for variability across distinct datasets and populations. Prudent

consideration was warranted when extrapolating the findings to

heterogeneous cohorts.

The immune microenvironment refers to small regions located

within tissues, either inside or outside the body, where interactions

among immune cells, signaling molecules, and the extracellular matrix

impact the activity of the immune system (55, 56). The immune

microenvironment plays a crucial role in regulating immune responses,

maintaining tissue health, and responding to diseases such as infections

and tumors. Within the immune microenvironment, various immune

cells such as macrophages, T cells, B cells, and natural killer cells work

closely together, each performing its specific immune functions. These

cells communicate through the secretion and response to signaling

molecules, which include cytokines, chemokines, antibodies, and

inflammatory mediators (57, 58). These molecules can activate,

suppress, or guide the activities of immune cells. Furthermore, the

immune microenvironment also includes the extracellular matrix,

which is a structural scaffold composed of proteins, polysaccharides,

and other molecules. It is crucial for maintaining tissue structure and

facilitating the migration and positioning of immune cells. The

immune microenvironment is also associated with the inflammatory

process, which is a protective immune response usually triggered by

infections or tissue damage. The immune microenvironment plays a

vital role in monitoring abnormal cells, including cancer cells. Immune

cells can identify and eliminate these abnormal cells through cytotoxic

mechanisms or other mechanisms. However, some tumors and

pathogens can develop immune evasion mechanisms to escape the

immune system’s attacks. In recent years, in-depth research into the

immune microenvironment had driven the development of

immunotherapy approaches. These treatments aim to activate the

immune system to help the body combat infections, cancer,

autoimmune diseases, and other conditions. Therefore, the immune

microenvironment was considered a dynamic ecosystem that is crucial

for maintaining immune balance and responding to various health

challenges. During a normal pregnancy, the mother’s immune system

undergoes a series of changes to prevent an immune response against

the fetus. This immune regulation contributes to maintaining the

stability and success of pregnancy (59, 60). However, in the case of

preeclampsia, this immune regulation may become disrupted, leading

to abnormal activation of immune cells. Inflammation and the

activation of immune cells may play a crucial role in the

pathogenesis of preeclampsia (61). Some studies suggested that

immune cells such as T cells, macrophages, and natural killer cells

may be in an abnormal state in preeclampsia patients, leading to

inflammatory responses and vascular damage, thereby causing

hypertension and other preeclampsia symptoms. The inflammatory

process may have an important role in the development of

preeclampsia. The release of inflammatory mediators and cytokines

can lead to damage to vascular endothelial cells, increased vascular

permeability, and the development of proteinuria and high blood

pressure (62, 63). In addition, Mitochondria served as the primary

source of reactive oxygen species (ROS), playing a role as signaling

molecules. Controlled ROS production is crucial for normal immune

responses, including the activation of immune cells. However, an

imbalance in mitochondrial ROS production may lead to abnormal

immune reactions at the placenta. Mitochondrial function was
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involved in cellular metabolism and may influence the polarization of

immune cells. Metabolic changes in immune cells, triggered by

mitochondrial signals, may result in immune memory. This

metabolic imprint could impact long-term immune responses and

tolerance at the placenta (64–66). In this study, a positive correlation

was observed between the levels of SH3BP5 and specific immune cell

subgroups. Specifically, SH3BP5 levels showed a positive association

with CD4 naive T cells, activated dendritic cells, eosinophils, resting

natural killer cells, and monocytes. This suggested that in cases of

preeclampsia, elevated levels of SH3BP5 may be accompanied by an

increase or activation of these immune cell subgroups. Conversely, a

negative correlation was found between SH3BP5 levels and M2

macrophages, suggesting that higher levels of SH3BP5 may be

associated with a reduction or suppression of M2 macrophages.

These findings suggested a potential immune system dysregulation in

the pathogenesis of preeclampsia. Preeclampsia is typically associated

with abnormal immune activation and inflammation. However,

further research is needed to gain a deeper understanding of the

precise mechanisms by which SH3BP5 influenced immune cell

subgroups in preeclampsia.
Conclusion

We screened a novel diagnostic model using CPOX, DEGS1 and

SH3BP5 based on Machine learning. In addition, we provided

important evidences that SH3BP5 may be involved in preeclampsia

progression via influencing immune microenvironment. The use of

machine learning models has the potential to contribute to the

development of personalized medicine because it can predict the

risk of preeclampsia based on specific molecular markers in patients.

This will enable healthcare providers to offer personalized care and

interventions to each pregnant woman, with the aim of minimizing

the risk of preeclampsia to the greatest extent possible. In summary,

these findings provide new directions and opportunities for research

and treatment in the field of preeclampsia. Future research and

clinical practices hold the promise of further enhancing our

understanding of preeclampsia and improving patient outcomes

and treatment effectiveness.
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