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Optimal dosage protocols for
mathematical models of synergy
of chemo- and immunotherapy
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1Institute of Mathematics, Lodz University of Technology, Lodz, Poland, 2Department of Mathematics
and Statistics, Southern Illinois University Edwardsville, Edwardsville, IL, United States, 3Department of
Electrical and Systems Engineering, Washington University, St. Louis, MO, United States
The release of tumor antigens during traditional cancer treatments such as radio- or

chemotherapy leads to a stimulation of the immune response which provides

synergistic effects these treatments have when combined with immunotherapies.

A low-dimensional mathematical model is formulated which, depending on the

values of its parameters, encompasses the 3 E’s (elimination, equilibrium, escape) of

tumor immune system interactions. For the escape situation, optimal control

problems are formulated which aim to revert the process to the equilibrium

scenario. Some numerical results are included.
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1 Introduction

The release of tumor antigen during traditional cancer treatments, such as radio- (1) or

chemotherapy (2), can lead to a stimulation of the innate immune response which, in some

cases, is able to trigger protective antitumor immunity with possibly long-lasting effects (3, 4).

For example, a well-documented abscopal effect of radiation therapy (i.e., the reduction of

tumor metastases in areas well outside the field of radiation) is hypothesized of being immune

mediated (5–8). These stimulatory effects are the basis for an observed synergy some of these

therapies have with immunotherapy, e.g., check-point blockades.

Mathematical models of tumor growth and treatment have a long history going back to

the 1980s with research unabatedly continuing (e.g., see (9)). Probably the earliest works on

tumor-immune interactions are Stepanova’s paper (10) and (11) by Kuznetsov et al. while

mathematical models including immunotherapies are more recent [e.g (12–20)]. Capturing

all aspects of tumor-immune interactions in a mathematical model is difficult as the

competitive interactions between tumor cells and the immune system are complex, to say

the least, and still are the topic of intense medical research. While large-scale, agent-based,

PDE, or hybrid models are more precise, they suffer from the inabilities to determine a large

number of parameters.
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In this paper, we consider a qualitative, low-dimensional

mathematical model (21). Rather than analyzing the dynamical

system for a specific set of parameters, the aim of a qualitative

analysis is to understand the totality of all the possibilities the model

allows for. Especially for nonlinear models this is an important

aspect in pointing out both mathematical limitations and

complexities of the underlying dynamics. Motivated by the papers

(10, 11, 22, 23) here we consider a model for tumor immune system

interactions which in addition to tumor volume and immuno-

competent cell densities includes as a third separate variable tumor

antigen. This model retains the main aspects of tumor immune

system interactions called the three E’s of cancer immunoediting

(24, 25). These are (i) elimination: the immune system is able to

completely eradicate the tumor; (ii) equilibrium: adaptive immunity

is able to maintain cancer in a benign state (tumor dormancy) (26),

and (iii) tumor escape: tumor growth overcomes or evades the

actions of the immune system (27). From a practical (therapeutical)

point of view, the first case will never be seen while therapy will not

be able to save the patient in the last. Only when it is possible to

influence the dynamics (that is, tumor growth) through treatment

which will lead to positive changes on a permanent basis, i.e., even

after treatment has been stopped, a cure is possible. This requires

that the system can be reverted back to the equilibrium situation.

Optimal control problems are optimization problems in time in

which the full range of possibilities to influence the dynamics of a

system, i.e., without a priori restrictions on these structures, is

considered. This is very different from a “best in class” argument

sometimes wrongly also called optimal control in many

publications where only a limited number of possibilities is

considered, often by mere simulations. Typically in optimal

control problems the aim is to transfer the state of a dynamical

system from a given initial point into a desired set of terminal states.

This is accomplished by minimizing some suitably chosen criterion

subject to the dynamics of the system and other constraints that

need to be satisfied. Solutions then are functions of time which

describe the best actions relative to the chosen criterion.

Historically, there has been great success in applying optimal

control to engineering problems (moon landing, autopilots on

airplanes) and economics (portfolio optimization) while medical

applications with its uncertainties in the dynamics—these are

generally based on ad-hoc modeling premises, not like in physics

on first principles—and usually a large parameter uncertainty in the

model lack similar success stories. Nevertheless, the scheduling of

therapeutic agents over time has all the characteristics of an optimal

control problem (28) and there is an increasing bulk of literature in

which optimal control is applied to medical problems, e.g., see (19,

29–33). The aim is to minimize some objective related to tumor

burden and quality of life of the patient while the underlying system

follows the processes of tumor development and treatment

interactions. While direct clinical applications are a mere

possibility for the future in our opinion, currently the use of

optimal control techniques lies more in understanding the

dynamics of mathematical models proposed to study medical

processes (which contributes to a validation of these models)

while solutions to optimal control problems can be helpful in
Frontiers in Immunology 02
identifying realistic therapy protocols that possibly can be

explored in medical trials and practice (28, 31). The contributions

of our paper lie in this direction. We formulate an optimal control

problem for a qualitative mathematical model of tumor immune

system interactions which considers the transfer of the state of the

system from a malignant initial condition (corresponding to a

tumor escape situation) into a benign state (corresponding to the

equilibrium scenario) and show how geometric properties of the

dynamics help in formulating and understanding the proper goal of

treatment. We discuss the complexities of obtaining optimal

controls in this case and highlight some numerical results.
2 Methods

A low-dimensional, qualitative model for tumor immune

system interactions under chemo- and immunotherapy is

formulated as a dynamical system and analyzed mathematically.

For the medically relevant scenario of tumor escape (malignant),

optimal control problems are formulated whose solutions would

revert the system to the equilibrium case (benign).
2.1 Mathematical model

We consider the following dynamics (21) for tumor immune

system interactions based on classical papers by Stepanova (10) and

Kuznetsov et al. (11):

_x = xx 1 −
x
x∞

� �
− qxy − axu, (1)

_y = a(1 − bx)yz + g − dy − k yu + nyv, (2)

_z = sx + yxu − mz, (3)

State variables are the tumor volume x, the immunocompetent

cell density y, and tumor antigen z. The variable y is a non-

dimensional, order of magnitude quantity which is related to

various types of T-cells activated during the immune reaction and

summarily represents the actions of the immune system. The

variables u and v represent time-varying dose rates u = u(t) at

which chemotherapy is given and a time-varying immune boost

v = v(t). For simplicity, drug dose rates and concentrations are

identified. (It is well-known how to deal with the required changes if

standard pharmacokinetic models are included (34). All Greek

letters and a and b are parameters which for the time under

consideration are assumed constant. The meaning of variables

and parameters is given in Table 1.

Most of the terms in the equations are standard. Log-linear

terms of the Skipper model (35) are used to formulate the damage

done to the tumor through the concentrations of the agents and a

logistic growth model is used for the tumor volume. This is merely

for sake of specificity and analogous results hold qualitatively, for

example, for a Gompertzian growth function. Equations 1, 2 follow
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the classical papers by Stepanova (10) and Kuznetsov (11) and have

been taken over with only small changes. Equation 3 extends these

earlier 2-dimensional models to include a direct link between tumor

antigen z and the immuno-competent cell density y. This has led to

the modified term a(1 − bx)yz used in Equation 2. In (10) this term

instead was taken of the form a(1 − bx)y2 with the justification that

tumor antigen would be proportional to the tumor volume thus

generating the factor y2 in the interaction term as tumor antigen is

not considered separately in that model. In (2) we have therefore

replaced one the factors y with z restoring a direct link between

these two variables. Equation 3 is based on a similar equation in (36)

and models the evolution of tumor antigen. It is assumed that the

tumor produces antigen z at rate s which results in an intrinsic (i.e.,

not therapy induced) immunogenicity of the tumor. Antigen is

cleared by the immune system at rate µ which leads to the creation

of immune effector cells which generate a stimulating effect onto the

proliferation of lymphocytes and thus a positive influx into the

compartment determining the immunocompetent cell density y.

This effect is represented by the term ayz in Equation 2. The term

yxu models the immuno-stimulatory aspect of therapy assuming

that the tumor produces antigen at a dose dependent rate yu with y
modeling the therapy induced immunogenicity of the tumor.
2.2 The three E’s of immuno-editing

Depending on the value of the parameters, the dynamical

Equations 1–3 properly replicate the full variety of medically

realistic scenarios. In order not to be confusing with the medical

notion of equilibrium, we use the terminology stationary point for

the states which are obtained as solutions when the derivatives in

Equations 1–3 are set to zero. There always exists a tumor-free

stationary point given by w0 =  (0,   gd ,  0). It is stable if xd < qg and
unstable if xd > qg. Intuitively, stability means that solutions of the

dynamics which start near w0 converge to w0 in time. The relevant

term is a difference between products of tumor stimulating

parameters (the tumor growth rate x and natural death rate d of

immune cells) and tumor inhibiting parameters (the influx g
stimulating the immune system and the effectiveness q of the
Frontiers in Immunology 03
immune system fighting the tumor). Stationary points with

positive tumor volumes x∗ are zeros of a cubic polynomial Q = Q

(x) computed by eliminating y∗ and z∗ from the equations _y = 0 and

z ̇ = 0. Given the logistic growth model used in Equation 1, only

zeros in the range 0< x∗ < x∞ are viable solutions for the

tumor volume.

The three E ’s of immuno-editing correspond to the

following scenarios:

2.2.1 Elimination
This situation arises if the tumor-free stationary point is stable

and no stationary points with positive tumor volumes exist. All

solutions of the dynamics converge to the tumor-free stationary

point, i.e., the actions of the immune system are eliminating the

tumor. While this is not a relevant scenario medically—in fact, it

will never be observed—it nevertheless is part of the complete

picture of tumor immune system interactions.

2.2.2 Equilibrium
This situation arises once the tumor-free stationary point

becomes unstable and there exists a stationary point with small

tumor volume x∗ (and generally up-regulated y∗) which is stable.

We call this stationary point ‘benign’. There are two different

scenarios mathematically which correspond to the medical notion

of equilibrium: In the simpler one, the benign stationary point is the

only stationary point with positive tumor volume and all

trajectories converge to it. In the second case, called the bi-stable

scenario, there exist three stationary points with positive tumor

volumes labelled 0 < x∗,b < x∗,u < x∗,m < x∞. We call the stationary

point with lowest tumor volumes, x∗,b, benign and the one with

highest tumor volume, x∗,m, malignant. This is merely terminology,

but it is somewhat justified by the fact that typically the tumor

volume x∗,b is small with high y∗,b while x∗,m is high (close to

carrying capacity) with low y∗,m. Both the benign and malignant

stationary points are stable and we call their regions of attraction

(i.e., the set of all initial conditions (x0,y0,z0) from which the

solution of the dynamics converges to the respective equilibrium

point) the benign, respectively malignant regions. The third

stationary point x∗,u is unstable and there exists a surface (its 2-
TABLE 1 Variables and parameters.

variable interpretation parameter interpretation

x
x∞

tumor volume
tumor carrying capacity

x
q

tumor growth rate
tumor-immune interaction

y immunocompetent cell density a
b
g
d

tumor antigen stimulated proliferation rate
inverse threshold for tumor suppression
rate of influx into y from primary organs

death rate of T-cells

z tumor antigen s
µ

intrinsic immunogenicity of the tumor
elimination of antigen by the immune system

u concentration of a cytotoxic agent a
k
y

chemotherapeutic killing parameter on x
chemotherapeutic killing parameter on y
therapy induced boost to immunogenicity

v concentration of an immunotherapeutic agent n immune boost
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dimensional stable manifold) that passes through it which separates

the benign from the malignant region, the so-called stability

boundary. (For 2-dimensional systems the terminology separatrix

is common (37)). Depending on where the initial condition for the

system lies, as time evolves, for the system without any outside

interventions the state will converge either to the benign stationary

point— and this also corresponds to the medical equilibrium

scenario—or it will converge to the malignant stationary point in

which case tumor escape occurs. In a rather precise mathematical

sense, the bifurcations (changes in stability) which arise as the

values for parameters change characterise the transitions from the

medical state of equilibrium to the one of tumor escape.

2.2.3 Escape
In addition to the situation just described, it is also possible that

there exists just one viable equilibrium point which, however, has

high tumor volume x∗ and low y∗, i.e., is malignant. In this case,

unless somehow by means outside of the modeling done here a

change in the values of the parameters can be achieved, after the

termination of any treatment the state of the system will always

converge to the malignant equilibrium point and it is not possible to

revert to the medical condition of equilibrium. In this case, a cure

is elusive.

We illustrate the role of the stability boundary in the bi-stable

scenario through a 2-dimensional representation in Figure 1.

Formally, we have dropped Equation 3 and replaced z in

Equation 2 by the equilibrium relation µz = sx. This thus is not
directly related to Equations 1–3, but is merely intended to give an
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illustration of the underlying geometric scenario. Mathematically it

will look the same, but not quite as clearly visible, in a higher-

dimensional setting. Figure 1 faithfully represents the dynamics in

the bi-stable case when both a stable benign and malignant

stationary point exist. Obviously, whether or not this is the case

depends on the parameter values, but it will hold true for an open

set, i.e., for a whole range of values. We note that the same feature is

present in the original models by Stepanova (10) and Kuznetsov

(11), but also in a more recent in spirit similar 2-dimensional model

by Bekker et al. (37) (where a slightly simplified dynamics has been

used). In that paper the effects of various immunotherapies on

shifting the stability boundary are considered for the model. All

these low-dimensional mathematical models clearly point out the

stability boundary as the defining structure for tumor immune

system dynamics. Such a stability boundary only exists in the

bistable scenario and for therapy is the only relevant case.
2.3 Formulation of treatment as an optimal
control problem in the bi-stable scenario

From a practical point of view, only if the current state of the

system (initial condition) is malignant the question of treatment

arises. Treatment then should aim to move the state into the benign

region, possibly in an efficient way or, in other words, one simply

wants to minimize the use of agents to limit side-effects. If ‘tumor

escape’ can be reversed to the ‘equilibrium’ condition through

therapy by moving the state of the system into the benign region,
FIGURE 1

A 2-dimensional illustration of the bi-stable scenario showing the benign stationary point (x∗,b,y∗,b) in green, the saddle point (x∗,u,y∗,u) in black and
the malignant stationary point (x∗,m,y∗,m) in red. The dashed red curve is the stability boundary which separates trajectories which converge to the
benign stationary point (above the red curve) from those which converge to the malignant stationary point (below the red curve).
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then—but this assumes that parameter values will not change—after

therapy is halted convergence to the benign equilibrium point

will occur.

Formulating the problem as an optimal control problem can

help with singling out reasonable therapy protocols obtained by

minimizing some criterion. For the problem considered here, the

initial condition is the present state of the system, desired terminal

states are in principle all points in the benign region, the dynamics

is given by Equations 1–3, and other constraints that need to be

considered are related to the side effects of therapy. Optimal

controls then give the protocols on how to administer the

therapeutic agents in time which are ‘best’ relative to the chosen

criterion. Formulating this criterion is a relevant step in this process.

If the objective function does not properly represent the overall goal

of therapy results may simply not give beneficial suggestions for

therapy protocols. When formulating this criterion to be

minimized, the following aspects thus must be taken into account:

(1)Minimizing the objective must induce the system to move into

the benign region. For this aim, the geometric shape of the boundary

between the benign and malignant regions matters, but there exist

many ways to realize such an objective. Here we use a penalty term

of the form Vxx(T) + Vyy(T) + Vzz(T) evaluated at the terminal

point w(T) where V
!

= (Vx ,  Vy ,  Vz) is a suitable vector oriented to

point from the benign into the malignant region (as we shall

minimize the objective). Generally, one wants to minimize the

tumor volume, but it also is the aim to up-regulate the

immunocompetent cell density. Thus Vx should be positive while

Vy may be allowed to be negative.

(2) Side effects of the therapies have not been included in the

modeling. Hence these must now be incorporated indirectly by

including penalty terms into the objective which limit the overall

amounts of drugs given. The total amount of drugs given are

measured by the so-called AUC (‘area under the curve’) in

pharmacology. This quantity is given by the integral over the

dose rate of the drugs:
Z T

0
u(t)dt and

Z T

0
v(t)dt. Alternatively, a

priori constraints on these amounts could be fixed and then

the question would be how to best administer these amounts

in time. In the literature often quadratic terms are used for the

controls for mathematical expediency, but they have no

pharmacological meaning.

(3) Mathematically, the existence of a solution needs

to guaranteed.

All these considerations led us to formulate the following

objective:

J = J(u, v) = Vxx(T) + Vyy(T) + Vzz(T)

+
Z T

0
(Au(t) + Bv(t) + C)dt : (4)

The objective Equation 4 is a weighted average of ‘good’ and

‘bad’ terms with the components of the vector V
!

and the

coefficients A, B and C weights. These are variables of choice

which need to be chosen to strike a balance between the benefit

at the terminal time T and the overall side effects. As it is standard in
Frontiers in Immunology 05
engineering approaches, these coefficients should be calibrated to

fine-tune the response of the system.
3 Results

Understanding the geometric properties of the stability

boundary gives relevant insights into the possible behavior of ad-

hoc chosen therapy protocols. Given a malignant initial condition, it

is a more than reasonable strategy to apply chemo- and/or

immunotherapy for some time t, probably chosen by medical

guidelines. The time of administration, however, may be crucial.

The example in Figure 2 highlights this importance as it shows that

the timing of therapy can make a crucial difference and that what

might overall constitute a ‘good’ strategy is anything from obvious.

The graphs in the figure show the course of two trajectories in (x,y)-

space (not their evolution in time) when both chemo- and

immunotherapy are applied for time t and then therapy is

stopped. The specific numerical values are irrelevant as we merely

want to illustrate a general phenomenon which always exists in the

bistable scenario, simply caused by the presence of a stability

boundary. The initial segment under therapy is shown as the

magenta curve, the subsequent trajectories without treatment are

shown in red and green, respectively. For the red portion, t = 0.72

and this was not sufficient to move the state of the system into the

benign region so that convergence to the malignant stationary point

occurs. On the other hand, increasing the time just to t = 0.73 the

benign region is reached and subsequently the trajectory converges

to the benign stationary point, i.e., the medical condition called

equilibrium has been achieved. At the time when therapy is stopped,

the states lie close to the stability boundary, but on opposite sides.

For a while both trajectories still trace the stability boundary and in

each case the tumor volume increases for some time and so does the

immunocompetent cell density making it rather impossible to

decide whether the course of action was successful or not.

Separation of the trajectories only occurs when the state gets close

to the unstable saddle point w∗,u where the instability of the saddle

becomes dominant and forces the trajectories to converge to one of

the stable stationary points. Only at that time the separation

between benign or malignant behavior becomes noticeable. If the

state is in the benign region, eventually the reaction of the immune

system will be strong enough to control the tumor. This clearly

points to the importance of transferring the state of the system well

into the benign region. Such an objective is easily incorporated in an

optimal control framework, but it requires some knowledge about

the geometry of the stability boundary.

Considering treatment as an optimal control problem avoids

such fallacies as the solutions can be forced to transfer the state well

into the benign region. For the problem formulated here a

theoretical analysis based on necessary conditions for optimality

[e.g., see (38–41)] singles out the following types of therapy

protocols as optimal (42, 43): (a) drug administration schedules

which alternate between maximum dose-rates and rest-periods, so-

called bang-bang controls in optimal control (43) and (b) specific
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intermittent administrations with particular time-varying dosage

protocols at reduced rates. These rates are determined by

mathematical formulas for what in optimal control theory are

called singular controls. Such protocols can be ruled as being not

optimal for immunotherapy based on a mathematical analysis of

the problem with tools of geometric optimal control theory

(Legendre-Clesch condition (38, 39, 41).

Figure 3 shows a numerically computed candidate bang-bang

solution for the problem with a fixed terminal time T. The panel

shows the controls u and v and a projection of the corresponding

trajectory into (x,y)-space. Segments of the curves which

correspond to immunotherapy only (u = 0 and v = 1) are shown

as a magenta curve and segments of the curves which correspond to

chemotherapy only (u = 1 and v = 0) are shown as a blue curve. The

segment of the curve where both chemo- and immunotherapy are at

full dose (u = 1 and v = 1) is shown as a brown curve and the

segment of the curve where none of chemo- or immunotherapy is

active (u = 0 and v = 0) is shown as a black curve. As before, this is

merely an episodal illustration.

Unfortunately, and contrary to what seems to be claimed in

some publications, there are no “fool-proof” numerical algorithms

(not to mention software) which safely compute optimal controls

for a mathematical problem of the type considered here. The

Hamiltonian function for the control problem is not convex in

the control and this precludes the use of simple two-point boundary

algorithms. Discretization methods are notoriously unreliable when

it comes to locating optimal singular controls often arbitrarily

declaring that optimal solutions have been found simply when
Frontiers in Immunology 06
the value of the objective changes by little. The extremal shown in

Figure 3 was painstakingly computed solving the very sensitive two-

point boundary for bang-bang controls using our own code

verifying that the result was an extremal. In line with the

theoretical results, immunotherapy follows a bang-bang control

and here is active at the beginning to be terminated at the second

switching time t2 = 0.630. The more potent chemotherapy is

activated almost immediately at the first switching time t1 = 0.055

and both therapies are on at full dose until the second switching

time. The bulk of the reduction in tumor volume occurs during this

time-interval. Chemotherapy is terminated at the third switching

time t3 = 1.195 and then only reactivated briefly at the fourth

switching time t4 = 2.4580 close to the end of the therapy horizon.

During the long no treatment phase [t3, t4] the tumor volume first

increases slightly, but then, as the immunocompetent density

increases, starts to decrease again. This behavior is typical for the

evolution of a trajectory in a benign region. Therapy then concludes

with a brief segment of maximum dose chemotherapy after the

prolonged no treatment phase [t3, t4]. While there are no claims

made that the parameter values underlying this calculation are

medically realistic (they were simply used from various sources to

illustrate the structure of possible solutions) and the switching times

are merely given to convey some sense of the timing for this

particular example, both the controls and trajectories follow

reasonable patterns.

The graph in Figure 3 represents a situation when chemotherapy

is significantly more effective than immunotherapy—this was

reflected in the numerical values chosen for this particular
FIGURE 2

Projections of trajectories which administer both chemo and immunotherapy (u ≡ 1 and v ≡ 1) from the initial condition (x0,y0,z0) = (600,0.40,400)
(shown as a blue dot) for time t and then turn off therapy. The initial segment under therapy is shown by a magenta curve, the subsequent
trajectories are shown in red (t = 0.72), respectively green (t = 0.73). After therapy is stopped both trajectories still show virtually the same behavior
for some time (that is, tumor volume and immuno competent sell density evolve the same way in time) before a separation occurs. Only then the
red trajectory converges to the malignant stationary point while the green one converges to the benign one. As this simulation demonstrates, a
small change in the administration time of the agents can make a big difference and this may not be recognizable for quite some time from the time
history of the states.
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computation—and is only meant to be representative for such a

scenario. Depending on the severity of side effects (represented in the

weights of the objective) and the efficacy of the particular agents,

different distributions of the administration of the agents will arise.

Various examples of locally optimal bang-bang controls for a related

optimal control problem are given in (42). Based on our numerical

computations, bang-bang controls (administrations of the agents at

full dose with rest periods) are the commonly observed optimal

protocols for these types of problems.
4 Discussion

We formulated a 3-dimensional model for tumor-immune

system interactions which in an attempt to more closely model the

synergies traditional treatments might have with immunotherapies

includes a separate equation for tumor antigen. For a mathematical

model of tumor-immune interactions to be credible, it is in our

opinion a necessary condition that it encompasses, within its range of

parameters, the full spectrum of medically known tumor immune

system interactions: elimination, equilibrium and tumor escape.
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This holds for Equations 1–3. Including tumor antigen as a

separate state variable is an attempt to model synergistic effects

which traditional treatments (chemotherapy considered here) have

when combined with immunotherapies.

We reiterate that the model is qualitatively, not quantitative.

The aim is to obtain information about the behavior of the

dynamics overall, not about some particular situation. For the

latter, a rather precise knowledge of the parameter values is

required (which simply lies beyond our possibilities). Our

emphasis here was on how understanding the behavior of the

dynamics can help in the search for optimal dosage protocols.

The optimal control problem allows to explore possible therapy

protocols in silico suggesting what could be ‘good’ administration

protocols relative to some chosen mathematical criterion.

Unfortunately, there does not exist off-the-shelf software to solve

such optimal control problems reliably and computing optimal

controls. As there is great freedom in formulating this objective,

there exists the danger of using inadequate criteria for mathematical

expediency leading to not only not beneficial but possibly harmful

outcomes. Thus we emphasize the need for an a posteriori analysis

of the feasibility of the computed therapy protocols. In particular, as
FIGURE 3

Example of a numerically computed candidate bang-bang trajectory: The top row shows the controls u (left, blue) and v (right, red) as functions of
time while the bottom panel shows the projection of the corresponding trajectory into (x,y)-space. The initial point is marked with a red and the
terminal point with a green dot. Black dots show the states on the trajectory where a change in the controls occurs. Initially only immunotherapy is
given (magenta segment), then both chemo- and immunotherapy are active at the same time (brown segment) while immunotherapy is stopped
and only chemotherapy is given along the blue segments. No drugs are administered along the black segment.
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side effects of the therapies are only included indirectly while

minimizing the objective, the feasibility of the computed

strategies from this point of view needs to be checked. It is

believed that solutions to these optimal control problems can aid

in formulating realistic therapy protocols that can be explored in

medical trials and practice.
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