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Regulatory T cells (Tregs) can eliminate autoreactive lymphocytes, induce self-

tolerance, and suppress the inflammatory response. Mitochondria, as the energy

factories of cells, are essential for regulating the survival, differentiation, and

function of Tregs. Studies have shown that patients with autoimmune diseases

of the central nervous system, such as multiple sclerosis, neuromyelitis optica

spectrum disorder, and autoimmune encephalitis, have aberrant Tregs and

mitochondrial damage. However, the role of mitochondrial-regulated Tregs in

autoimmune diseases of the central nervous system remains inconclusive.

Therefore, this study reviews the mitochondrial regulation of Tregs in

autoimmune diseases of the central nervous system and investigates the

possible mitochondrial therapeutic targets.
KEYWORDS
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Abbreviations: Treg, regulatory T cell; CNS, central nervous system; MS, multiple sclerosis; NMOSD,

neuromyelitis optica spectrum disorder; FAO, fatty acid oxidation; OXPHOS, oxidative

phosphorylation; ten-eleven translocase, TET; mtDNA, mitochondrial DNA; mtROS, mitochondrial

reactive oxygen species; catalase, CAT; manganese superoxide dismutase, MnSOD; EAE, experimental

autoimmune encephalomyelitis; HIF-1, hypoxia-inducible factor 1; induced Treg, iTreg; thymus-derived

Treg, tTreg; permeability transition pore complex, PTPC; MPTP, mitochondrial permeability transition

pore; VDAC, voltage-dependent anion channel; DNA methyltransferase 3a, Dnmt3a; CPT1, carnitine

palmitoyltransferase 1; 2-hydroxyglutarate, 2-HG; Cyclosporin A, CsA.
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1 Introduction

Regulatory T cells (Tregs) are negative immune-regulatory cells

that play a significant role in immune tolerance and the normal

function of the immune system by eliminating the autoreactive

lymphocytes, inducing self-tolerance, and suppressing the

inflammatory response through various mechanisms (1, 2).

Recent studies have also indicated the ability of Tregs to promote

tissue repair or regeneration by secreting tissue-specific regenerative

factors (3–5). Consistently, aberrant Tregs are a major driver of

many autoimmune diseases. Reduced number and impaired

function of Tregs have been reported in various autoimmune

diseases, including myasthenia gravis, systemic lupus

erythematosus, rheumatoid arthritis, and type 1 diabetes (6–8).

Some autoimmune diseases of the central nervous system (CNS)

occur due to self-tolerance defects. Self-tolerance defect in multiple

sclerosis (MS) occurs mainly due to impaired Treg function, but

there are also cases of decreased Treg number (6, 9, 10). However,

neuromyelitis optica spectrum disorder (NMOSD) and

autoimmune encephalitis are characterized by reduced number of

Tregs (11, 12). The absence of immunosuppressive capacity of

Tregs and decreased number of Tregs activate autoreactive cells,

promote B cells to produce autoantibodies and effector T cells to

secrete pro-inflammatory cytokines and chemokines, and induce

the infiltration of macrophages and effector T cells into the CNS,

ultimately promoting the development of autoimmune diseases of

the CNS (6, 11–14). However, the specific mechanisms leading to

reduced number and impaired function of Tregs in autoimmune

diseases of the CNS remain to be determined.

Among numerous cellular biological processes and molecular

mechanisms associated with Tregs, their unique metabolic profile

has recently drawn significant interest. In physiological conditions,

Tregs exhibit increased mitochondrial metabolism, characterized by

high levels of mitochondrial fatty acid oxidation (FAO) and

oxidative phosphorylation (OXPHOS) and modest glycolysis (15–

19). During FAO and OXPHOS, FoxP3, a critical transcription

factor of Tregs, is transcriptionally upregulated, which is essential

for maintaining the immunosuppressive function and stability of

Tregs and can promote Treg differentiation by inhibiting RORgt
binding to DNA (15, 16, 20–23). Glycolysis is necessary for the

growth and proliferation of Tregs, but it reduces the

immunosuppressive ability and stability of Tregs during growth

and proliferation (24–26). Glycolysis is also a key energy source for

Treg migration to inflammatory tissue (27). Moreover,

mitochondrial metabolite a-ketoglutarate is a substrate for ten-

eleven translocase (TET)-mediated demethylation of the FoxP3

locus in Tregs, which is required for optimal expression of FoxP3

and immunosuppressive function of Tregs (28–30). Mitochondrial

damage, such as damaged respiratory chain complexes and

abnormal mitochondrial morphology, can markedly impair the

survival, differentiation, and function of Tregs. Therefore,

maintaining mitochondrial structure and function is critical for

Treg homeostasis and function.

Recent studies have found abnormal mitochondrial

morphology, impaired cristae organization, reduced activity and
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expression of respiratory chain complexes, decreased expression of

cytochrome C, increased content of mitochondrial DNA (mtDNA)

and mitochondrial reactive oxygen species (mtROS), and damaged

mitophagy in Tregs of patients with autoimmune diseases of the

CNS such as MS and NMOSD (31–33). Therefore, mitochondrial-

regulated Tregs may be involved in the occurrence and progression

of autoimmune diseases of the CNS (31). This paper reviews the

Treg regulation by mitochondria in autoimmune diseases of the

CNS and introduces the possible mitochondrial therapeutic targets.
2 Mitochondrial regulation of Tregs in
autoimmune diseases of the CNS

2.1 Accumulation of mtROS decreases the
number of Tregs

As a signaling molecule, mtROS plays a significant role in

activating signaling pathways and determining cell fate. mtROS

level is strictly regulated by antioxidants such as superoxide

dismutase and catalase (CAT) (34–36). However, the activities of

manganese superoxide dismutase (MnSOD) and CAT are

significantly decreased in Tregs of mice with experimental

autoimmune encephalomyelitis (EAE), which impairs the ability

of the antioxidant system to scavenge mtROS and results in mtROS

accumulation (Figure 1) (31). Furthermore, aberrant mitochondrial

morphology, impaired cristae organization, and reduced expression

of respiratory chain complexes in MS and NMOSD can cause

mitochondrial dysfunction and mtROS accumulation (Figure 1)

(31–33, 37).

mtROS upregulates the transcription of hypoxia-inducible

factor 1a (HIF-1a) subunits through NF-kB activation and

stabilizes HIF-1a subunits by inhibiting prolyl hydroxylase and

asparaginyl hydroxylase (38–40). Stabilized HIF-1a subunits

dimerize with HIF-1b subunits (also known as aryl hydrocarbon

receptor nuclear translocator) to form HIF-1 (41). Subsequently,

HIF-1 translocates into the nucleus and induces the transcription of

genes encoding glycolytic enzymes and glucose transporters,

leading to a metabolic shift from OXPHOS to glycolysis in the

early stages of T cell differentiation (42, 43). Data from several

animal studies suggest that glycolysis reduces the expression of

FoxP3, CD25, PD-1, CTLA-4, and ICOS (Table 1), disrupts their

stability, and inhibits induced Treg (iTreg) differentiation, thereby

impairing the immunosuppressive function of iTregs and

decreasing the number of iTregs (15, 25, 43, 49). Moreover,

excessive activation of glycolysis reduces the stability of thymus-

derived Tregs (tTregs) by downregulating the expression of FoxP3

and CD25 and converts tTregs into pathogenic cells with effector or

memory T cell phenotype (25, 50–52). These cells contribute to

autoimmune diseases of the CNS by producing pro-inflammatory

cytokines, such as IFN-g and IL-17 (51, 53–55). However, recent

studies have shown that glycolysis is essential for Treg

differentiation and function. For example, some in vitro studies

have shown that glycolysis can induce the differentiation of naive T

cells into iTreg and upregulate the expression of CTLA-4, PD-1,
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CD39, and ICOS (Table 1) to maintain the immunosuppressive

function of iTregs (24, 56). These processes are achieved by

regulating the expression of FoxP3 exon 2 splicing variants via

glycolytic enzyme enolase-1 (24, 56). In addition, glycolysis is

required for the optimal expression of the inhibitory molecules

CTLA-4 and ICOS and is essential for the immunosuppressive

function of tTregs (24, 57). The controversial roles of glycolysis in

Treg differentiation and function may be due to differences in the

origin of Tregs (thymic or peripheral T cells, human or animal),

external and internal environments, metabolic requirements, and

cytokines environments. Therefore, the effect of glycolysis on Tregs

still needs to be explored. Interestingly, due to the dimerization of

HIF-1a subunits and HIF-1b subunits and aryl hydrocarbon

receptor degradation by HIF-1a subunits via the ubiquitin-

proteasome pathway, the binding rate of aryl hydrocarbon

receptor to HIF-1b subunits decreases, causing reduced

transcriptional activity of genes encoding ectoenzymes and IL-10

during Treg differentiation and eventually inhibiting Treg

differentiation and reducing the number of Tregs (58, 59).

Furthermore, HIF-1 binds to the transcription factor FoxP3 in T

cell cytoplasm to degrade the latter via the ubiquitin-proteasome

pathway, thereby downregulating FoxP3 levels and inhibiting Treg

differentiation (Figure 2) (60, 61). However, the exact role of HIF-1

in Tregs remains controversial. Clambey et al. (62) and Flück et al.

(63) found that HIF-1 can promote the proliferation of Tregs by

inducing FoxP3 transcription, thus inhibiting T cell-mediated
Frontiers in Immunology 03
colitis. The contradictory roles may be due to the tissue

heterogeneity of Tregs, suggesting that HIF-1 expression is

essential for Tregs in specific tissues. In addition to inhibiting

Treg differentiation by stabilizing HIF-1, mtROS can induce DNA

breaks. Subsequently, DNA breaks induce Treg apoptosis by

initiating a DNA damage response, ultimately decreasing Treg

number (Figure 2) (31, 64).
2.2 Effect of mtDNA release on Tregs

During mitochondrial dysfunction, mtDNA is cleaved into

small fragments by endonucleases. The fragments are released

into the cytosol through the permeability transition pore complex

(PTPC, including mitochondrial permeability transition pores/

MPTP and voltage-dependent anion channels/VDAC) (Figure 1)

(65). Moreover, BAX and BAK oligomerize in the outer

mitochondrial membrane and form BAX/BAK pores, which allow

the inner mitochondrial membrane to herniate into the cytosol and

release mtDNA (Figure 1) (66). Cytosolic mtDNA activates the

inflammasome NLRP3, which in turn increases the release of

mtDNA through a positive feedback mechanism (65, 67, 68). In

the EAE model, the increase of mtDNA fluorescent particles in the

cytoplasm confirmed the release of mtDNA fragments (31).

As an upstream effector, cytosolic mtDNA promotes the

secretion of IL-6 and IL-10 by activating several signal pathways,
FIGURE 1

Mitochondrial damage in Tregs. Aberrant mitochondrial morphology, impaired cristae organization, reduced expression of respiratory chain
complexes, and significantly decreased activities of MnSOD and CAT in Tregs cause mitochondrial dysfunction and mtROS accumulation.
Furthermore, respiratory chain complex III deficiency leads to the accumulation of succinate and 2-HG in Tregs. During mitochondrial dysfunction,
mtDNA and mtDNA fragments are released into the cytosol via the PTPC or BAX/BAK pores. Cytosolic mtDNA and mtDNA fragments can promote
the secretion of IL-6 and IL-10. CPT1 on the outer mitochondrial membrane is a rate-limiting enzyme in FAO, which is the main energy source of
Tregs. Therefore, reduced or defective CPT1 activity causes FAO impairment. Moreover, impaired initiation of mitophagy, incorrect autophagosome
formation, or aberrant lysosomal degradation impairs mitophagy and leads to damaged mitochondria accumulation in Tregs.
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including cGAS-STING and TLR9-MyD88 signals, finally affecting

the number and function of Tregs (Figure 1) (68–70). Among them,

IL-10 is an immunosuppressive cytokine that suppresses the

activation of autoreactive T cells and downregulates pro-

inflammatory cytokines to enhance the immunosuppressive

function of Tregs in stress conditions (1, 71). In contrast, IL-6

activates STAT3 and promotes Foxp3 locus methylation in Tregs in

a DNA methyltransferase 3a (Dnmt3a)-dependent manner, thereby

decreasing the expression of FoxP3 (Figure 2) (55, 72). Low FoxP3

expression can downregulate co-inhibitory molecules and

ectoenzymes on the surfaces of Tregs and turn Tregs into

pathogenic cells with effector or memory T cell phenotype (20,

53, 55). On the other hand, IL-6 activates STAT3 in T cells by

binding to IL-6 receptor and gp130, which can attenuate RORgt
Frontiers in Immunology 04
inhibition by FoxP3 and promote the transcription of HIF-1a
subunits (Figure 2) (21, 60, 73). These alterations finally inhibit

Treg differentiation and decrease Treg number (43, 61). Thus, the

influence of mtDNA on the number and function of Tregs may

depend on the balance between the mechanisms mentioned above.
2.3 Impairment of mitochondrial metabolic
pathways decreases the number of Tregs
and impairs their function

Recent studies have shown that Tregs mainly rely on high levels

of FAO and modest glycolysis to meet their energy requirements in

steady-state conditions (15, 16). FAO is also necessary for T cell

differentiation to Tregs (74, 75). During FAO-driven OXPHOS,

fatty acids increase the stability and immunosuppressive activity of

Tregs by upregulating FoxP3 transcription and inducing CD25 and

STAT5 expression (23, 76). At the same time, FoxP3 increases the

transcription of FAO and OXPHOS-related genes and inhibits

glycolysis by binding to the Myc promoter and downregulating

the expression of Myc in Tregs, establishing a positive feedback loop

to maximize the immunosuppressive function of Tregs (22, 25, 77).

Carnitine palmitoyltransferase 1 (CPT1) on the outer

mitochondrial membrane is a rate-limiting enzyme in FAO

(Figure 1). Previous studies have demonstrated that CPT1

inhibitors can prevent Treg differentiation and significantly

reduce the expression of granzymes, ectoenzymes, and co-

inhibitory molecules in Tregs by suppressing FAO, thereby

reducing the number and immunosuppressive activity of Tregs

(15, 78, 79). Therefore, FAO impairment due to reduced or

d e f e c t i v e CPT1 a c t i v i t y r e du c e s t h e numbe r and

immunosuppressive activity of Tregs. In addition, fatty acid

concentrations in patients with MS are lower than those in

healthy individuals, thereby decreasing FAO in Tregs and

weakening the inhibitory function of Tregs (23).

OXPHOS is a critical metabolic pathway for the differentiation

and immunosuppressive function of Tregs (15–17). Therefore,

decreased activity and expression of respiratory chain complexes

in autoimmune diseases of the CNS, such as MS and NMOSD, can

contribute to the abnormal number and function of Tregs (32, 33,

77, 80, 81). Weinberg et al. (81) found that accumulation of

succinate and 2-hydroxyglutarate (2-HG) can inhibit TET by

competing with a-ketoglutarate in respiratory chain complex III-

deficient Tregs (Figure 1), thereby causing DNA hypermethylation

in specific regulatory regions of Tregs and reducing the expression

of PDCD1 (encoding PD-1), NT5E (encoding CD73), TIGIT, and

FGL2 genes associated with the immunosuppressive function of

Tregs (Figure 2) (82, 83). These alterations finally downregulate co-

inhibitory molecules and ectoenzymes, such as PD-1, CD73, TIGIT,

and FGL2, and impair the immunosuppressive function of Tregs

(Table 1) (44–46, 48, 81). On the other hand, succinate and 2-HG

stabilize HIF-1a subunits by inhibiting prolyl hydroxylases, thereby

inhibiting Treg differentiation and decreasing Treg number

(Figure 2) (83–85). Similar to respiratory chain complex III

inhibition, respiratory chain complex I inhibition can

downregulate the expression of FoxP3 and decrease the number
TABLE 1 Genes and molecules associated with Treg function.

Gene Encoding
protein

Function References

CTLA-4 CTLA-4 CTLA-4, the co-inhibitory
molecule of Tregs, inhibits
the maturation and antigen-
presenting ability of dendritic
cells by binding to the co-
stimulatory molecule CD80/
CD86 on the surface of
dendritic cells.

(1)

PDCD1 PD-1 PD-1 maintains immune
tolerance by regulating the
balance between Tregs and
effector T cells.

(44)

ENTPD1 CD39 CD39, the ectoenzyme of
Tregs, degrades ATP to AMP
and then cooperates with
CD73 to mediate
immunosuppressive
adenosine inhibition on
effector T cells.

(1, 45)

NT5E CD73 CD73, the ectoenzyme of
Tregs, promotes adenosine
binding to adenosine
receptor 2A on the surface of
effector T cells by degrading
AMP to adenosine, thereby
inhibiting the function of
effector T cells.

(1, 45)

TIGIT TIGIT TIGIT+ Tregs inhibit the
production of IL-12 and IL-
23 in dendritic cells by
promoting IL-10 and FGL2
secretion, thereby selectively
suppressing Th1 and Th17
cell responses.

(46, 47)

FGL2 FGL2 FGL2 inhibits B cell
proliferation and
differentiation and plasma
cell apoptosis, and inhibits
maturation and antigen
presentation of dendritic cells
by binding to the FcgRIIb
receptor, thereby exerting the
immunosuppressive activity
of Tregs.

(48)
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of Tregs (16). In addition, Angelin et al. (77) found that Tregs with

mi to chondr i a l ND6 gene mu t a t i on s hav e r educ ed

immunosuppressive function due to the inability of respiratory

chain complex I to oxidize NADH to NAD.
2.4 Impairment of mitophagy decreases
the number of Tregs

Mitophagy, a specific form of autophagy, is essential for clearing

damaged mitochondria and maintaining cell homeostasis (86).

Mitochondrial depolarization induces the ubiquitination of

mitochondrial outer membrane proteins and promotes the

recruitment of mitophagy receptors, followed by autophagosome

formation to degrade damaged mitochondria (86). Therefore,

impaired initiation of mitophagy, incorrect autophagosome

formation, or aberrant lysosomal degradation in autoimmune

diseases of the CNS can impair mitophagy in Tregs (Figure 1)

(31, 87).

Crosstalk between mitochondria and lysosomes has been

demonstrated. Lysosomal dysfunction induces mitochondrial

defect and vice versa (88, 89). Mitochondrial dysfunction in Tregs

of EAE mice can decrease the activity of several hydrolases in

lysosomes and downregulate the expression of Rab7, which

regulates the fusion of autophagosomes with lysosomes, thus
Frontiers in Immunology 05
preventing lysosomal degradation of damaged mitochondria (31,

88, 90). In addition, downregulation of the AMPK-PIKFYVE-

PtdIns (3, 5) P2-MCOLN1 pathway in the presence of damaged

respiratory chain complexes leads to lysosomal calcium

accumulation and impairs lysosomal hydrolysis, thereby

impairing mitophagy (91, 92). In addition to lysosomal

dysfunction, significantly reduced expression of autophagy

protein LC3-II in Tregs in patients with myasthenia gravis can

impair autophagosome formation and reduce the number of

autophagosomes, eventually impairing mitophagy (87). Thanks to

the damaged mitophagy of Tregs, the accumulation of damaged

mitochondria increases mtROS production and exacerbates

mitochondrial oxidative stress, thereby forming a vicious circle

(31). Eventually, mtROS accumulation induces DNA breaks, and

DNA damage induces Treg apoptosis by initiating a DNA damage

response (31, 64).
3 Mitochondrial-regulated Tregs may
be potential therapeutic targets for
autoimmune diseases of the CNS

Accumulation of mtROS decreases the number of Tregs; thus, a

better understanding of the role of mitochondria-specific

antioxidants in reducing mtROS may provide a new modality for
FIGURE 2

Main mechanisms of Treg regulation by mitochondria. mtROS induces DNA breaks, and the latter can induce Treg apoptosis. Moreover, mtROS
upregulates and stabilizes HIF-1, which can downregulate FoxP3 levels and inhibit Treg differentiation by binding to FoxP3 in T cells to degrade the
latter via the ubiquitin-proteasome pathway. mtDNA promotes the secretion of IL-6, which activates STAT3 and promotes Foxp3 locus methylation
in Tregs in a Dnmt3a-dependent manner, thereby decreasing the expression of FoxP3 and weakening the immunosuppressive function of Tregs. On
the other hand, IL-6 activates STAT3 in T cells to attenuate RORgt inhibition by FoxP3 and promote the transcription of HIF-1, thereby inhibiting Treg
differentiation. Succinate and 2-HG inhibit TET, thereby causing DNA hypermethylation in specific regulatory regions of Tregs and impairing the
immunosuppressive function of Tregs. Furthermore, succinate and 2-HG stabilize HIF-1 and inhibit Treg differentiation.
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immunotherapy of autoimmune diseases of the CNS. Animal

studies applying mitochondrial antioxidants have reported

promising results. Mito-TEMPO, a mitochondria-targeting

antioxidant mimicking superoxide dismutase, can restore

lysosome function and inhibit Treg apoptosis in the EAE mice

model by reducing mtROS levels and mitigating mtROS damage,

thereby inhibiting effector T cell infiltration into the spinal cord and

increasing Treg infiltration to alleviate the symptoms (Table 2) (31,

93). The ability of superoxide dismutase mimics to delay the

progression of EAE suggests that these novel antioxidants can be

applied to autoimmune diseases of the CNS, such as NMOSD and

autoimmune encephalitis, in the future. Furthermore, Cyclosporin

A (CsA), an MPTP inhibitor, can reduce the production of mtROS

and attenuate mitochondrial dysfunction by inhibiting MPTP

opening through the blockade of the interaction of cyclophilin D

with adenine nucleotide translocator (Table 2) (94, 101). Studies

have found that CsA can induce Treg proliferation and prevent T

cell proliferation by inhibiting calcineurin, thus ameliorating the

symptoms of EAE, MS, and NMOSD (95, 96, 102). However, some

immunosuppressive effects of CsA may be caused by MPTP

inhibition, but this possibility has not been investigated and

remains to be explored in the future. In addition, genetic or

pharmacological downregulation of mtROS lowers HIF-1a levels,
Frontiers in Immunology 06
and HIF-1a-deficient mice with an increased number of Tregs are

resistant to EAE (61, 103, 104). However, these results do not

demonstrate a direct link between reduced mtROS levels, lowered

HIF-1a levels, and an increased number of Tregs. In the future, it is

necessary to explore whether mitochondrial antioxidants inhibit

HIF-1a subunits and whether this inhibition affects Tregs in

autoimmune diseases of the CNS.

mtDNA release affects the number and function of Tregs and

induces the inflammatory response in autoimmune diseases of the

CNS. Therefore, targeting mtDNA release may be another novel

therapeutic approach for treating autoimmune diseases of CNS.

VBIT-4 and VBIT-12, two VDAC1 oligomerization inhibitors,

prevent VDAC1 oligomerization by directly interacting with

VDAC1, thereby inhibiting apoptosis, reducing mtDNA release,

inhibiting inflammatory cell infiltration and inflammasome NLRP3

activation, protecting against mitochondrial dysfunction, and

reducing inflammatory response and disease severity (Table 2)

(97, 98). This VDAC1-based treatment strategy has been effective

in some animal models of autoimmune diseases, such as

inflammatory bowel disease, systemic lupus erythematosus, and

type 2 diabetes (97, 98, 105). Future studies on autoimmune

diseases of the CNS are needed to determine the efficacy of

VDAC1-based treatment for these diseases.

Increased mitochondrial metabolism promotes Treg

differentiation, while inhibition of mitochondrial metabolism or

increased glycolysis inhibits Treg differentiation. Therefore, shifting

cellular energy metabolism to OXPHOS may be a treatment

strategy for autoimmune diseases of the CNS. Animal studies of

cellular metabolic reprogramming have yielded promising results in

autoimmune diseases of the CNS. For example, inhibition of

glycolysis by HIF-1a gene knockout or application of 2-

deoxyglucose or rapamycin can promote Treg differentiation,

increase the number of Tregs, and reduce spinal cord

inflammation in EAE mice (Table 2) (43, 49). Similarly,

decreasing pyruvate dehydrogenase kinase activity genetically

(gene knockout) or pharmacologically (by dichloroacetate) can

enhance OXPHOS levels, promote Treg differentiation, increase

the number of Tregs, and protect mice against EAE (Table 2) (16,

99). The development of this therapeutic strategy requires further

research. In the future, we should explore whether these drugs

affecting cellular metabolic reprogramming can modulate the

activity of Tregs in autoimmune diseases of the human CNS.

Furthermore, IL-15 has been shown to improve mitochondrial

mass and OXPHOS in Tregs from HIV-infected immune non-

responders by inducing the expression of mitochondrial

transcription factor A and peroxisome proliferator-activated

receptor-g coactivator-1a (Table 2) (100). Currently, IL-15 and

some of its derivatives, such as IL-15 super-agonists, are in clinical

trials for cancer and AIDS. Future studies are needed to investigate

the immunologic role of IL-15 in autoimmune diseases of the CNS.
4 Conclusion and prospect

Recent studies have investigated the role of mitochondrial

regulation on Treg number and function. However, the details of
TABLE 2 Experimental therapeutic drugs targeting mitochondria of
Tregs for autoimmune diseases of the CNS.

Drug Target Mechanisms References

Mito-TEMPO Mitochondria Reduce mtROS
levels and
mitigate
mtROS damage

(31, 93)

Cyclosporin A MPTP
and calcineurin

Inhibit MPTP
opening
and calcineurin

(94–96)

VBIT-4* VDAC1 Prevent
VDAC1
oligomerization

(97)

VBIT-12* VDAC1 Prevent
VDAC1
oligomerization

(98)

2-deoxyglucose Hexokinase Inhibit glycolysis (43)

Rapamycin mTOR Inhibit glycolysis
and
enhance
OXPHOS

(43, 49)

Dichloroacetate Pyruvate
dehydrogenase
kinase

Inhibit glycolysis
and
enhance
OXPHOS

(16, 99)

IL-15* mitochondrial
transcription factor
A, and peroxisome
proliferator-
activated receptor-g
coactivator-1a

Improve
mitochondrial
mass
and OXPHOS

(100)
“*”means there is no evidence in preclinical models of autoimmune diseases in the CNS, and
future studies are needed to explore the pharmacologic effects of these drugs in autoimmune
diseases of the CNS.
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the mitochondrial regulation process remain to be elucidated. For

example, the type of E3 ligase responsible for HIF-1-mediated

ubiquitination of FoxP3 is still unclear. Similarly, the effects of

glycolysis on Tregs, the mechanisms by which mtDNA affects Tregs

and the mechanisms by which respiratory chain complex I damage

causes Treg dysfunction need more studies. Moreover, whether

drugs targeting mitochondria can improve human autoimmune

diseases of the CNS by selectively modulating Treg activity remains

to be explored.

In conclusion, understanding the mechanisms by which

mitochondrial dysfunction affects the number and function of

Tregs in autoimmune diseases may pave the way for developing

new therapeutic approaches. Future in-depth studies in this field

will be a significant entry point for exploring the molecular

mechanisms and therapeutic targets in autoimmune diseases of

the CNS.
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