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of Bonn, Bonn, Germany
Background and aims: Rheumatoid arthritis (RA) patients are currently

treated with biological agents mostly aimed at cytokine blockade, such as

tumor necrosis factor-alpha (TNFa). Currently, there are no biomarkers to

predict therapy response to these agents. Here, we aimed to predict

response to adalimumab (ADA) treatment in RA patients using DNA

methylation in peripheral blood (PBL).

Methods: DNA methylation profiling on whole peripheral blood from 92 RA

patients before the start of ADA treatment was determined using Illumina

HumanMethylationEPIC BeadChip array. After 6 months, treatment response

was assessed according to the European Alliance of Associations for

Rheumatology (EULAR) criteria for disease activity. Patients were classified

as responders (Disease Activity Score in 28 Joints (DAS28) < 3.2 or decrease

of 1.2 points) or as non-responders (DAS28 > 5.1 or decrease of less than 0.6

points). Machine learning models were built through stability-selected

gradient boosting to predict response prior to ADA treatment with

predictor DNA methylation markers.

Results:Of the 94 RA patients, we classified 49 and 43 patients as responders

and non-responders, respectively. We were capable of differentiating

responders from non-responders with a high performance (area under the

curve (AUC) 0.76) using a panel of 27 CpGs. These classifier CpGs are

annotated to genes involved in immunological and pathophysiological

pathways related to RA such as T-cell signaling, B-cell pathology,

and angiogenesis.
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Conclusion: Our findings indicate that the DNA methylome of PBL provides

discriminative capabilities in discerning responders and non-responders to

ADA treatment and may therefore serve as a tool for therapy prediction.
KEYWORDS
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1 Introduction

Rheumatoid arthritis (RA) is an autoimmune disorder

characterized primarily by pain and inflammation of the joints.

The etiology of RA is not fully elucidated; however, it is known to

occur in genetically predisposed patients and is triggered by

environmental factors, such as smoking (1). Current treatments for

RA are divided into conventional disease-modifying anti-rheumatic

drugs (csDMARDs), such as methotrexate, or biological DMARDs

(bDMARDs), such as tumor necrosis factor-alpha (TNFa) inhibitors
(infliximab, adalimumab, or etanercept), costimulation modifiers

(abatacept), interleukin-6 inhibitors (tocilizumab), and B cell-

depleting drugs (rituximab) (2) or target synthetic DMARDs

(tsDMARDs), such as Janus kinase (JAK) inhibitors (3).

Adalimumab (ADA) is a human recombinant IgG1 monoclonal

antibody that binds to soluble and membrane-bound TNFa and is

utilized as therapy for RA treatment and other immune-mediated

diseases (IMIDs) such as axial spondyloarthritis and inflammatory

bowel disease (4).

The efficacy and safety of ADA in RA patients have been

established by multiple clinical trials and usage in the clinical

practice, with approximately 60%–70% of ADA-treated patients

exhibiting response as indicated by the Disease Activity Score in 28

Joints (DAS28) using erythrocyte sedimentation rate (ESR) at weeks

12 and 24 and/or presence of radiological progression (5, 6).

Although ADA, among other TNF inhibitors, has improved the

treatment of RA, patients discontinue ADA due to a lack of

response or the development of adverse events (4, 7).

Common practice involves shifting to an alternative treatment

regimen by initiating treatment with a different biological upon

inadequate therapy response (3). Expectedly, this procedure is very

inefficient and debilitating, as it can result in the patient’s

progression toward uncontrolled disease, ultimately causing

irreversible joint damage (5). Hence, there is an unmet need to

predict response to treatment, as no clinically validated biomarkers

currently exist (8). So far, several studies have sought to identify

prognostic biomarkers in RA patients that predict treatment

outcomes by interrogating the genetic polymorphisms (3, 9–12),

microRNAs (13), and basic TNFa levels (3, 12). An increasing

body of evidence suggests that epigenetic alterations, such as

aberrant DNA methylation, are involved in the pathogenesis of
02
inflammatory conditions such as in RA (14–17). DNA methylation

occurs when a methyl group binds to a cytosine–phosphate–

guanosine (CpG) dinucleotide. DNA methylation is a molecular

mechanism that can affect gene transcription, especially seen in

hypo- or hypermethylation of gene promotors, of which the

majority reside within CpG-rich regions called CpG islands (18,

19). Complex immune-mediated diseases such as RA are thought to

manifest in a genetically susceptible host, which manifests into

dysregulated inflammatory processes in combination with the

environment through epigenetic mechanisms (20–22).

Furthermore, differentially methylated patterns have been

reported in peripheral mononuclear blood cells, fibroblast-like

synoviocytes, and synovial T cells of RA patients (15, 20, 23).

DNA methylation in peripheral blood or methylome has therefore

been proposed as a biomarker tool to predict therapy response in

RA patients (24). Different studies investigated the association of

the DNA methylome with response to methotrexate in RA patients

(25–31). DNA methylation signatures in peripheral blood

associated with response to anti-TNFa therapy (ADA, etanercept,

infliximab, and golimumab) have been reported by Plant et al. (32),

Julia et al. (33), and Tao et al. (34).

Here, we performed an exploratory epigenome-wide association

study (EWAS) on whole peripheral blood (PBL) of RA patients who

were scheduled to start ADA treatment where we explored whether

a response to ADA could be predicted a priori. Through stability

selection gradient boosting (35), we identified a 27-CpG

classification model that was capable of predicting response

before starting treatment.
2 Methods

2.1 Study design and response assessment

A retrospective cohort was assembled consisting of adult RA

patients followed up between 2004 and 2018 who were scheduled to

start ADA treatment at Reade, Expertise Center for Rehabilitation

and Rheumatology, in Amsterdam, the Netherlands. Whole PBL was

collected before the start of treatment whereupon patients were

followed up as part of routine clinical care. A second visit was

scheduled 3 to 6 months into treatment where therapy response
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was assessed based on the DAS28 score. The DAS28 is a clinical

scoring tool on a 1–10-point scale that scores the swollen and/or

painful joints together with ESR or C-reactive protein (CRP) levels

and visual analog scale (VAS) disease activity of the patient, allowing

for both clinical and biochemical response to be measured (36). A

decrease of at least 1.2 points and/or a disease activity of less than 3.2

points was defined as response to therapy (Table 1). The assembly of

this cohort was approved by the local Medical Ethics Committee of

Slotervaart Hospital and Reade (NTR6868), and written informed

consent was obtained from all patients prior to sampling.
2.2 Sample collection, DNA isolation, and
whole-genome DNA methylation profiling

PBL samples were collected prior to the start of ADA treatment

in 6.0 mL BD EDTA vacutainer tubes and stored at −80°C. PBL

samples were thawed, and genomic DNA (gDNA) was extracted

using the QIAsympony (Qiagen, Valencia, CA, USA) at the

Department of Human Genetics, Amsterdam UMC, according to

manufacturer protocol. The FLUOstar OMEGA was used for

assessing the quantity of the DNA. The gDNA (750 ng) was then

randomly distributed across the plate to limit potential batch effects,

after which gDNA was subjected to bisulfite conversion using the

Zymo EZ DNA Methylation™ kit according to the manufacturer’s

protocol, and the DNA was hybridized onto the Illumina

HumanMethylationEPIC BeadChip array for whole-genome DNA

methylation profiling (37).
2.3 DNA methylation data analysis

Data were analyzed following the pipeline previously published

by de Krijger et al. (38). In brief, raw DNA methylation data were

imported into R (version 4.2.0) using the Bioconductor package

minfi (version 1.44) (39), followed by functional normalization (40)

and quality control using the shinyMethyl package (version 1.34)

(41). Probes that hybridized to allosomes were excluded from the

analysis. Gaphunter was utilized to identify potential genetic

variants by harnessing the bi- or triclustered pattern often

presented by genetic variants by setting the threshold to 0.3 (42).

M-values were used for statistical analysis and percentage
Frontiers in Immunology 03
methylation for visualization (43). Subsequent differential

methylation analyses were performed through generalized linear

regression analysis using the limma package (version 3.54) (44)

where age, sex, concomitant methotrexate use, and smoking were

adjusted to investigate whether these confounders affected the

prediction algorithm. The ChAMP package (version 2.28) (45)

was subsequently used for gene set enrichment analysis (GSEA).

Visualizations were put together in ggplot (version 3.4) (46). CpGs

of interest were annotated to genes according to the Illumina

platform as well as based on their presence within a range of

20.000 from the nearest gene. For the hypothesis-driven approach,

we sought to understand whether RA-associated differentially

methylated genes also displayed ADA response-associated

differences. To this end, we identified all CpGs annotated to the

RA-associated genes— CXCL12, DLGAP2, IL6, IL10, PRSS16, and

STAT3— which represent genes that were found to be RA-

associated at the level of DNA methylation in a review by

Ciechomska et al. (14). A summary p-value was calculated per

gene by aggregating the p-values using the Brown method (47), a

method often used in meta-analyses. Visualizations were generated

using ggplot (version 3.4) (46) and ggbio (version 1.46.0) (48).
2.4 Blood cell estimation

The blood cell distribution was estimated from the DNA

methylation data using the estimateCellCounts2 function from

FlowSorted.Blood.EPIC (version 1.12.1) package (49) against the

IDOL dataset (49), which contains DNA methylation profiles from

B, CD4T, CD8T, monocytes, neutrophils, and NK cells. A quadratic

programming approach was employed to predict the cellular

composition per sample, and a two-way ANOVA test was

conducted to statistically compare differences between groups.
2.5 Stability-selected gradient
boosting analysis

To identify DNA methylation markers that classify therapy

responders from non-responders before the start of treatment,

extreme gradient boosting analysis with feature selection was used

(38). This methodology was reported by de Krijger et al. (38). The

data were split into a 70% training set and a 30% testing set. The

classifier was trained through repeated cross-validation on the

training set, where the performance was evaluated on the

withheld test set. For optimization purposes, the area under the

receiver operating characteristic (AUROC) scores were calculated

for each repetition of the cross-validation and averaged for the final

test AUROC. To select the most predictive CpGs, during each

training fold, a random noise variable was introduced into the

model. All features whose calculated feature importance exceeded

the random variable were retained, whereas the features that scored

less than the random variable were discarded. The resultant trees (n

= 100), each containing its own set of ranked CpG markers

according to relative importance, were then combined using

pairwise permutation analysis (35).
TABLE 1 Therapy response criteria.

Description

Responders Therapy responders with a DAS28 < 3.2 (or decrease of at least
1.2 points)

Non-
responders

Therapy non-responders with DAS28 > 5.1 (or decrease of
<0.6 points)
Response was based on the DAS28 score (a 1–10-point scale) after a 3–6-month assessment
(i.e., a decrease of at least 1.2 and/or reaching a disease activity of lower than 3.2). This is a
clinical tool scoring the swollen and/or painful joints together with ESR or CRP levels and
VAS disease activity of the patient. With this tool, the clinical and biochemical response to a
biological agent can be measured.
DAS28, Disease Activity Score in 28 Joints; ESR, erythrocyte sedimentation rate; CRP, C-
reactive protein; VAS, visual analog scale.
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2.6 Statistical analysis of clinical variables

Baseline characteristics of all included patients were summarized

using descriptive statistics (Table 2). Categorical variables are

presented as percentages and continuous variables as mean or

median annotated with the standard deviation (SD) or interquartile

range (IQR), respectively. Differences in distribution between

responders, non-responders, and the different cohorts were assessed

using a chi-square test (categorical variables), independent samples t-

test, or the Mann–Whitney U (continuous variables). Two-tailed

probabilities were used with a p-value of ≤0.05 considered statistically

significant. Analyses of clinical data were performed in IBM SPSS

statistics (version 26).
3 Results

3.1 Study population

The demographic and disease characteristics of patients are

summarized in Table 2. A total of 92 RA patients were

retrospectively included, from which whole PBL was stored before

the start of ADA treatment. Patients were categorized as therapy

responders (R) or non-responders (NR) based on the criteria

described in Table 1, which yielded 49 and 43 responders and
Frontiers in Immunology 04
non-responders, respectively. At baseline, clinical (age (p = 0.24),

sex (p = 0.56), and body mass index (BMI) (p = 0.62)), disease

(IgM-RF positive (p = 0.80), erosive phenotype (p = 0.33), or disease

activity-related (CRP (p = 0.22) and DAS28 (p = 0.64)) parameters

differed significantly between responders and non-responders. By

contrast, non-responders had significantly more smokers (p = 0.02)

and, expectedly, higher DAS28 at week 16 (p < 0.001). Furthermore,

a higher percentage of the responders had concomitant

methotrexate (MTX) use in addition to ADA (p = 0.002).
3.2 Exploratory data analyses

We first explored whether response to treatment was visible at an

epigenome-wide level. Principal component (PC) analysis of the DNA

methylome indicated no global differences between R and NR

(Figure 1). Since we observed previously that significant differences

existed in concomitant MTX use and smoking behavior at the time of

sampling (Table 2), we assessed both by principal component analysis

(PCA). Again, we detected no clustering according to the

aforementioned confounders (Supplementary Figure 1). Since

peripheral blood is composed of multiple different cell types, each of

which has its own DNA methylation profile (50), we estimated the

various cellular proportions and investigated whether differences were

observable between responders and non-responders (Figure 2). There
TABLE 2 Baseline characteristics of the patients.

Responders (n = 49) % Non-responders (n = 43) % p-Value

Demographics

Age, mean (SD) 52.7 (9.3) 55.4 (12.5) 0.24

Female, n (%) 39 (79.6) 32 (74.4) 0.56

BMI, mean (SD) 25.3 (5.1) 25.9 (4.9) 0.62

Smoking, n (%) 10 (20.4) 18 (42.9) 0.02

Disease duration years, median IQR 10.6 (3.4–22.5) 6.7 (2.1–16.7) 0.20

IgM-RF positive, n (%) 34 (70.8) 33 (76.7) 0.52

ACPA positive, n (%) 33 (71.7) 27 (69.2) 0.80

Erosive, n (%) 27 (57.4) 29 (67.4) 0.33

DAS28 SJC at baseline, median IQR 6 (3.0–9.0) 5 (2.0–8.0) 0.15

DAS28 TJC at baseline, median IQR 5 (3.0–10.5) 6.0 (2.0–11.0) 0.93

CRP at baseline, median IQR 9 (3.0–32.0) 14 (5.8–27.8) 0.22

ESR at baseline, median IQR 18 (9.0–36.5) 24.5 (14.3–39.0) 0.23

Patient global assessment at baseline, mean (SD) 55.9 (21.2) 59.5 (21.2) 0.42

DAS28 at baseline, mean (SD) 4.8 (1.2) 4.9 (1.3) 0.64

DAS28 at wk 16, mean (SD) 2.6 (1.2) 3.8 (1.4) <0.001

Concomitant MTX, n (%) 42 (85.7) 28 (65.1) 0.02

Concomitant prednisolone, n (%) 12 (24.5) 17 (39.5) 0.12

TNFi naïve, n (%) 15 (31.3) 10 (25.0) 0.52
fro
BMI, body mass index; ACPA, anti-citrullinated protein antibody; CRP, C-reactive protein; ESR, erythrocyte sedimentation rate; IgM-RF, IgM rheumatoid factor; DAS28, Disease Activity Score
in 28 Joints; wk, week; MTX, methotrexate; TNFi, tumor necrosis factor-alpha inhibitor; SD, standard deviation; IQR, interquartile range; SJC, swollen joint count; TJC, tender joint count.
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FIGURE 1

Principal component (PC) analysis of the methylome of rheumatoid arthritis (RA) therapy responders (orange) versus non-responders (green).
FIGURE 2

Estimated cell proportions as derived from Houseman algorithm cell mixture deconvolution from DNA methylation data of rheumatoid arthritis (RA)
patients on adalimumab (ADA) treatment who are therapy responders (orange) and non-responders (green). The x-axis of each box illustrates the
difference between RA responders and non-responders. p-Values are calculated using ANOVA testing. The y-axis demonstrates the proportion of
reported cell type.
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were no significant differences in the estimated cellular composition

between R and NR with regard to the estimated B, CD4 T, CD8 T,

monocytes, neutrophils, and NK populations.
3.3 Stability-selected gradient boosting
predicts objective response to adalimumab

To establish a prognostic predictive model of ADA response, we

split the data into a 70% training and a 30% test set. We conducted

stability-selected gradient boosting on the training data to define a

prediction model that we subsequently validated against the test set.

We observed that our best-performing classification model was

capable of predicting prognostic response to therapy as evidenced

by an AUROC of 0.76 (Figure 3A, Table 3). This classification

model was composed of 27 CpGs (Figures 3B, C). Given the

potential confounding by concomitant MTX use and smoking, we

subsequently conducted a linear regression analysis on these 27

CpGs where we included concomitant MTX use, smoking, and sex

and age as covariates (Supplementary File 1). Of the 27 CpGs, 20

presented p-values below 0.05, implying association with ADA
Frontiers in Immunology 06
response independent of concomitant MTX use and smoker

behavior. Focusing on all 27 predictor CpGs, we found that

hierarchical clustering of all samples did not show response-

associated clustering, suggesting that the predictor probes were

non-linearly associated with response (Figure 4A). Annotating all

27 CpGs, we found that 23 annotated to genes. Further

interrogation of the 23 gene-bound CpGs indicated that response-

associated hypermethylation was observed in the predictor CpGs

annotated to genes ADAP1, MRPL28, GNA12, UBTD1, OLIG2,

CCDC74A, RPH3AL, PRSS16, MIR3143, H2BC12, DMXL2, FBN1,

and ADARB2. By contrast, response-associated hypomethylation

was observed for TARS, GSTM5, KIF19, PPP4R2, PSMD5,

FRMDA4A, KDR, CD180, MAST4, and SALL3. Interestingly, we

identified multiple predictor CpGs within genes PRSS16 (Figure 4B)

and DLGAP2 (Figure 4C). Overall, we observed that PRSS16

showed response-associated hypermethylation in the transcription

start site (TSS), which is where the two predictor CpGs (cg10279314

and cg09817162) were located. By contrast, DLGAP2 demonstrated

a more heterogeneous differential methylation pattern with

hypomethylation near the TSS, which is where the two predictor

CpGs (cg20088245 and cg03128011) were found, whereas the
A B

C

FIGURE 3

Stability-selected gradient boosting analysis performance of rheumatoid arthritis (RA) adalimumab (ADA) response prediction. (A) Receiver operating
characteristic curve demonstrating an accuracy of 0.76 on the test set. The top 15 predictor CpGs visualized using (B) feature importance and (C) %
methylation grouped by response.
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region of the gene downstream of the first exon (gene body)

demonstrated a more dispersed differential methylated pattern.

To understand the biological properties of our reported predictor

CpGs, we performed GSEA to gain insight into the biological

relevance of our reported predictor CpGs (Supplementary

Figure 2). GSEA identified 83 significantly enriched processes (p

< 0.05), with noteworthy hits related to immunological pathways

such as “macrophage-enriched metabolic network” (1,075 genes),

“immune (humoral) and inflammatory response” (504 genes), and

“T-lymphocyte progenitors reprogrammed to natural killer cells”

(276 genes) (Supplementary Figure 2, Supplementary Table 1).
Frontiers in Immunology 07
3.4 Rheumatoid arthritis-associated
differentially methylated genes also present
response-associated differences in
DNA methylation

We next investigated whether genes identified in previous RA

DNA methylation studies displayed response-associated differential

methylation as well. To this end, we exercised a hypothesis-driven

approach where we examined the methylation status of previously

reported genes described in STAT3, CXCL12, IL10, and IL6, as

discussed in the review by Ciechomska et al. (14, 15). It was found
TABLE 3 The 27 predictor CpG capable of distinguishing responders and non-responders.

CGID chr pos D% Methylation p-Value Annotated gene Gene feature Direction R vs. NR

cg02068164 chr5 33439794 −0.059 1.01E−01 TARS TSS Hypomethylation

cg20088245 chr8 1321375 −0.087 2.77E−02 DLGAP2 TSS Hypomethylation

cg08735705 chr7 1003645 0.038 2.54E−01 ADAP1 Enhancer Hypermethylation

cg22243260 chr3 126946036 −0.069 2.93E−02 NA NA Hypomethylation

cg10279314 chr6 27185896 0.069 1.61E−02 PRSS16 Intron Hypermethylation

cg25210835 chr1 110254828 −0.060 1.35E−01 GSTM5 Promoter Hypomethylation

cg17422692 chr16 420245 0.079 2.23E−02 MRPL28 Promoter Hypermethylation

cg03128011 chr8 1321333 −0.077 3.38E−02 DLGAP2 Promoter Hypomethylation

cg05571310 chr17 72350354 −0.077 1.03E−02 KIF19 Intron Hypomethylation

cg20540428 chr3 73045686 −0.064 4.53E−02 PPP4R2 Promoter Hypomethylation

cg15247329 chr7 2764246 0.035 2.38E−01 GNA12, AMZ1 Intron Hypermethylation

cg02613380 chr10 99330076 0.075 4.14E−02 UBTD1 Promoter Hypermethylation

cg09419670 chr9 123605666 −0.097 9.50E−04 PSMD5 Intron Hypomethylation

cg20561509 chr13 49427965 0.058 9.06E−02 FNDC3A Promoter Hypermethylation

cg27572370 chr10 14002394 −0.073 3.25E−02 FRMD4A Intron Hypomethylation

cg09978860 chr4 56023921 −0.053 7.98E−02 KDR Intron Hypomethylation

cg00274965 chr21 34405681 0.105 1.90E−02 OLIG1 Intron Hypermethylation

cg11939300 chr2 132584904 0.066 5.58E−02 CCDC74A Intron Hypermethylation

cg14178589 chr6 168726836 0.102 5.94E−03 NA NA Hypermethylation

cg11480278 chr17 83580 0.108 4.56E−04 RPH3AL Unknown Hypermethylation

cg09817162 chr6 27185676 0.121 1.44E−03 PRSS16 Enhancer Hypermethylation

cg11553311 chr5 66541588 −0.083 7.08E−03 CD180, (MAST4) Unknown Hypomethylation

cg21048050 chr15 51912957 0.156 7.52E−05 DMXL2 Promoter Hypermethylation

cg13831575 chr15 48834416 0.105 9.33E−04 FBN1 Promoter Hypermethylation

cg11744538 chr17 42646995 0.089 4.27E−02 NA NA Hypermethylation

cg02408697 chr10 1416920 0.089 6.05E−03 ADARB2 Intron Hypermethylation

cg16113156 chr18 76266265 −0.075 2.01E−02 SALL3 Unknown Hypomethylation
CGID, Illumina CpG ID; chr, c hromosome; pos, position on human genome (hg19); D% Methylation, d ifference in percentage methylation; p-value, p-value associated with difference
percentage methylation; Annotated gene, g ene closest to the CpG, and NA was used if no gene was annotated based on Illumina’s metadata; Gene feature, g enetic feature encompassing the CpG,
including TSS (transcription start site), enhancer, introns, exons, or unknown; Direction R vs. NR, t he direction of the effect relative to non-responders, and o rder was based on the
feature importance.
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that STAT3, CXCL12, and IL6 were hypomethylated in RA patients

relative to non-RA individuals and that IL10 was hypermethylated

(14). Interrogating these genes within the context of response to

ADA revealed that CXCL12 and IL10 displayed hypomethylation in

the TSS, whereas hypermethylation was seen within the gene body

of both genes (Figures 5A, D). By contrast, IL6 presented

hypomethylation within the gene body and in the intragenic

region, but hypermethylation near the TSS (Figure 5B). Notably,

STAT3 showed no distinct methylation pattern (Figure 5C).
4 Discussion

This study aimed to identify CpGs whose DNA methylation

level was capable of predicting response to ADA therapy in RA

patients prior to the start of treatment. Response to therapy was
Frontiers in Immunology 08
defined based on the DAS28 score assessed over a treatment period

of 3 to 6 months (36). Through supervised stability-selected

extreme gradient boosting, we were able to identify 27 CpGs

whose DNA methylation collectively predicted response to

therapy. Several of the predictor CpGs were annotated to genes

that had previously been implicated in RA or general inflammatory

processes, with a particular focus on T-cell biology. This

corroborates observations made by Bek et al., where genetic

variants associated with anti-TNFi response were found to map

to genes involved in T-cell function (9). Multiple predictor CpGs

were identified in PRSS16 and DLGAP2. PRSS16 is a gene whose

protein is associated with gout, a form of inflammatory arthritis.

PRSS16 mutations have been characterized by monosodium urate

deposition that leads to inflammasome and subsequent cytokine

production (51). PRSS16 maps to the extended HLA class I region

(52). Moreover, PRSS16 is highly expressed in the cortex of the
A

B C

FIGURE 4

(A) Heatmap of actual methylation of the nominally significant predictor CpGs. Columns are sorted by hierarchical clustering and are colored by the
response group: responders (orange) and non-responders (green). Visualization of genes (B) PRSS16 and (C) DLGAP2 by plotting the difference in
mean % methylation on the y-axis relative to the position on the chromosome and the gene (“Gene”) on the x-axis. Dots represent probes on the
Illumina HumanMethylationEPIC BeadChip array. The blue trend line represents the loess-smoothed average across all methylation probes for the
indicated region with surrounding gray area representing the standard error. The first exon of the gene is represented in red.
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thymus and is proposed to be involved with T-cell development in

the thymus, in particular the positive selection of T cells (53).

Notably, cortical thymic epithelial cells contribute to the positive

selection of T cells via antigen presentation. Interestingly, when

aberrant positive selection occurs, autoimmunity is found in mouse

models (54). Taken together, PRSS16 is proposed as a candidate

gene for auto-inflammatory diseases. DLGAP2 encodes a

membrane-associated protein that has been implicated in

neuronal cells (55). While Dlgap2 has been implicated as being

differentially methylated in both aging and osteoarthritis in mice

(56), no further link with ADA or RA can be identified in the
Frontiers in Immunology 09
literature. Other genes that were found to harbor predictor CpGs

included TARS, KDR/VEGFR2, and CD180. TARS encodes a

threonyl-tRNA synthetase implicating a role in amino acid

processing. Despite their household role, several CpGs within the

genes were found to be differentially methylated between RA

patients and non-RA individuals (17). KDR/VEGFR2 encodes

vascular endothelial growth factor receptor 2 (VEGFR2), a

receptor to VEGF. VEGF is responsible for endothelial activation,

endothelial growth, and angiogenesis (57), where angiogenesis is

one of the key pathways for the synovial tissue expansion in RA and

is accompanied by a sustained inflammatory process in the synovial
A B

DC

FIGURE 5

Visualization of the rheumatoid arthritis (RA)-associated genes (A) CXCL12, (B) IL6, (C) STAT3, and (D) IL10. Difference in % methylation is plotted on
the y-axis relative to the position on the chromosome and the gene (“Gene”) on the x-axis. Dots represent probes on the Illumina
HumanMethylationEPIC BeadChip array. The blue trend line represents the loess-smoothed average across all methylation probes for the indicated
region with surrounding gray area representing the standard error. The first exon of the gene is represented in red.
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tissue characterized by proinflammatory cytokines and upregulated

levels of VEGF in synovial tissue (57, 58). Accordingly, targeting

angiogenesis in RA has been proposed as a treatment strategy for

RA (1). CD180 encodes cluster of differentiation 180, a toll-like

receptor homologue expressed mainly on B cells. Differential

expression of CD180 was associated with other rheumatic

diseases (59), such as systemic sclerosis (60), systemic lupus

erythematosus (61), and Sjögren’s syndrome (62). While such a

difference in either protein or gene expression of CD180 has not

been reported for RA thus far, it stands to reason that CD180 might

play a role in RA and its response to ADA.

The main strengths of our study lie in the strict patient selection

criteria for response and non-response, which we based on the

European Alliance of Associations for Rheumatology (EULAR)

criteria. Furthermore, we explored the predictive features of the

DNA methylome in a large RA patient cohort for ADA therapy

response using extreme gradient boosting analysis, a state-of-the-art

machine learning tool (35, 38). We intentionally investigated DNA

methylation as a predictive biomarker for therapy response in

peripheral blood since this material is easy to obtain in the

context of developing an accessible diagnostic test. There are

several limitations to address. First, concomitant MTX use may

potentially exert an influence on the methylome as evidenced by

pr ior inves t iga t ions that demonstra ted g loba l DNA

hypomethylation within blood cell populations, such as T cells

and monocytes, isolated from RA patients following MTX

treatment (25, 26, 63). Second, we were not able to perform gene

expression on our own data set and could only theorize about the

biology underlying the predictor CpGs. Third, to properly validate

the performance of our predictive model, a properly setup

validation cohort would need to be set up in an independent RA

cohort. Several studies have reported differential methylated

positions that distinguish therapy responders from non-

responders treated with ADA, such as Tao et al. (34), where they

performed a genome-wide epigenome association study on

peripheral blood mononuclear cells (PBMCs) of RA patients

treated with anti-TNFa medications such as ADA and etanercept.

However, since we performed EWASs on whole blood patient

materials, pooling our cohorts could lead to bias since the sample

type is dissimilar. Fourth, since DNA methylation as an epigenetic

mark is cell type-specific and peripheral blood is composed of

different cell types, it is unclear whether the observed differential

methylation signal is the result of actual DNA methylation or

differences in cellular composition. While cellular composition

can be largely estimated using the DNA methylome (50), such

methods are often limited to the major cell populations. When

interrogating these estimated cell proportions, we did not observe

any response-associated differences in the estimated cellular

composition. Finally, as DNA methylation measurements are

conducted by “stamping” unmethylated cytosines into the

genome through cytosine deamination, actual genetic variants can

interfere with the methylation signal (64). However, we did not

observe the characteristic tri- or bi-modal distribution of the
Frontiers in Immunology 10
methylation signal typically observed when interrogating genetic

variants (42, 64).

Our results provide an initial, exploratory step toward the

development of ADA response prediction in RA but require

extensive validation in subsequent larger studies. We envision

that future research can harness our data with the aim of

developing a clinically applicable biomarker. Such a prognostic

tool based on robust, validated, response-associated CpGs would

reshape current clinical practice for RA, enabling treating clinicians

to tailor medication to the patient and improving patient outcomes.
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Principal component analysis (PCA) of the methylome of RA therapy
responders (orange) versus non-responders (green) and concomitant MTX

users (triangle) or MTX naïve patients (circle).

SUPPLEMENTARY FIGURE 2

Gene set enrichment analysis (GSEA) against the gene ontology (GO) gene

sets of our reported predictor CpGs (adjusted r<0.05).
SUPPLEMENTARY FILE 1

HTML Markdown output of the script used to perform the analysis.

SUPPLEMENTARY TABLE 1

Gene set enrichment analysis output of the predictor CpGs against GO gene
sets. Columns represent the GO term, number of genes enriched in this

pathway, area under the receiver operator curve of the Wilcoxon test, p value

calculated using the Wilcoxon test, p value calculated using the Known
Population Median Test, the Benjamini-Hochberg-adjusted p-value, and

the pathway description. Table is ranked by p-value (low to high).
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