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Characterizing ligand-receptor
interactions and unveiling the
pro-tumorigenic role of
CCL16-CCR1 axis in the
microenvironment of
hepatocellular carcinoma
Zongbo Dai1†, Yu Wang2†, Ning Sun1 and Chengshuo Zhang1*

1Hepabobiliary Surgery Department, First Hospital of China Medical University, Shenyang, China,
2Department of General Surgery, Anshan Central Hospital, Anshan, China
Background: The heterogeneity of the tumor microenvironment significantly

influences the prognosis of hepatocellular carcinoma (HCC) patients, with cell

communication through ligand-receptor complexes playing a central role.

Methods: We conducted single-cell transcriptomic analysis on ten HCC tissues

to identify ligand-receptor genes involved in malignant HCC cell communication

using CellChat. Leveraging RNA-Seq data from the TCGA Liver Cancer (TCGA-

LIHC) and Liver Cancer - RIKEN, JP (LIRI-JP) cohorts, we employed Cox

regression analysis to screen for prognosis-related genes. Prognostic risk

models were constructed through unsupervised clustering and differential

gene expression analysis. Subsequently, a co-culture system involving tumor

cells and macrophages was established. A series of experiments, including

Transwell assays, immunofluorescence staining, immunoprecipitation, flow

cytometry, and immunohistochemistry, were conducted to elucidate the

mechanism through which HCC cells recruit macrophages via the CCL16-

CCR1 axis.

Results: Single-cell analysis unveiled significant interactions between malignant

HCC cells and macrophages, identifying 76 related ligand-receptor genes.

Patients were classified into three subtypes based on the expression patterns

of eight prognosis-related ligand-receptor genes. The subtype with the worst

prognosis exhibited reduced infiltration of T cell-related immune cells,

downregulation of immune checkpoint genes, and increased M2-like tumor-

associatedmacrophage scores. In vitro experiments confirmed the pivotal role of

the CCL16-CCR1 axis in the recruitment and M2 polarization of tumor-

associated macrophages. Clinical samples demonstrated a significant

association between CCL16 protein expression levels and advanced stage,

lymph node metastasis, and distant metastasis. Immunohistochemistry and

immunofluorescence staining further confirmed the correlation between

CCL16 and CCR1, CD68, and CD206, as wel l as CD68+CCR1+

macrophage infiltration.
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Conclusions: Our study identified molecular subtypes, a prognostic model, and

immune microenvironment features based on ligand-receptor interactions in

malignant HCC cell communication. Moreover, we revealed the pro-tumorigenic

role of HCC cells in recruiting M2-like tumor-associated macrophages through

the CCL16-CCR1 axis.
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GRAPHICAL ABSTRACT
Introduction

Hepatocellular carcinoma (HCC), a prevalent and aggressive

cancer, poses a substantial global burden (1). Despite advancements

in HCC diagnosis and treatment, patients with this condition

continue to face an unfavorable prognosis. This underscores the

urgent need for a more comprehensive understanding of the

fundamental mechanisms driving tumor progression and the

identification of novel treatment targets (2). The progression of

HCC is profoundly influenced by the tumor microenvironment (3).

This ecosystem is intricate, encompassing various cell types,

including cancer cells, immune cells, stromal cells, and

components of the extracellular matrix. Recognizing the diversity

of the tumor microenvironment has gained increasing importance

as a critical determinant of HCC prognosis (4). Unraveling the

molecular mechanisms underpinning this heterogeneity and its
02
association with patient subtyping and prognosis is essential for

advancing HCC management.

Macrophages, among the diverse cell populations within the

tumor microenvironment, play a pivotal role in regulating both the

immune response and tumor behavior (5). In HCC, the interaction

between macrophages and tumor cells holds particular significance,

influencing tumor growth, invasion, metastasis, and immune

evasion (6, 7). Notably, Weng et al. identified that patients with a

significant presence of PPT1+macrophages experienced heightened

infiltration of CD8+ T cells and increased expression of

programmed cell death-1 (PD-1) (8). Additionally, Zhao et al.

demonstrated that CD168+ M2-like macrophages regulate

TOP2A+CENPF+ liver cancer stem-like cells, contributing to the

excessive growth of HCC (9). Furthermore, Wang et al. reported

that M2 tumor-associated macrophages (TAMs) enhance stemness

levels and reduce sorafenib-induced cell apoptosis through
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paracrine secretion of CXCL1 and CXCL2 (10). A comprehensive

exploration of the intricate interaction between macrophages and

cancer cells provides valuable insights into HCC development and

guides the development of innovative treatment approaches (11). In

this dynamic microenvironment, cell communication mediated by

ligand-receptor complexes orchestrates a broad spectrum of cellular

responses, significantly influencing tumor behavior (12). However,

the specific ligand-receptor interactions operating within the HCC

microenvironment and their functional implications remain

largely unexplored.

CCL16, a chemokine renowned for its chemotactic properties,

has attracted attention due to its potential involvement in HCC

progression and immune modulation. While Shen et al.

demonstrated its role in promoting the stemness of breast cancer

cells (13), its specific implications in HCC remain unexplored.

Notably, CCL16 has exhibited the ability to engage with various

chemokine receptors, specifically CCR1, CCR2, CCR5, and CCR8

(14–17), expressed on immune cells, including macrophages. This

interaction suggests that CCL16 could influence the tumor

microenvironment by recruiting immune cells, such as

macrophages, through the activation of these receptors. The

presence of CCL16-related interactions may further modulate the

polarization and functional properties of macrophages, potentially

influencing their pro- or anti-tumorigenic activities within the HCC

microenvironment. Despite these intriguing observations, the

specific roles and underlying mechanisms of CCL16 in the

context of HCC remain incompletely understood, warranting

further dedicated investigation.

This research aimed to investigate the intricate landscape of

ligand-receptor interactions within the HCC microenvironment

and elucidate their functional consequences. Utilizing cutting-

edge methodologies, including single-cell transcriptomic analysis

and comprehensive cohort data, our objective was to characterize

the complex network of ligand-receptor interactions in HCC. By

employing a combination of computational analyses, experimental

validations, and clinical correlations, we sought to uncover valuable

insights into the role of these interactions in tumor progression and

immune modulation. This comprehensive exploration aimed to

contribute to our understanding of the pathogenesis of HCC, with

the ultimate goal of identifying potential therapeutic targets for

precision medicine approaches in the treatment of HCC.
Methods

Source of data and preprocessing

The count matrix for the dataset GSE149614 based on the single-

cell RNA-seq technology was extracted from the GEO database (https://

ncbi.nlm.nih.gov/geo/). The TCGA Liver Cancer (TCGA-LIHC)

dataset’s Level 3 Bulk RNA-Seq expression data were acquired from

UCSC Xena (https://xenabrowser.net/datapages/) (18), whereas the

ICGC database (https://dcc.icgc.org/) provided the Level 3 data for

the Liver Cancer - RIKEN, JP (LIRI-JP) dataset. For further analysis, the

Bulk RNA-seq data at Level 3 underwent a log2(x+1) transformation.
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Analysis of data at the single-cell level

The single-cell data obtained from 10 liver cancer samples in

GSE149614 underwent quality control and filtering with the Seurat

R package (19, 20). The specific requirements were established as

follows: nFeature_RNA must be between 500 and 4000, percent.mt

should be less than 5, and percent.HB should be less than 1.Next,

the data underwent normalization using the LogNormalize

t e c h n i q u e v i a t h e No rma l i z eD a t a f u n c t i o n . T h e

FindVariableFeatures function was used to identify 2000 genes

that exhibit high variability in each sample. Afterwards, the CCA

method was utilized to eliminate batch discrepancies and merge the

information. Principal Component Analysis was performed using

the RunPCA function, with the parameters dims set to 20 and

resolution set to 0.5. The identification of cell clusters was done

using the FindNeighbors and FindClusters functions. The

FindMarkers function was used to differentiate cell populations

and identify marker genes for each cluster. Using default

parameters, the CopyKAT R package was utilized to estimate

Copy Number Variations (CNV) for every cell, enabling the

detection of aneuploid cells (21). In the end, we utilized the

CellChat R package (22) to deduce and examine the cellular

communication network and discover ligand-receptor pairs linked

to aneuploid cells.
Identification of ligand-receptor-
related subtypes

To further select prognostic-related variables, univariate Cox

regression analysis was conducted in the TCGA-LIHC cohort,

based on the expression profiles of ligand-receptor genes linked

to aneuploid cells. Afterwards, the ConsensusClusterPlus R package

(23) was applied to perform separate unsupervised clustering in the

TCGA-LIH (N = 365) and LIRI-JP (N = 232) cohorts. The

clusterAlg parameter utilized was pam, with the Euclidean

distance, 500 reps, a pItem of 0.8, and pFeature of 1. The log-

rank test from the survival package was utilized to conduct survival

analysis among various subtypes, resulting in the generation of

Kaplan-Meier curves.
Analysis of the tumor microenvironment
using quantitative methods

Using the GSVA package, we assessed the levels of 28 immune

cell types’ infiltration in the TCGA-LIHC cohort through the single-

sample Gene Set Enrichment Analysis (ssGSEA) technique. The

background gene set was referenced from the previous study (24).

The Stromal score and Immune Score for each sample were

calculated using the Estimate R package. We examined the

variation in expression of immune checkpoint genes among

different groups by utilizing a gene list obtained from a prior

study (25). Afterwards, the gene expression patterns were

normalized using the scale method, and the Tumor Immune
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Dysfunction and Exclusion (TIDE) score for each specimen was

calculated using the TIDE online tool (http://tide.dfci.harvard.edu/)

(26, 27). The ssGSEA method mentioned earlier was used for

quantification of all gene sets in this study, and Wilcoxon test

was applied for differential analysis.
Detection of variably expressed genes
across subtypes

Using the eBayes test method from the limma R package, we

performed a comparative analysis of gene expression profiles across

various subtypes. For each subtype, genes that exhibited a |

FoldChange| > 1.5 and fdr < 0.05 were identified as differentially

expressed. Afterwards, the clusterProfiler R package was utilized to

perform functional enrichment analysis (28).
Construction of the prognostic model
and nomogram

We initially conducted univariate Cox analysis to select initial

variables with a threshold of P < 0.05, based on the distinct genes

among various molecular subtypes. Afterwards, we employed the

glmnet R software package to conduct Lasso regression analysis,

specifically in the TCGA-LIHC group. To identify variables

corresponding to lambda.min, Cox regression was performed

using 10-fold cross-validation. Next, a stepwise regression analysis

was utilized to construct the model for computing the risk score of

every individual. Validation of the identical model was conducted in

the LIRI-JP group. Patients were classified into high- and low-risk

groups based on the cohort’s median risk score as the threshold.

The survival package was utilized for conducting survival analysis,

while the timeROC R package was employed to generate receiver

operating characteristic (ROC) curves for assessing the predictive

performance based on the Area Under Curve (AUC). Furthermore,

the Wilcoxon test was employed to examine the disparities in the

immune microenvironment among the two cohorts, while the

Pearson correlation test was utilized to explore the association

between the risk score and both the immune score and TIDE

score. Prognostic impact of the risk score and clinical variables was

observed in the TCGA-LIHC cohort through univariate and

multivariate Cox analyses. The rms R package was utilized to

construct a nomogram by integrating important variables.

Afterwards, AUC curves were generated by utilizing the

plotAUCcurve function from the timeROC R package, calibration

curves were produced using the calibrate function, and the decision

curve was plotted with the assistance of the rmda R package.
Cell culture

The Chinese Academy of Sciences Cell Bank provided

HEK293T cells and liver cancer cell lines HEPG2/JHH7/HUH7/

SNU761. DMEM medium supplemented with 10% fetal bovine

serum (FBS) was used to culture HEPG2 and HUH7 cells, whereas
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RPMI1640 medium supplemented with 10% FBS was used to

culture JHH7 and SNU761 cells. The THP1 cells, acquired from

our lab, were grown in RPMI1640 solution with 10% fetal bovine

serum that had been heat-inactivated, along with 10 U/mL

penicillin and 10mg/mL streptomycin. The cells were cultured in a

flask with a cell density of around 1×108, in an incubator at a

temperature of 37°C and with a CO2 concentration of 5%. Cultured

THP-1 cells were thinned to a concentration of 1 million cells per

milliliter and then placed in culture dishes with a diameter of 35

millimeters. Afterwards, the cells were prompted to undergo

differentiation by being incubated in RPMI1640 solution with a

concentration of 100 ng/ml of phorbol 12-myristate 13-acetate

(PMA) for a duration of 48 hours. Summary of relevant reagent

information in the experimental section of this study can be found

in Table 1.
TABLE 1 Reagent information used in this study.

Reagent Name Brand Catalog
Number

anti-CCL16 Abcam Ab199162

Human CCL16 ELISA kit Abcam Ab243673

anti-CCR1 Invitrogen PA1-41062

anti-CCR2 CST D14H7

anti-CCR5 Invitrogen PA5-85136

anti-CCR8 Abcam Ab32399

anti-CD68 Abcam Ab213363

anti-CD206 Abcam Ab64693

anti-b-actin Sigma-Aldrich A2228

anti-Flag Sigma-Aldrich A8592

Viability Dye eFluor™ 780 eBioscience 65-0865-18

CD68-FITC Biolegend 333806

CD80-FITC Biolegend 305206

CD206-PE Cyanine7 Biolegend 321124

Age NEB R3552L

EcoR I NEB R3101L

Goat anti-Mouse IgG (H+L) Secondary
Antibody, Alexa Fluor Plus 555

Thermo Fisher A21424

Goat anti-Rabbit IgG (H+L) Secondary
Antibody, Alexa Fluor Plus 488

Thermo Fisher A11034

Protein A/G magnetic beads MedChemExpress HY-K0202

LipoFiterTM Liposomal
Transfection Reagent

Hanbio HB-LF10001

Puromycin Sangon Biotech A610593

BSA Sangon Biotech A602440

PMA Sigma p1585-1MG

Recombinant flag-CCL16 Novoprotein C064

BX471 MedChemExpress HY-12080
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Cell line knockdown and overexpression

To generate HEPG2 cells with CCL16 knockdown and THP1 cells

with CCR1 knockdown, validated shRNA sequences targeting the

respective proteins were searched online at the Sigma-Aldrich

website (https://www.sigmainformatics.com/Informatics_tools/batch-

search.php). Primers were designed based on the selected sequences

and cloned into the plKO.1 vector. Subsequently, the plKO.1 vector

was co-transfected with the lentiviral packaging vectors psPAX2 and

pMD2 into HEK293T cells. After 48 hours, the viral supernatant was

collected and used to infect the target cell lines. The infected cells were

then selected using 4mg/mL puromycin, and the knockdown efficiency

of the target proteins was assessed by qPCR. The shRNA sequences for

CCL16 knockdown were as follows: shCCL16-1: TCCTTAT

CATTACTTCGGCTT, shCCL16-2 : AGGAGAAGTAT

TTCGAATATT. The shRNA sequences for CCR1 knockdown were

as follows: shCCR1-1: CCCTACAATTTGACTATACTT, shCCR1-2:

CCCTGGTAGAAAGAAGATGAA. To generate SNU761 cells

overexpressing CCL16, a Plvx-IRES-ZsGreen1-flag-CCL16

overexpression plasmid was constructed. Subsequently, the Plvx-

IRES-ZsGreen1 vector was co-transfected with the lentiviral

packaging vectors psPAX2 and pMD2 into HEK293T cells. After 48

hours, the viral supernatant was collected and used to infect SNU761

cells. The infected cells were then selected using 4mg/mL puromycin,

and the efficiency of CCL16 overexpression was assessed by qPCR.
Macrophages migration and co-culture
assays using Transwell

For the migration assay of macrophages, a 24-well Transwell

chamber system with an 8mm membrane was used. PMA-induced

THP1 cells (5×104 cells/well) were placed in the upper chamber,

while the conditioned medium from the control, CCL16-

knockdown HEPG2 cells/CCL16-overexpressing SNU761 cells

was placed in the lower chamber. Following a 24-hour period, the

THP1 cells that moved towards the bottom chamber were dyed

using 0.1% crystal violet. To calculate the average, three fields were

randomly chosen under a microscope to determine the number of

migrated cells. In the co-culture assay of macrophages and liver

cancer cells, a 6-well Transwell chamber system with a 0.4mm
membrane was used to separate the upper and lower chambers.

Control, CCL16-knockdown HEPG2 cells/CCL16-overexpressing

SNU761 cells (1×105 cells/well) were placed in the lower chamber,

while PMA-induced THP1 cells (1×105 cells/well) were placed in

the upper chamber. After 48 hours of co-culture, the THP1 cells in

the upper chamber were subjected to flow cytometry. Three

independent replicates were conducted.
Elisa

CCL16 expression in the control, CCL16-knockdown HEPG2

cells, and CCL16-overexpressing SNU761 cells were measured

using human CCL16 ELISA kits (Abcam). The particular
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experimental protocols were carried out in accordance with the

provided guidelines. Three independent replicates were conducted.
Immunofluorescence

The SNU761 cells overexpressing CCL16 were co-cultured with

PMA-treated THP1 cells. Afterward, the cells were fixed with 4%

paraformaldehyde for 10 minutes, blocked with PBS containing 2%

BSA for 30 minutes, and then incubated overnight at 4°C with

antibodies against Flag and CCR1. On the following day, the cells

were stained with corresponding fluorescent secondary antibodies

for 1 hour at room temperature. The cell nuclei were stained with

DAPI. Afterward, the slides were mounted using an anti-fade

mounting medium and observed under a ZEISS microscope for

fluorescence imaging. Liver cancer tissue samples were embedded in

paraffin and prepared as sections. The sections underwent a series of

steps including deparaffinization, hydration, and antigen retrieval.

After blocking with 5% goat serum, the sections were incubated

overnight at 4°C with appropriately diluted CD68 and CCR1

antibodies. On the next day, the sections were stained with

corresponding fluorescent secondary antibodies for 1 hour at

room temperature. Three distinct fields were randomly selected

from each slide, and the number of CD68+CCR1+ cells was

quantified. Three independent replicates were conducted. The

average value of the cell counts from the three fields was used for

statistical analysis.
Coimmunoprecipitation

Flag-CCL16 recombinant protein was added into THP1 cells.

Following a 24-hour period, the cells were disrupted by employing

RIPA buffer that consisted of proteinase inhibitors. Ten percent of

the entire cell lysate was retained as the control sample, whereas the

rest of the lysate was subjected to an overnight incubation at 4°C

with Flag and IgG antibody. On the following day, beads containing

protein A/G were introduced and left to incubate for an extra 4

hours. Afterwards, the beads were rinsed thrice using RIPA solution

and heated in 20mL of 1x loading buffer. Flag/CCR1/CCR2/CCR5/

CCR8 antibodies were utilized for immunoblotting analysis to

identify the interacting proteins, in addition to the input protein

samples. Three independent replicates were conducted.
Western blot

After undergoing SDS-PAGE gel electrophoresis, the proteins

were then transferred onto a nitrocellulose (NC) membrane.

Specific primary antibodies were incubated with the membrane

overnight at 4°C. Following this, the sample was exposed to

secondary antibodies for a duration of 1 hour at room

temperature. The Immobilon Western chemiluminescent HRP

substrate (Millipore) was utilized to visualize protein bands on a

luminescent imaging workstation (Tanon). ImageJ software was
frontiersin.org
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used to measure the band intensities of various proteins, with

ACTIN serving as the chosen loading control.
qPCR

TRIzol reagent was used to extract total RNA according to the

instructions provided by the manufacturer. The PrimeScript RT

Reagent Kit (Takara) was utilized for the synthesis of cDNA. The

SYBR Green Master mix (Roche) was utilized to perform

quantitative real-time PCR (QPCR). The 2-DDCt method was

utilized to determine the comparative levels of gene expression,

which were then normalized to the expression of ACTIN. Table 2

contains a list of the specific primers utilized for gene-specific PCR.
Flow cytometry

After 48 hours of co-culture between macrophages and liver

cancer cells in a 0.4mm pore size Transwell system, the PMA

induced THP1 cells from the upper chamber were subjected to

flow cytometry analysis. Cells were incubated with CD80-FITC and

CD206-PE Cyanine7 flow cytometry antibodies at 4°C for 30

minutes. Following the addition of 1 mL PBS and centrifugation

at 1500 rpm for 5 minutes, the cell pellet was resuspended in 200mL
PBS. Flow cytometry analysis was performed using the Beckman

Gallios flow cytometer, and the experimental results were analyzed

using Flow Jo. Three independent replicates were conducted.
Immunohistochemistry

Liver cancer tissues were embedded in paraffin and then cut into

sections. After deparaffinization and hydration, the sections were

subjected to antigen retrieval. The activity of endogenous

peroxidase was inhibited using 3% H2O2, followed by blocking

the sections with 5% goat serum. Antibodies against CCL16, CD68,

and CD206 were diluted, added, and incubated overnight at 4°C.

Following the PBST (PBS with Tween 20) wash, the sections were

exposed to biotinylated secondary antibodies and left at ambient

temperature for a duration of 20 minutes. After being washed three

times with PBST, the sections were then exposed to streptavidin-

horseradish peroxidase at room temperature for a duration of 15

minutes. After three washes with PBST, fresh DAB working

solution was added for color development. To halt the reaction,

the sections were rinsed with water for a duration of 5 minutes, and
Frontiers in Immunology 06
subsequently examined under a ZEISS microscope. The Image Pro

Plus software was used to calculate the Mean Optical Density

(MOD) value.
Ethics statement

The research was carried out with the endorsement of the Ethics

Committee at the First Hospital of China Medical University. All

participants provided written consent prior to the study.
Statistical analysis

GraphPad Prism 8 was utilized for conducting statistical

analysis. Means ± standard deviations (SD) were used to present

quantitative data, whereas numbers were used to present qualitative

values. For the analysis of suitable quantitative data, either the

Unpaired Student’s t-test or two-way ANOVA was utilized.

Statistical significance was determined by a two-sided P-value less

than 0.05, indicated as * for P < 0.05, ** for P < 0.01, and *** for

P < 0.001.
Results

The microenvironment of malignant liver
cancer cells exhibits cellular
communication characteristics, with
macrophages showing the most
notable interaction

To examine the communication properties of cancerous liver

cells within the tumor microenvironment, we conducted an analysis

of single-cell transcriptomic data using tissue samples obtained

from 10 individuals diagnosed with malignant liver cancer. After

quality control and clustering, we obtained a total of 13 cell types,

comprising 44,320 cells (Figure 1A), including 3,648 aneuploid

cells. In addition, we showcased the leading 5 marker genes for

every cell cluster (Figure 1B). Among all cell types, T/NK cells had

the highest proportion, followed by Macrophages, aneuploid cells,

and Monocytes. On the other hand, there was significant

heterogeneity in the composition of cell types between different

patients (Figure 1C). The tSNE distribution of aneuploid cells

identified by CopyKAT primarily overlapped with Hepatocytes

and Cycling cells, demonstrating high accuracy (Figure 1D). The
TABLE 2 Primer sequences for qPCR.

Symbol Fwd Rvs

CCL16 CTTATCATTACTTCGGCTTCTCGC GGCCTTTCTGTATCCCACCACTA

CCR1 CCTGCTGACGATTGACAGGT AGGGCCCAAATGATGATGCT

ACTIN GTCTCCTCTGACTTCAACAGCG CGTACAGGTCTTTGCGGATG
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interactions between cell clusters identified by Cellchat revealed that

the most prominent interacting cell types with aneuploid cells were

macrophages and monocytes, followed by fibroblasts and myeloid

DC cells (Figure 2A). Cell-cell interactions are often mediated by

receptor-ligand pairs, with aneuploid cells acting as either source or

receptor cells. Through Cellchat enrichment analysis, we identified

96 pairs of important receptor-ligand pairs, with a significant

enrichment of aneuploid cell-derived interactions with other cell

types compared to their interactions as receptor cells

(Supplementary File 1). Particularly, the potential receptor-ligand

pairs involving aneuploid cells acting on macrophages were found

to be at a higher level compared to other cell types, including the

CCL16-CCR1 axis (Figure 2B). These findings suggest that cell-cell
Frontiers in Immunology 07
interactions initiated by aneuploid cells as source cells are crucial

role in the immune microenvironment of liver cancer.
Molecular subtyping and immune cell
infiltration characteristics based on
prognostic receptor-ligand genes

As is well-established, tumor cells exhibit pronounced

heterogeneity, and similarly, the intercellular interactions based

on aneuploid cells are also expected to display such complexity

(29). Therefore, leveraging the previously identified core set of

receptor-ligand genes (comprising a total of 76 genes) associated
B

C

D

A

FIGURE 1

Single-cell analysis identified cellular subpopulation categories and compositional features of liver cancer tissue samples. (A) The t-SNE clustering
plot was generated after quality control and integration using the canonical correlation analysis (CCA) method. The left panel shows the t-SNE
clustering of 10 HCC patients. The middle panel represents cell subgroups identified using the Seurat R package’s FindClusters function with a
resolution of 0.5. The right panel displays the t-SNE clustering of cell subpopulations after manual annotation. (B) Based on the ascending order of
Wilcoxon test values, the top 5 marker genes for each cell type were identified using the FindMarkers function. (C) The number of cells for each cell
type and the cellular composition of each sample. (D) The t-SNE distribution of malignant aneuploid cells identified by CopyKAT.
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with aneuploid cells, we conducted an extensive investigation of

prognosis and molecular subtyping in two large-scale cohorts,

namely TCGA-LIHC (training cohort) and LIRI-JP (testing

cohort). Using a strict univariate Cox regression analysis with a

p-value threshold of less than 0.1, we were able to identify 8

receptor-ligand genes that have significant prognostic value in the

TCGA-LIHC cohort. Significantly, CCL16 stood out as the only

factor posing a risk among these candidates (Figure 3A). Using the

expression patterns of these eight genes, patients from both cohorts

were successfully classified into three distinct subtypes through

unsupervised clustering analysis (Figure 3B). Significantly, all three

subcategories demonstrated comparable prognostic disparities in

both datasets, underscoring the strength and uniformity of the

categorization (Figure 3C). The analysis of immune cell infiltration

indicated that the C1 subtype, which had the worst prognosis,

displayed notably reduced scores for the majority of immune cell

categories, specifically T cells, including Activated CD4 T, Central

memory CD4 T, and Central memory CD8 T, in contrast to the C2

and C3 subtypes (Supplementary Figure 1A). Consistently, the

results of the Estimate analysis also indicated a notable decrease

in the Stromal score and Immune score within the C1 subtype

(Supplementary Figure 1B). Moreover, the levels of gene expression

for most immune checkpoint genes were notably decreased in the

C1 subtype when compared to the other two subtypes, indicating a

possible diminished immune response in the C1 subtype

(Supplementary Figure 1C). According to the TIDE analysis, it

was found that the C1 subtype exhibited notably reduced scores in

relation to the IFNG pathway, which is linked to the innate immune

responses (30). Remarkably, in circumstances of generally limited

immune cell penetration, the C1 category, associated with the most

unfavorable prognosis, exhibited notably increased ratings for M2
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macrophages linked to tumors (Supplementary Figure 1D).

Therefore, we speculate that the polarization of macrophages

towards M2 phenotype might have a crucial impact on the

progression of liver cancer.
Construction of the four-gene risk model
and prognostic nomogram

Afterwards, we conducted differential gene expression analysis

on the three subtypes. The genes that showed differential expression

were analyzed for functional enrichment (Supplementary Figure

2A, B; Supplementary File 2) and used to construct a prognostic

model. Initially, we conducted univariate Cox analysis on these

genes that were expressed differentially (DEGs) in the TCGA-LIHC

cohort, employing a threshold of P < 0.05. This yielded 274

prognostic-related DEGs. Following that, an analysis using Lasso

regression was performed, leading to the identification of 13 genes

(Figure 4A). By employing a stepwise regression approach, we

eventually pinpointed four genes and developed a risk model to

calculate the risk score with the following formula: risk score =

-0.349 * CSF2RA + 0.245 * LRRC3 + 0.095 * UGT3A1 + 0.115 *

EFHD1. Risk scores were computed for every patient in both the

TCGA-LIHC and LIRI-JP cohorts (Supplementary File 3). Patients

were categorized into high and low-risk groups based on the

threshold set by the median value. The findings indicated that the

high-risk category exhibited notably worse prognosis. In addition,

the AUC plots demonstrated good predictive precision (Figures 4B,

C). In order to improve the accuracy of predictions, we took into

account the inclusion of clinical factors in the model. In the

multivariable Cox analysis (Figure 5A), it was found that the risk
BA

FIGURE 2

Cellular communication features of malignant liver cancer cells in the microenvironment. (A) The number (top) and weight (bottom) of interactions
between different cell types as identified by CellChat analysis. (B) Enrichment results of receptor-ligand pairs, with aneuploid cells as the source (left)
and receptor cells (right), as determined by CellChat.
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score and stage continued to be significant prognostic factors,

demonstrating their independence. Afterwards, we built a

comprehensive calibration graph (Figure 5B). According to

Figure 5C, the AUC curve indicated that the nomogram

outperformed other clinical factors like the risk score and stage in

terms of predictive accuracy. Moreover, the calibration plot

demonstrated a strong correlation between the estimated and

observed occurrence frequencies (Figure 5D), while the decision

curve analysis (DCA) graph displayed the greatest overall net

advantage for the nomogram (Figure 5E). In addition, a

substantial inverse relationship was noted between the risk score

and immune score (R = -0.23, P = 6.4e-6) (Supplementary Figure

3A). The group with minimal risk displayed notably elevated levels

of Tumor-Reactive T Cell Signature (TRS score), which measures

the responsiveness of T cells towards tumors (31), and increased

levels of cytolytic activity score (CYT score), which evaluates the

effectiveness of T cells in targeting tumor cells within the tumor

microenvironment (32). Nevertheless, no notable distinction was

detected between the two cohorts regarding the Th1/IFNg genetic
pattern (Supplementary Figure 3B). In contrast to the high-risk

category, the low-risk category demonstrated elevated PD-1 and

CTLA4 expression, along with a notable rise in the infiltration of

immune cells related to T cells (Supplementary Figure 3C, D).
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Tumor cell-derived CCL16 mediates the
recruitment and M2 polarization of
macrophages in the liver
cancer microenvironment

Through single-cell data analysis, we identified specific

expression of the chemokine CCL16 in liver cancer cells, while its

receptor CCR1 was specifically expressed in macrophages

(Figure 6A). Our hypothesis suggests that the heightened

occurrence of M2 macrophages in the microenvironment of liver

cancer could potentially be attributed to CCL16-CCR1. In order to

examine this hypothesis, we initially examined the CCL16

expression in various liver cancer cell lines by utilizing the CCLE

database (Figure 6B). Subsequently, we validated the mRNA

expressions of CCL16 in several liver cancer cell lines available in

our laboratory through qPCR, which were consistent with the

database results, with HEPG2 cells showing the highest

expression and SNU761 cells showing the lowest expression

(Figure 6C). Next, to confirm whether CCL16 expressed by liver

cancer cells is associated with macrophage recruitment, we

generated HEPG2 cells with CCL16 knockdown and SNU761

cells with CCL16 overexpression (Figures 6D, E). Transwell

experiments revealed that knocking down CCL16 expression in
B

C

A

FIGURE 3

Molecular subtyping based on prognostic receptor-ligand genes in TCGA-LIHC and LIRI-JP cohorts. (A) Univariate Cox regression analysis results of
receptor-ligand genes in the TCGA-LIHC cohort. (B) Unsupervised clustering of the two cohorts based on the expression pattern of prognosis-
associated receptor-ligand genes. (C) Kaplan-Meier survival curves of the three subtypes in both cohorts. Log-rank test.
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HEPG2 cells significantly reduced their recruitment of THP1 cells,

while overexpressing CCL16 promoted the recruitment of THP1

cells by SNU761 cells (Figures 6F, G). Given the widespread

existence of tumor-associated macrophages (TAMs) in the tumor

microenvironment, known for their M2-polarized characteristics

linked to tumor advancement, we utilized a flow cytometry

technique (33) that was previously explained to assess the

polarization condition of macrophages in the co-culture setup.

The schematic diagram illustrating the cell co-culture system and
Frontiers in Immunology 10
the macrophage migration assay is presented (Figure 6H). M1 and

M2 macrophages were distinguished using CD80 as a common

marker, whereas CD206 was exclusively used as a marker for M2

macrophages (34). The findings indicated that the combination of

THP1 cells with HEPG2 cells lacking CCL16 expression notably

decreased the percentage of CD80+CD206+ cells in THP1.In

contrast , co-culturing THP1 cel ls with SNU761 cel ls

overexpressing CCL16 significantly increased the proportion of

CD80+CD206+ cells in THP1 (Figure 6I). The findings present
B

C

A

FIGURE 4

Construction of the 4-gene risk model. (A) Lasso regression analysis was performed to assess model fit. The analysis included two components. Left:
The curve of partial-likelihood deviance was plotted against Log(l), where a smaller value indicated a better fit of the model. Right: The curve of
regression coefficients for each variable was plotted against the change of Log(l). (B) Kaplan-Meier survival curves and 1, 3, 5-year ROC curves were
generated for the high-risk and low-risk groups in the TCGA-LIHC cohort. (C) Kaplan-Meier survival curves and 1, 3, 5-year ROC curves were
generated for the high-risk and low-risk groups in the LIRI-JP cohort. The Log-Rank test was used for statistical analysis.
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convincing proof that cancer cells attract macrophages and support

their M2 polarization by releasing CCL16.
The recruitment of tumor-associated
macrophages mediated by CCL16 depends
on the macrophage receptor CCR1

Next, we aimed to identify the receptor through which CCL16

acts on macrophages. There have been studies reporting that CCL16

binds to known receptors including CCR1, CCR2, CCR5, and CCR8

(14–17). We added synthetic Flag-CCL16 protein into THP1 cells

cultured in vitro and performed co-immunoprecipitation

experiments. The results revealed that CCL16 predominantly

interacts with the CCR1 receptor on macrophages, while the

binding affinity to other receptors was minimal (Figure 7A). This
Frontiers in Immunology 11
interaction was further confirmed by immunofluorescence, showing

colocalization of CCL16 and CCR1 on the cell membrane of THP1

cells (Figure 7B). To further investigate the role of CCR1, we

performed CCR1 knockdown in THP1 cells (Figure 7C) and co-

cultured them with HEPG2 cells to assess the migration ability of

macrophages. The results demonstrated that CCR1 knockdown in

THP1 cells significantly inhibited the recruitment of macrophages

by HEPG2 cells (Figure 7D). Interestingly, after treatment with the

CCR1 inhibitor BX471, the overexpression of CCL16 no longer

promoted THP1 cell recruitment (Figure 7E). Consistently, when

CCR1 was knocked down in THP1 cells, co-culture with tumor cells

overexpressing CCL16 no longer facilitated macrophage

recruitment (Figure 7F). These results demonstrate that the

secretion of CCL16 by liver cancer cells promotes macrophage

recru i tment through binding to the CCR1 receptor

on macrophages.
B

C D E

A

FIGURE 5

Integrated nomogram with improved predictive performance. (A) Results of univariate and multivariate analyses of risk score and clinical variables in
the TCGA-LIHC cohort. P < 0.05 indicates statistical significance. (B) Integrated prognostic nomogram combining risk score and stage for predicting
1, 3, and 5-year patient outcomes. ***: P < 0.001 in the multivariate Cox regression analysis. (C) AUC curves of the nomogram and other variables,
showing the highest accuracy of the nomogram across different survival time points. (D) Calibration curves of the nomogram, with closer proximity
to the diagonal line indicating a closer match between predicted and actual event rates. (E) Decision curve analysis (DCA) curves for different
variables, demonstrating the highest standard net benefit of the nomogram.
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M2 macrophage infiltration and CCR1
expression in clinical tissues are positively
correlated with CCL16

In order to examine the involvement of the CCL16-CCR1 axis

in clinical samples, a total of 42 liver cancer specimens were

gathered. The specimens were subjected to immunohistochemical

analysis to assess the expression of CCL16. The specimens were

categorized into groups of high and low expression based on the

median MOD value. Table 3 provides a summary of the variations

in clinical characteristics observed in both groups. The results of the

chi-squared test indicated a notable correlation between the levels of

CCL16 protein expression and advanced stage, as well as the

presence of lymph node and distant metastasis. Additionally,

immunohistochemical staining was performed to evaluate the

presence of CCR1, CD68, and CD206 expression. Significant

positive associations between CCL16 and the other three proteins

were validated (Figure 8A). In addition, the proportions of CD68

+CCR1+ macrophages were determined using immunofluorescence

staining, revealing a robust positive association between CCL16

expression and infiltration of CD68+CCR1+ macrophages

(Figure 8B). The clinical pathological analyses confirm that the

CCL16-CCR1 axis has the capability to enhance the infiltration of
Frontiers in Immunology 12
M2 macrophages in the microenvironment of liver cancer,

indicating that targeting the CCL16-CCR1 axis could be a

promising therapeutic approach for liver cancer.
Discussion

Hepatocellular carcinoma (HCC), a prevalent and aggressive

cancer, has a significant global impact and a high fatality rate (1).

The interaction among cells facilitated by ligand-receptor

complexes, which contributes to the diversity of the tumor

microenvironment, has been acknowledged as a vital element

impacting the prognosis of HCC patients and propelling tumor

advancement (35). Song et al. provide a comprehensive perspective

on analyzing the immune microenvironment in HCC and

emphasize the presence of a unique subset of macrophages

characterized by CCL18 and CREM expression, which is notably

enriched in advanced HCC patients. This specific macrophage

subset plays a significant role in driving tumor progression and

holds promising potential for future immunotherapeutic strategies

(36). Chen et al. examined the role of cancer-associated fibroblast

(CAF)-induced M2-polarized macrophages in promoting the

progression of HCC through the plasminogen activator inhibitor-
B C D E

F

G
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FIGURE 6

Tumor cell-derived CCL16 mediates the recruitment and M2 polarization of macrophages in the liver cancer microenvironment. (A) Expression of
CCL16 and CCR1 in different cell types at the single-cell level. (B) Expression levels of CCL16 in different liver cancer cell lines from the CCLE
database. (C) mRNA expression of CCL16 in different liver cancer cell lines detected by qPCR. (D) Validation of CCL16 knockdown in HEPG2 cell line.
(E) Validation of CCL16 overexpression in SNU761 cell line. (F) Transwell assay to evaluate the recruitment of THP1 cells by control and CCL16
knockdown HEPG2 cells, and ELISA assay to measure CCL16 concentration in the culture supernatant of HEPG2 cells. (G) Transwell assay to
evaluate the recruitment of THP1 cells by control and CCL16 overexpressing SNU761 cells, and ELISA assay to measure CCL16 concentration in the
culture supernatant of SNU761 cells. (H) Schematic diagram illustrating the cell co-culture system and the macrophage migration assay. (I) Flow
cytometry analysis to detect the proportion of M2-polarized cells after co-culture of THP1 cells with CCL16 knockdown or overexpressing tumor
cells. Transwell Scale Bar = 100mm. Three independent replicates were conducted. Statistical data are presented as mean ± SD, and each data point
represents an independent measurement. Unpaired Student’s t-test. ns, not significant; **: P < 0.01; ***: P < 0.001; ****: P < 0.0001.
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1 pathway. Additionally, they assessed macrophage polarization

and identified key paracrine factors involved in their interactions

with both CAFs and cancer cells in the context of HCC (37). Li et al.

made a significant finding demonstrating that targeting the CCL2/

CCR2 axis therapeutically could effectively impede the recruitment

of inflammatory monocytes, inhibit tumor-associated macrophage

(TAM) infiltration, and reverse M2 polarization. Consequently, this

intervention effectively counteracted the immune-suppressive

conditions within the tumor microenvironment, subsequently

activating anti-tumor CD8 T cell responses (38). Yang et al.

found that upregulated CD36 in metastasis-associated

macrophages (MAMs) promoted M2 polarization, facilitates liver

cancer metastasis through interactions with tumor cells, and its loss

in MAMs can attenuate liver metastasis in mice (39).

Chemokines derived from tumor cells play a crucial role in the

complex tumor microenvironment, with dysregulated cytokine

production in the tumor microenvironment influencing all stages

of carcinogenesis and affecting cancer initiation, progression, and

responses to therapy (40). Zha et al. discovered tumor cells utilized

complement-derived C3 to inhibit antitumor immunity by

regulating tumor-associated macrophages through the C3a-C3aR-

PI3Kg pathway (41). Park et al. employed quantitative proteomics

to unveil that exosomes originating from tumor cells under hypoxic
Frontiers in Immunology 13
conditions exhibit a significant enrichment of immunomodulatory

proteins and chemokines. This enrichment includes notable factors

such as CSF-1, CCL2, FTH, FTL, and TGFb, all of which contribute

to the promotion of macrophage M2 polarization (42). In both

mouse models and immunotherapy-treated patients, House et al.

found that macrophages, as the main source of CXCL9, significantly

upregulated the ligand of CXCR3, which, upon CXCL9 knockout,

led to reduced CD8 T cell infiltration and compromised therapeutic

efficacy of PD-1/CTLA-4 immune checkpoint blockade therapy

(43). Korbecki et al. emphasized the significant role of human CC

motif chemokine ligands and their corresponding receptors in

mediating the chemotaxis of immune cells to the tumor

microenvironment (44). However, the role of CCL16 in the

hepatocellular carcinoma microenvironment remains to be

further investigated. To uncover the underlying mechanisms, we

conducted a series of experiments, including Transwell co-culture

and migration assays, immunofluorescence, immunoprecipitation,

flow cytometry, and immunohistochemistry. Specifically, in co-

culture experiments, CCL16-overexpressing hepatocellular

carcinoma cells promoted migration and M2 polarization of

macrophages towards tumor cells. This effect was mediated by the

interaction between CCL16 secreted by tumor cells and the CCR1

receptor on macrophages. In clinical tissue samples, we observed a
B

C D

E F

A

FIGURE 7

The recruitment of tumor-associated macrophages mediated by CCL16 depends on the macrophage receptor CCR1. (A) Immunoprecipitation assay
to detect the interaction between Flag-CCL16 and CCR1, CCR2, CCR5, CCR8 in THP1 cell culture medium. (B) Immunofluorescence assay to detect
the co-localization of Flag-CCL16 and CCR1 in THP1 cells after the addition of Flag-CCL16. Scale bar = 20 mm. (C) qPCR validation of CCR1
knockdown in THP1 cells. (D) Transwell assay to evaluate the cell migration ability of CCR1 knockdown THP1 cells co-cultured with HEPG2 cells.
(E) Recruitment of THP1 cells by control or 5mM BX471-treated CCL16 overexpressing SNU761 cells after 24 hours. (F) Recruitment of THP1 cells by
CCL16 overexpressing SNU761 cells after CCR1 knockdown. Transwell Scale Bar = 100mm. Three independent replicates were conducted. Statistical
data are presented as mean ± SD, and each data point represents an independent measurement. Unpaired Student’s t-test or two-way ANOVA was
used for statistical analysis. ns, not significant; ***: P < 0.001; ****: P < 0.0001.
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significant positive correlation between CCL16 and CCR1, as well as

CD206 and CD68 at the protein level. Furthermore, CCL16 high-

expressing patient tissues showed a significant increase in CD68

+CCR1+ cells, further validating the recruitment role of CCL16 in

CCR1-positive macrophages. These experiments allowed us to

elucidate the role of the CCL16-CCR1 axis in recruiting tumor-

associated macrophages and promoting M2 polarization in HCC.

Using the CellChat algorithm, we conducted an analysis of

single-cell transcriptomic data obtained from HCC tumor samples.

Our primary objective was to investigate the interactions between

different cell populations within the HCC microenvironment, with

a specific focus on ligand-receptor interactions involving malignant

HCC cells. In this context, we identified key genes, such as CCL16

and CCR1, that are instrumental in these interactions. Furthermore,

we leveraged RNA-Seq data from comprehensive datasets,

including TCGA-LIHC and LIRI-JP, and employed Cox

regression analysis to uncover predictive genes. We also employed

unsupervised clustering to categorize individuals into molecular

subgroups. Additionally, we developed a risk model comprising

four genes by analyzing differential gene expression among

subtypes. This model can be utilized for predicting the prognosis

of HCC patients. Moreover, through bioinformatics analysis of the

immune microenvironment, we made the noteworthy observation

that the subtype associated with the poorest prognosis exhibited a

significant increase in the infiltration score of M2 tumor-

associated macrophages.

Our study provides valuable insights into the molecular

sub t yp ing , p rognos t i c mode l i ng , and the immune
B

A

FIGURE 8

High expression of CCL16 is positively correlated with the infiltration of M2 macrophages and the expression of CCR1 in clinical tissues.
(A) Immunohistochemistry representative images and Pearson correlation analysis of CCL16 with CCR1, CD68, and CD206 in liver cancer patient
samples, as well as the Mean Optical Density (MOD) values. Scale Bar = 100mm. (B) Immunofluorescence detection of CCR1+ macrophage infiltration.
Scale Bar = 20mm. Statistical analysis of the difference in CD68+CCR1+ cell numbers between high and low CCL16 expression groups using unpaired
Student’s t-test. **: P < 0.01. Pearson correlation analysis of CCL16 expression and CCR1+ macrophage infiltration, r = 0.5743, P < 0.001.
TABLE 3 Clinical characteristics of patients with high and low
expression of CCL16.

Clinical
Features

CCL16-Low
(N=21)

CCL16-High
(N=21)

P-value

Age

≥60 7 (33.3%) 11 (52.4%) 0.35

<60 14 (66.7%) 10 (47.6%)

Gender

Male 12 (57.1%) 10 (47.6%) 0.757

Female 9 (42.9%) 11 (52.4%)

Stage

I+II 19 (90.5%) 6 (28.6%) <0.001

III+IV 2 (9.5%) 15 (71.4%)

T

T2 2 (9.5%) 2 (9.5%) 1

T3+T4 19 (90.5%) 19 (90.5%)

N

N0 19 (90.5%) 6 (28.6%) <0.001

N1+N2 2 (9.5%) 15 (71.4%)

M

M0 20 (95.2%) 14 (66.7%) 0.0494

M1 1 (4.8%) 7 (33.3%)
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microenvironment of HCC. We achieved this by characterizing

interactions between ligands and receptors and uncovering the pro-

tumorigenic role of the CCL16-CCR1 axis within the HCC

microenvironment. The findings from this research could have

implications for the development of novel treatment strategies

targeting specific ligand-receptor interactions or the modulation

of the immune microenvironment in HCC. It’s worth noting that

our study did not involve animal trials due to the absence of a

homologous gene in mice, which presents a significant limitation

when investigating the role of CCL16 in the immune

microenvironment. Consistent with this, a study published in the

journal Cell demonstrated that CCL16, produced by hepatocytes,

binds to CCR1 expressed by human Kupffer cells (KCs) but not

murine KCs. In this context, KCs refer to hepatic macrophages.

Therefore, human CCL16 cannot interact with murine

macrophages through CCR1 (45). On the other hand, as the first-

discovered C-C chemokine receptor, CCR1 is overexpressed in

several types of cancers and is associated with increased immune-

suppressive cell infiltration and tumor metastasis (46, 47). Through

literature and patent searches, several CCR1 antagonists are

currently in development, including AZD-4818, BI-638683, BL-

5923, BX-471, C-6448, C-4462, CCX9588, CCX354, CCX721, CP-

481715, MLN-3701, MLN-3897, PS-031291/PS-375179, and UCB-

35625. However, as of now, none of them have entered clinical trials

in the field of oncology (48). The selective CCR1 antagonist

CCX721 has demonstrated efficacy in reducing tumor burden and

osteolytic lesions in a murine model of multiple myeloma (MM) by

blocking osteoclasts (49). Additionally, studies have reported that

inhibiting CCR1 with the receptor antagonist BL5923 suppresses

the recruitment of immature myeloid cells, leading to a reduction in

metastatic colon cancer and a significant prolongation of survival in

mice with colon cancer liver metastasis (50). The combination of

the CCR1 antagonist CCX9588 with an anti-PD-L1 antibody has

shown promise as a therapeutic approach, synergistically inhibiting

primary tumor growth and lung metastasis in an in situ breast

cancer mouse model (51). Recently, in a mouse model of ovarian

cancer, the small-molecule CCR1 inhibitor UCB35625

demonstrated the ability to reduce cell migration to the greater

omentum, a preferential metastatic site for such cancers (52).

Overall, these findings suggest that targeting CCR1 is a viable

therapeutic strategy capable of limiting metastasis and delaying

disease progression.
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SUPPLEMENTARY FIGURE 1

Analysis of immune microenvironment differences among the three
molecular subtypes. (A) Comparison of differences in immune cell

infi l tration gene set scores obtained through ssGSEA method.
(B) Comparison of differences in Stromal score and Immune Score

obtained through Estimate algorithm. (C) Differential expression of immune

checkpoint genes among the three subtypes. (D) Comparison of differences
in immune feature scores calculated by TIDE tool. Wilcoxon test. ns, not

significant; *: P<0.05; **: P<0.01; ***: P<0.001; ****: P<0.0001.

SUPPLEMENTARY FIGURE 2

Identification of differentially expressed genes among three subtypes. (A)
Volcano plots showing differential expression analysis using the Limma R

package to identify genes that are differentially expressed between each
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group and the other two groups. (B) Functional enrichment analysis results of
the commonly differentially expressed genes.

SUPPLEMENTARY FIGURE 3

Differential analysis of the immunemicroenvironment between high and low-

risk groups. (A) There is a significant negative correlation between the risk
score and immune score (R = -0.23, P = 6.4e-6). (B) Differences in Tumor-

Reactive T Cell Signature (TRS score), cytolytic activity score (CYT score), and
Th1/IFNg gene signature score between high and low-risk groups. (C)
Differential analysis of the scores of 28 immune cell gene sets between the

two groups. Statistical analysis was performed using Wilcoxon test. ns, not
significant; *: P < 0.05; **: P < 0.01; ***: P < 0.001; ****: P < 0.0001.
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SUPPLEMENTARY FILE 1

The receptor-ligand pairs and pathway enrichment results for the interactions
between different cell types, as identified by CellChat.

SUPPLEMENTARY FILE 2

The differential expression genes and functional enrichment results among

the three molecular subtypes.

SUPPLEMENTARY FILE 3

The results of univariate Cox analysis in the TCGA-LIHC cohort and risk
scores of patients in both cohorts.
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