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Identification of the shared
genetic architecture underlying
seven autoimmune diseases
with GWAS summary statistics
Yuping Wang, Yongli Yang, Xiaocan Jia, Chenyu Zhao,
Chaojun Yang, Jingwen Fan, Nana Wang
and Xuezhong Shi*

Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University,
Zhengzhou, Henan, China
Background: The common clinical symptoms and immunopathological

mechanisms have been observed among multiple autoimmune diseases

(ADs), but the shared genetic etiology remains unclear.

Methods: GWAS summary statistics of seven ADs were downloaded from

Open Targets Genetics and Dryad. Linkage disequilibrium score regression

(LDSC) was applied to estimate overall genetic correlations, bivariate causal

mixture model (MiXeR) was used to qualify the polygenic overlap, and

stratified-LDSC partitioned heritability to reveal tissue and cell type specific

enrichments. Ultimately, we conducted a novel adaptive association test

called MTaSPUsSet for identifying pleiotropic genes.

Results: The high heritability of seven ADs ranged from 0.1228 to 0.5972, and

strong genetic correlations among certain phenotypes varied between 0.185

and 0.721. There was substantial polygenic overlap, with the number of

shared SNPs approximately 0.03K to 0.21K. The specificity of SNP heritability

was enriched in the immune/hematopoietic related tissue and cells.

Furthermore, we identified 32 pleiotropic genes associated with seven ADs,

23 genes were considered as novel genes. These genes were involved in

several cell regulation pathways and immunologic signatures.

Conclusion: We comprehensively explored the shared genetic architecture

across seven ADs. The findings progress the exploration of common

molecular mechanisms and biological processes involved, and facilitate

understanding of disease etiology.
KEYWORDS

genetic architecture, autoimmune diseases, multiple adaptive association tests,
pleiotropic, genome-wide association studies
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1 Introduction

Autoimmune diseases(ADs) represent a heterogeneous group

of disorders characterized by an immune response against self-

antigens, leading to target tissues destruction (1). Genetic factors

are widely acknowledged to play an essential role in the

pathogenesis of multiple ADs (2). Previous studies document

that monozygotic twins have a higher concordance rates of ADs

compared to the dizygotic twins, and that siblings are at higher

risk than general population (3, 4). In addition, these diseases are

also comorbid that individuals who are susceptible to one disease

have a heightened risk of another disease, with dual diagnoses

being more frequent, suggesting that ADs may share the common

genetic basis (5, 6).

Genome wide association studies (GWAS) have discovered

thousands of susceptibility loci related to ADs, and confirmed

their polygenic property (4). Particularly, many genetic loci

display a common link to multiple ADs. For instance, PTPN22,

known as one the strongest risk gene to promote the development

of ADs, is particularly related to systemic lupus erythematosus

(SLE), rheumatoid arthritis (RA), and type 1 diabetes (T1D) (7).

IL2RA is predisposed to multiple ADs including RA, T1D and

multiple sclerosis (MS) (8). Additionally, CTLA4 is responsible for

various T cells immune regulation, and its blockade results to major

fatal autoimmunity (9). Inversely, targeting CTLA-4 pathway

binding the costimulatory molecules can be extensively used to

treat ADs, such as RA. Therefore, exploration of genetic pleiotropy

is essential to reveal common disease mechanisms and develop

potential treatments.

To date, the shared genetic and functional profile of ADs have

been mostly identified by simple comparison based on univariate or

bivariate analyses, which have insufficient power without

combining the related phenotypes (10). Recently, combined

studies that incorporate several diseases have proven to be a

powerful way to determine the genetic overlap existing in several

diseases. A cross-disorder analysis reveals new shared loci

converging in T cell activation and signaling pathways by

combining 9 immune diseases (11). A multi-trait meta-analysis

discovered 4 novel loci shared between several autoimmune and

allergic diseases (12). Furthermore, Kwak et al. (13) proposed an

adaptive analysis on the basis of summary of powered score

(MTSPUsSet), that allows identification of gene-level associations

by assembling information from multiple phenotypes and SNPs.

MTSPUsSet has been employed to recognize potentially genes

involved in five psychiatric disorders (14). Accordingly,

researchers are dedicated to explore common genetic mechanisms

and pathogenesis through multivariate analytical methods.

In this study, comprehensively and systematically multivariate

association analyses were performed to elucidate the shared genetic

architecture of seven ADs including T1D, SLE, RA, MS, celiac

disease (CEL), ulcerative colitis (UC) and primary biliary cirrhosis

(PBC), based on GWAS summary statistics from three levels:

heritability and genetic correlation, tissue and cell specificity, and

pleiotropy. The analysis flowchart was illustrated in Figure 1.
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2 Materials and methods

2.1 Study samples

GWAS summary statistics were downloaded from Open

Targets Genetics for CEL, MS, PBC, RA, UC and SLE (website:

https://genetics.opentargets.org/) (15). In particular, the CEL

summary statistics was derived from 4533 patients and 10750

controls with 523402 variants (16). The summary statistics for

MS comprised 464357 SNPs variants involving 9772 cases from

23 research groups (17). The PBC dataset with 1134141 SNPs

variates were derived from a meta-analysis together with another

cohort containing 6480 patients and 14736 controls (18). The RA

summary statistics included 8254863 variants obtaining from meta-

analysis of 12307 patients and 28975 controls (8). The UC summary

statistics consisted of 1407735 variants from a meta-analysis of

16315 patients and 32635 controls (19). The SLE dataset comprised

7915251 variants from a meta-analysis with 7219 patients and

15991 controls (20). The summary statistics for T1D involving

8781607 variants included 5913 patients and 8828 controls from a

meta-analysis in Dryad (website: https://datadryad.org/stash/) (21).

All samples of seven phenotypes were from population of European

ancestry. GWAS summary statistics were subjected to rigorous

quality control as described in the original publication. The

in fo rma t i on o f summary s t a t i s t i c s wa s showed in

Supplementary Table 1.
2.2 Linkage disequilibrium score
regression analysis

Linkage disequilibrium score regression (LDSC) is a statistical

methodology that estimates the SNP heritability (h2g) and genetic

correlations (rg) between traits with GWAS summary data. This

method could minimize the impact arising from confounding

factors and population stratification (22). This study used the pre-

calculated LD scores based on 1000 Genomes Project’s European

population to ensure imputation quality. The analysis was

conducted using LDSC software, version v1.0.1 (https://

github.com/bulik/ldsc).
2.3 Quantification of polygenic overlap
using MiXeR

The causal mixture model provided by MiXeR was employed to

quantify both the unique and common polygenic components

contributing to complex phenotypes, using the GWAS summary

data (https://github.com/precimed/mixer). In cross-traits analysis,

the bivariate MiXeR model additive effects with 4 independent

genetic components based on the principle that only a small subset

of variants significantly influences the trait (23),

(b1j, b2j) ∼ p0N(0, 0) + p1N(0,o1) + p2N(0,o2) + p12N(0,o12),
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where p0 is fraction of null SNPs in both traits; p1 and p2 are
fraction of SNPs having unique impact on the one trait; p12 is

fraction of SNPs having common impact on two traits; in variance-

covariance matrix, r12 represents correlation of the overlap

component, s 2
1 and s 2

2 indicate the variance of effective SNPs for

the two traits. We used 1000 Genomes Europeans as a reference

panel to assess the count of specific and shared effective

genetic variants.
2.4 Tissue and cell specificity

To identify the tissue and cell specificity regarding seven ADs

on the basis of heritability enrichment, we performed stratified-

LDSC (24), which partitions heritability into different categories

and calculates category-specific enrichments. We performed the
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tissue specificity analyses based on Genotype-Tissue Expression

(GTEx) data that provide insights into gene expression variation

across 53 non-diseased human primary tissues (25). In addition, cell

specificity analysis was performed utilizing 220 cell annotations

from four histone marks: H3K4me1, H3K4me3, H3K9ac and

H3K27ac (24). To establish a general overview of the cell types

associated with the phenotype, we further divided the 220 cell

annotations into 10 groups, representing the system or organ-level

structure. The significance thresholds were set at P<0.05/53 =

9.4×10-4 for tissue specificity, at P<0.05/220 = 2.3×10-4 for cell-

type specificity and at P<0.05/10 = 5×10-3 for cell-type-

group specificity.
2.5 Gene-based adaptive association tests

The data underwent multiple processing steps to obtain common

SNPs suitable for pleiotropic analyses. SNP pruning based on LD was

firstly applied with threshold (50 5 0.1) to eliminate highly correlated
FIGURE 1

Flow chart of study design.
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SNPs, and a set of 40957 SNPs were retained. The HapMap 3 CEU

genotypes served as reference panel. Subsequently, gene annotation

was conducted for the maintained SNPs using the hg38 genome

dataset (http://www.genome.ucsc.edu/cgi-bin/hgTables). Eventually,

a total of 21897 common SNPs was located in 9886 gene for

identifying pleiotropic variants.

The statistic tests for the association of multiple SNPs with

single trait, and the association of multiple SNPs with multiple traits

on the basis of summary statistics are as follows, respectively:

SPUs(g1;Z(h)) = jjZ(h)jjg1= od
j=1Z

g1
hj

� �1=g1

MTSPUsSet(g1, g2;Z) =om
h=1(SPUs(g1;Z(h)))

g2

Z(h) indicates the hth trait in the matrix Z. g1 and g2 are adaptive
weights for SNP and trait, respectively, and both are greater than or

equal to 1.

In order to select the optimal values of (g1, g2), we propose

adaptive tests as:

aSPUs(Z(h)) = min
g1∈G

P(g1;Z(h))

MTaSPUsSet(Z) = min
g1∈G1,g2∈G2

P(g1, g2;Z)

Where P(g1;Z(h)) and P(g1, g2;Z) indicate the p values of SPUs

(g1;Z(h)) and MTSPUsSet (g1, g2;Z), respectively (13).

The adaptive association tests require a matrix of Z scores (Z),

correlation matrix of SNPs (R), correlation matrix of multiple traits

(V) and the weighting index g. The optimal choice of g, weighting
the SNPs or traits, depends on the unknown association patterns, by

default, G={1, 2, 4, 8}. The potential pleiotropic genes related to

seven ADs were initially detected applying MTaSPUsSet.

Subsequently, the aSPUs test was employed to discover genes

specifically linked to individual phenotype. P<0.05/9886 =

5.06×10-6 was considered significant after Bonferroni correction.
2.6 GWAS catalog analysis

To investigate whether previous studies reported the identified

pleiotropic genes to be associated with seven ADs, we performed a

systematic search in GWAS Catalog (https://www.ebi.ac.uk/gwas/) (26).
2.7 Functional annotation

To explore putative biological implications of pleiotropic genes,

we performed the gene set analyses including Gene Ontology (GO)

gene sets and immunologic signatures obtained from MsigDB using

software functional mapping and annotation (FUMA) (27, 28).

Moreover, we performed the protein-protein interaction (PPI)

analysis utilizing available STRING dataset (https://string-db.org/),

to offer valuable insights into the functional associations and
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interactions between proteins encoded by these pleiotropic

genes (29).
2.8 Statistical analysis

The genetic correlation as well as tissue and cell specificity were

performed on the basis of all SNPs for each phenotype, and

pleiotropic analyses were implemented based on the common

SNPs of seven ADs. All statistical analyses were conducted using

R 4.0.3 and PLINK 1.9.
3 Results

3.1 Genetic correlations among seven ADs

The SNP heritability (h2g) of seven ADs was first evaluated by

univariate LDSC, the estimates of h2g varied between 0.1228 and

0.5972 (Figure 2A). Bivariate LDSC was then applied to evaluate

genetic correlations across ADs with ranges of 0.185 and 0.721

(Figure 2B). Notably, we discovered multiple significant

correlations (P<0.05/21 = 0.002), with the strongest genetic

correlation for MS-PBC (rg=0.701, se=0.213), followed by PBC-

SLE (rg=0.584, se=0.082) and RA-SLE (rg=0.478, se=0.061).

Furthermore, the LD score intercepts for seven ADs near 1,

indicating the inflation is primarily driven by the polygenic effect.
3.2 Genetic overlap across seven ADs

As shown in conditional Q-Q plots, each line displayed leftward

separation, indicating polygenic overlap between seven ADs

(Supplementary Figure 1). Performing MiXeR analysis, we further

quantified the polygenic overlap between ADs and represented the

polygenic components as Venn diagrams (Figure 3). There was

substantial polygenic overlap for CEL and PBC, sharing 0.21K out

of 0.30K causal variants. PBC and UC shared 0.19K out of 0.35K

causal variants. Further, CEL and UC also exhibited genetic overlap,

sharing 0.17K out of 0.37K causal variants. The amount of

polygenic overlap was relatively small in other pairs of diseases.
3.3 Tissue and cell specificity for seven ADs

We applied S-LDSC to explore tissue specific enrichment of

heritability for seven ADs, using GTEx data for 53 tissues (Figure 4;

Supplementary Table 2). We identified substantial heritability

enrichment for seven ADs in immune-related tissues of cells

Epstein-Barr Virus (EBV) transformed lymphocytes, lung, spleen,

and whole blood. Notably, T1D and UC were also significantly

enriched in adipose visceral (omentum) and colon transverse,

respectively. Additionally, MS, PBC, RA and UC showed higher
frontiersin.org
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enrichment in small intestine terminal ileum, although failing to

reach Bonferroni significance.

The S-LDSC was extended to explore the cell type specificity for

seven ADs. To capture an overview of cell type associated with

phenotypes, we firstly evaluated the enrichment in 10 cell groups

(Figure 5; Supplementary Table 3). All seven ADs revealed

significant enrichment in immune/hematopoietic group only. We

then assessed heritability enrichment at cell type level to

differentiate the cell type within the group (Supplementary

Figure 2, Supplementary Table 4). There were 32 significant cell

type enrichments for CEL, 53 for MS, 12 for PBC, 26 for RA, 8 for

SLE, 45 for T1D and 7 for UC. The seven ADs were significantly

enriched in several immune cells, such as CD4, CD8, CD25,
Frontiers in Immunology 05
T helper (Th) Th1, Th2, Th17, regulatory CD4+ T (Treg) cells,

peripheral blood mononuclear primary and so on.
3.4 Potential pleiotropic genes for
seven ADs

Based on significant correlation among seven ADs, the adaptive

association tests were implemented to aggregate genetic effects for

detecting pleiotropic variants. The multivariate analysis of

MTaSPUsSet identified a total of 44 potential pleiotropic genes

associated with seven phenotypes. Subsequently, the univariate

aSPUs test was applied to discover genes specifically related to
FIGURE 3

Venn diagrams of unique and shared polygenic variants across seven autoimmune diseases. The gray presents polygenic overlap between two
phenotypes, the blue represents unique variants of first phenotype, and the orange represents unique variants of second phenotype. The numbers
indicate the estimated quantity of effective variants (in thousands) per phenotype, explain 90% of SNP heritability in each phenotype, followed by the
standard error. The size of the circles reflects the degree of effective variants. The panels beneath Venn diagram represents the genetic correlation
calculated by MiXeR, red/blue bars indicate positive and negative correlations, respectively.
A B

FIGURE 2

(A) Forest plot of SNP-heritability estimates (h2) for seven autoimmune diseases using univariate linkage disequilibrium score regression (LDSC).
(B) Genetic correlation for seven autoimmune diseases using bivariate LDSC. Significant results (P<0.05/21 = 0.002) are marked with asterisk (**),
nominally significant results (P<0.05) are marked with asterisk (*).
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FIGURE 5

Cell-type-group-specific enrichment of SNP heritability for seven autoimmune diseases using stratified linkage disequilibrium score regression (S-LDSC).
The x-axis represents cell types, y-axis represents the log-transformed P-value of coefficient Z scores. Annotations with statistical significance after
Bonferroni corrections (P<0.05/10) were plotted in red, annotations with nominal significance (P<0.05) were plotted in orange, otherwise in blue. The
horizontal grey dash line indicates P-threshold of 0.05 and horizontal red dash line indicates P-threshold of 0.05/10.
FIGURE 4

Tissue type-specific enrichment of SNP heritability for seven autoimmune diseases using stratified linkage disequilibrium score regression (S-LDSC).
The x-axis represents tissue type, y-axis represents the log-transformed P-value of coefficient Z scores. Annotations with statistical significance after
Bonferroni corrections (P<0.05/53) were plotted in red, annotations with nominal significance (P<0.05) were plotted in orange, otherwise in blue.
The horizontal grey dash line indicates P-threshold of 0.05; horizontal red dash line indicates P-threshold of 0.05/53.
Frontiers in Immunology frontiersin.org06
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individual phenotype. There were 2 significant genes for CEL, 3 genes

for PBC, 8 genes for RA, 14 genes for UC, 7 genes for SLE and 5 genes

for T1D. Eventually, a total of 32 pleiotropic genes were not only

significant in MTaSPUsSet test, but also linked to at least one

autoimmune disease identified by aSPUs test. Additionally, based on

GWAS Catalog searching for pleiotropic genes, 9 genes had been

reported to be related to ADs in previous studies, of which 2 genes were

associated with CEL, 4 with MS, 5 with UC, 2 with PBC, 5 with SLE, 5

with RA, and 4 with T1D. Therefore, we detected 23 novel pleiotropic

genes. The details of identified genes were showed in Table 1.
3.5 Functional annotations of
pleiotropic genes

To clarify the biological process involved in pleiotropic genes,

we conducted the functional annotations using FUMA. For gene-set

analyses, we discovered two significant GO biological processes

about the regulation of cell adhesion. In addition, there were three

significant immunologic signatures regarding genes up-regulated in

natural killer (NK) cell, dendritic cells (DC) and CD4 T cells. The

information of significant annotations was showed in Table 2.
Frontiers in Immunology 07
Furthermore, PPI analysis was applied to visualize the interaction

of pleiotropic genes. We observed a prominent gene cluster

containing WWOX (Supplementary Figure 3).
4 Discussion

This study systematically investigated the genetic architecture of

seven ADs in terms of genetic correlation, tissue and cell specificity,

and pleiotropy using multiple large GWAS summary statistics. We

revealed the high heritability and strong genetic correlations among

seven ADs. The SNP heritability was enriched in the immune-

related tissue such as cells EBV transformed lymphocytes, lung,

spleen, and whole blood, as well as the immune/hematopoietic

related cells. Furthermore, we discovered 32 pleiotropic genes

related to seven ADs, 23 of which were considered as novel genes.

The pleiotropic genes participated in regulation of cell adhesion and

immunologic signatures. Our findings offered potential rationale for

genetic mechanisms and provided important evidence for the

common genetic architecture of seven ADs.

Genetic analyses suggested genetic factors making a strong

contribution to the development of ADs. We identified high
TABLE 1 The pleiotropic genes identified by the MTaSPUsSet, aSPUs test and GWAS catalog.

Locus Genes
MTaSPUsSet

P-value

aSPUs P-value Phenotypes in
GWAS CatalogCEL MS PBC RA UC SLE T1D

1 COG5 1.00E-06
2.15E-
02

4.63E-
01

7.79E-
01

7.59E-
01

1.00E-
06

7.26E-
01

6.28E-
01

2 EBF1 1.00E-06
7.84E-
02

2.40E-
03

4.10E-
03

3.36E-
01

1.00E-
06

2.43E-
01

2.56E-
01

MS, SLE

3 EPSTI1 1.00E-06
1.63E-
01

1.28E-
01

1.00E-
06

2.26E-
03

1.00E-
00

8.70E-
05

4.17E-
01

4 ETS1 1.00E-06
1.71E-
03

6.07E-
02

2.32E-
02

1.00E-
06

1.02E-
01

1.65E-
03

1.57E-
01

CEL, UC, RA

5 GRM7 1.00E-06
3.48E-
01

5.94E-
01

1.90E-
01

8.32E-
01

1.00E-
06

2.62E-
01

1.17E-
01

6 KAZN 1.00E-06
5.55E-
01

3.75E-
01

9.95E-
01

4.53E-
01

1.00E-
06

2.54E-
01

7.25E-
01

7 KMT2A 1.00E-06
3.40E-
02

8.57E-
01

3.63E-
04

4.00E-
06

1.12E-
01

5.66E-
02

2.62E-
01

8 LOC100506023 1.00E-06
5.52E-
01

8.49E-
02

9.87E-
01

2.28E-
02

5.32E-
02

1.00E-
06

2.88E-
01

9 LOC101928451 1.00E-06
1.68E-
01

2.17E-
02

1.00E-
06

1.00E-
06

9.10E-
05

1.00E-
06

9.31E-
01

10 MACROD2 1.00E-06
3.40E-
01

1.34E-
01

9.60E-
01

2.61E-
03

1.00E-
06

3.23E-
01

5.70E-
01

11 MED12L 1.00E-06
1.70E-
01

9.65E-
01

1.03E-
01

7.11E-
01

4.41E-
02

8.66E-
01

1.00E-
06

12 NPAS3 1.00E-06
2.96E-
02

1.42E-
01

3.35E-
01

2.51E-
01

1.00E-
06

1.02E-
02

8.36E-
01

(Continued)
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heritability among seven ADs, ranging from 0.1228 (UC) to 0.5972

(T1D). These results were consistent with findings detected by Li

YR et al (30), which reported the heritability estimates of ADs for

pediatric age-of-onset between 0.42 and 0.91, and slightly lower

estimates for adult. Moreover, genetic studies documented a familial

aggregation and increased concordance in monozygotic, suggesting

a remarkable role for genetic factors in pathogenesis of ADs (31).
Frontiers in Immunology 08
In addition, we identified several significant genetic correlations

among certain ADs. For instance, there was a strong correlation

between RA and MS (rg=0.439), consistent with evidence that

prevalence of RA in MS patients was assessed to range from

0.35% to 2.4% (32). Moreover, Weng et al (33) studied several

comorbid ADs, and found significantly increased occurrence of RA,

MS and PBC in patients with inflammatory bowel diseases. And a
TABLE 1 Continued

Locus Genes
MTaSPUsSet

P-value

aSPUs P-value Phenotypes in
GWAS CatalogCEL MS PBC RA UC SLE T1D

13 OPCML 1.00E-06
4.09E-
02

2.53E-
01

1.36E-
01

6.39E-
01

1.00E-
06

7.22E-
01

7.17E-
01

14 PAG1 1.00E-06
9.90E-
02

2.22E-
01

6.87E-
01

1.00E-
06

8.52E-
01

6.05E-
01

4.21E-
01

15 PARD3B 1.00E-06
1.49E-
02

6.90E-
01

1.12E-
01

1.00E-
06

3.74E-
03

4.99E-
02

1.00E-
06

16 PDE4A 1.00E-06
2.00E-
02

1.03E-
03

1.93E-
04

1.04E-
03

9.66E-
03

1.00E-
06

3.10E-
02

MS, SLE, UC, T1D

17 PLPP1 1.00E-06
3.88E-
01

5.68E-
04

1.26E-
01

1.00E-
06

6.42E-
02

2.44E-
02

9.52E-
02

18 PPP1R1C 1.00E-06
1.00E-
06

1.47E-
01

7.56E-
02

7.08E-
01

9.20E-
02

1.88E-
02

5.91E-
01

19 PRKN 1.00E-06
6.79E-
01

5.76E-
01

6.92E-
01

4.22E-
01

1.00E-
06

9.59E-
01

8.50E-
02

20 PTPN2 1.00E-06
8.08E-
04

3.51E-
03

6.04E-
01

9.00E-
06

1.69E-
03

2.78E-
01

1.00E-
06

CEL, PBC, UC, RA, T1D

21 PTPN22 1.00E-06
6.15E-
01

3.63E-
02

3.20E-
02

1.00E-
06

6.13E-
02

8.03E-
01

1.00E-
06

SLE, PBC, UC, RA, T1D

22 RBFOX1 1.00E-06
5.63E-
01

9.63E-
01

1.55E-
01

2.47E-
01

1.00E-
06

7.07E-
03

6.87E-
01

RA

23 RTN4IP1 1.00E-06
2.91E-
01

3.66E-
01

6.89E-
02

2.02E-
02

1.30E-
05

1.00E-
06

5.17E-
01

24 SCHIP1 1.00E-06
1.00E-
06

6.17E-
02

1.00E-
06

5.16E-
03

2.18E-
01

1.00E-
06

2.23E-
01

25 SH3TC1 1.00E-06
7.67E-
01

2.21E-
01

8.22E-
01

4.00E-
01

1.42E-
01

1.00E-
06

1.61E-
01

26 SYNE1 1.00E-06
4.12E-
01

7.20E-
01

9.35E-
01

2.24E-
01

1.00E-
06

2.83E-
01

1.87E-
01

27 TENM3 1.00E-06
8.93E-
01

4.60E-
01

2.82E-
01

7.59E-
01

1.00E-
06

3.14E-
01

1.03E-
01

SLE, UC, T1D

28 TMEM132D 1.00E-06
4.19E-
01

9.89E-
02

9.40E-
01

9.29E-
01

1.00E-
06

1.46E-
02

2.90E-
01

29 TNFSF4 1.00E-06
4.53E-
01

1.18E-
01

7.55E-
01

1.37E-
02

6.71E-
02

1.00E-
06

5.51E-
02

SLE, RA

30 TRIM33 1.00E-06
5.04E-
01

1.18E-
01

9.89E-
01

1.00E-
06

7.78E-
01

8.55E-
02

1.00E-
06

31 WWOX 1.00E-06
6.51E-
01

5.30E-
02

8.19E-
01

8.38E-
01

1.00E-
06

1.27E-
01

6.74E-
01

MS

32 ZFHX3 1.00E-06
5.38E-
01

3.61E-
01

1.71E-
01

3.49E-
01

1.00E-
06

1.21E-
02

2.29E-
01

MS
aSPUs: The gene-based adaptive test for multiple SNPs-single trait association with GWAS summary statistics.
MTaSPUsSet: The gene-based adaptive test for multiple SNPs-multiple traits association with GWAS summary statistics.
Significant results (P<0.05/9986=5.06×10-6) of aSPUs were bold.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1303675
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wang et al. 10.3389/fimmu.2023.1303675
meta-analysis of 10 pediatric ADs stated that 81% of risk loci were

associated with at least two ADs, which indicated a relatively high

degree of common genetic predisposition (34). Furthermore, we

found and quantified substantial polygenic overlap among multiple

ADs using MiXeR. The large proportion of overlap variants

reconfirmed strong correlations and shared genetic background.

The tissue and cell specificity of heritability enrichment suggested

a distinct common etiology for multiple ADs. Across all tissue types,

heritability for seven ADs were abundantly enriched in immune

system-related tissues including cells EBV transformed lymphocytes,

lung, spleen, and whole blood. Similar tissue enrichments for ADs

had also been reported in considerable previous studies (35, 36).

These findings together reflected a shared mechanism that

inappropriate or dysregulated immune responses were responsible

for triggering multiple ADs. Nevertheless, depending on the disease-

specific context, tissue enrichment may show differentiation (37), as

we found that UC was significantly enriched in the transverse colon,

whereas T1D was enriched in adipose visceral. In addition, most

GWAS associations were attributable to regulatory variations, which

were generally cell specific and controlled gene expression in relation

to cell state (38). Our cell type-specific analysis revealed the

remarkable enrichment in immune/hematopoietic group and

various immune-related T cells for ADs. Bourges C et al (39) had

demonstrated that regulation loci of primary CD4 T cells was most

enriched for immune-mediated disease SNPs. Substantial evidence

supported that CD4 T cell subsets, such as Th17 and Th1 cells, were

involved in many ADs such as MS, RA and SLE (40). Moreover, Treg

cells were a subset of T-cell specialized for immune suppression and

maintained autoimmune tolerance by expressing inhibitory receptors

and secreting anti-inflammatory cytokines (41). Together, these

findings demonstrated the significant role of immune function in

pathogenesis of multiple ADs.

The pleiotropic genes further support the common genetic

mechanisms across ADs. Among 32 pleiotropic genes detected, 9

pleiotropic genes had been revealed to influence ADs development in

previous studies. We identified that PTPN22 was a shared

susceptibility gene affecting multiple ADs with an increased risk of

T1D, SLE, PBC, RA, and UC. Previous reports had demonstrated that
Frontiers in Immunology 09
PTPN22 could both inhibit T cell activation through confining

downstream signals of the T cell receptor (TCR) and promote type

I interferon generation of myeloid cell selectively by enhancing

downstream signals of recognition receptors (42). TNFSF4 encoded

a membrane-bound protein and served as a T cell co-stimulator

(TNFRSF4) ligand (43). Increasing evidence supported that TNFSF4-

TNFRSF4 pair could promote the survival and generation of effector

T cells as well as memory CD4+ T cells, thereby participating in the

occurrence and development of multiple ADs (44). Additionally, the

functional annotation analysis found that TNFSF4 participated in

controlling of immunologic signatures in dendritic cells and CD4 T

cells. Our PPI result also revealed an interaction between PTPN22

and TNFSF4 highlighting the significant function of pleiotropic genes

in immune response. Except these several confirmed pleiotropic

genes, the present study inspected 23 novel genes utilizing adaptive

tests, which may add new evidence for the common genetic

mechanism of multiple ADs. For example, PAG1 encoded a

transmembrane adaptor protein that negatively regulated immune

receptor signaling in T cell, B cells and mast cells, as well as inhibited

the formation of immune synapse (45). Evidence from GWAS

suggested that PAG1 was related to risk of allergic and

inflammatory diseases, such as asthma, although there was no

direct proof of an association with AD (46). Additionally, our

function results indicated that PAG1 participated in cell adhesion

signaling and regulation of dendritic and CD4 T cells. The novel

pleiotropic gene WWOX is a cancer suppressor gene that could

induce apoptosis and inhibit growth in various cancers. The PPI

analysis also showed WWOX interacted with multiple genes.

Previous researches showed that WWOX had an important effect

on T cells proliferation and FasL expression, and ultimately regulated

the T cells apoptosis (47). Generally, loss ofWWOX expression could

suppress immune attack through producing apoptotic signaling.

In terms of uncovering the common genetic architecture in

multiple ADs, we systematically quantified the genetic correlations

and assessed functional mechanisms using the large available

GWAS summary statistics. Importantly, our gene-level analysis

based on MTaSPUsSet has increased power by consolidating the

multi-level association information and reducing the burden caused
TABLE 2 The significant enrichment of functional annotation for the pleiotropic genes using FUMA.

Category GeneSet Genes P-value
P
(adjusted)

GO_biological processes GO_REGULATION_OF_CELL_ADHESION
TNFSF4, ETS1,
ZFHX3, PTPN2,
TENM3, PAG1

4.96E-06 0.022

GO_biological processes GO_REGULATION_OF_CELL_CELL_ADHESION
TNFSF4, ETS1,
PTPN2,
TENM3, PAG1

6.08E-06 0.022

Immunologic_signatures GSE21774_CD62L_POS_CD56_DIM_VS_CD62L_NEG_CD56_DIM_NK_CELL_UP
KAZN, ETS1,
EPSTI1, ZFHX3

9.70E-06 0.016

Immunologic_signatures GSE17721_POLYIC_VS_GARDIQUIMOD_12H_BMDC_UP
TNFSF4, EPSTI1,
PTPN2, PAG1

9.89E-06 0.016

Immunologic_signatures GSE39820_TGFBETA1_VS_TGFBETA3_IN_IL6_IL23A_TREATED_CD4_TCELL_UP
TNFSF4,
TMEM132D,
TENM3, PAG1

9.89E-06 0.016
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by multiple testing. Despite the strengths, several limitations should

also be considered. First, although MTaSPUsSet identified some

novel genes, it was not compared with other existing multivariate

methods. Second, the common genetic mechanism underlying

multiple ADs was explored only based on the genomic data, and

further studies combined with other omics are needed.

In conclusion, our comprehensive analyses revealed relatively

substantial heritability and significantly robust genetic correlations

across seven ADs. The SNP heritability of ADs were significantly

enriched in immune-related tissue and cells. In addition, we

identified 32 pleiotropic genes shared in multiple ADs, 23 of

which were novel pleiotropic genes. Our findings contribute to

the understanding of genetic mechanisms, and reveal the common

pathogenesis among complex diseases.
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