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Immunotherapy, notably chimeric antigen receptor (CAR) modified natural killer

(NK) cell therapy, has shown exciting promise in the treatment of hematologic

malignancies due to its unique advantages including fewer side effects, diverse

activation mechanisms, and wide availability. However, CAR-NK cell therapies

have demonstrated limited efficacy against solid tumors, primarily due to

challenges posed by the solid tumor microenvironment. In contrast,

radiotherapy, a well-established treatment modality, has been proven to

modulate the tumor microenvironment and facilitate immune cell infiltration.

With these observations, we hypothesize that a novel therapeutic strategy

integrating CAR-NK cell therapy with radiotherapy could enhance the ability to

treat solid tumors. This hypothesis aims to address the obstacles CAR-NK cell

therapies face within the solid tumor microenvironment and explore the

potential efficacy of their combination with radiotherapy. By capitalizing on the

synergistic advantages of CAR-NK cell therapy and radiotherapy, we posit that

this could lead to improved prognoses for patients with solid tumors.

KEYWORDS

chimeric antigen receptor, radiotherapy, solid tumors, tumor microenvironment,
natural killer cells
1 Introduction

With the rapid development of immunotherapy in recent years, people have refocused

on the impact of the immune system on tumors. Adoptive cell therapy (ACT) is an

important treatment approach. The previous ACT involved collecting immune cells from

the patient’s body, culturing and expanding them in vitro, and reinjecting them into the
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2023.1298683/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1298683/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1298683/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1298683/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2023.1298683&domain=pdf&date_stamp=2023-12-15
mailto:xinglg@medmail.com.cn
https://doi.org/10.3389/fimmu.2023.1298683
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2023.1298683
https://www.frontiersin.org/journals/immunology


He et al. 10.3389/fimmu.2023.1298683
body. However, it remains controversial due to its lack of specificity

and limited efficacy. With the advancement of genetic engineering

technology, researchers have developed an immune cell modified

with the chimeric antigen receptor (CAR). This technology involves

adding a specific antigen-recognition receptor on the surface of

immune cells, which can recognize tumor-specific proteins and

greatly enhance the targeting ability of ACT. The classical CAR

mainly consists of an antigen-binding domain, a hinge domain, a

transmembrane domain, and an intracellular signaling domain.

Among them, the antigen-binding domain is composed of the

variable region of heavy (VH) and light (VL) chains connected

via a flexible linker to form a single-chain fragment variable (scFv)

in the extracellular region When the CAR recognizes and binds to

the antigen, its intracellular signaling domain sends a signal to

activate downstream pathways and stimulate the immune cells to

exert their effector functions (1, 2).

The most widely studied approach is CAR-modified T (CAR-T)

cell therapy, which has exhibited remarkable efficacy in hematologic

malignancies (3) and has been approved by regulatory authorities

for treating such tumors. However, it has some drawbacks,

including inducing severe cytokine release syndrome and

neurotoxicity, a long and expensive production process, and

limited therapeutic efficacy on solid tumors (4). As a result,

researchers have shifted their attention to NK cells and

developed CAR-NK cell therapy as a potential alternative. CAR-

NK cells present several advantages over CAR-T cells, such as a

lower risk of cytokine release syndrome, absence of graft-versus-

host disease (GvHD), and multiple mechanisms of inducing

cytotoxicity (5–7). Additionally, NK cells can be extracted from

peripheral blood, cord blood, induced pluripotent stem cells, and

NK cell lines. In a recent phase I/II clinical trial targeting CD19-

positive B-cell lymphoma, CD19-CAR-NK cells exhibited potent

anti-tumor effects (8). CAR-NK cells have been observed to have

promising therapeutic effects on solid tumors in preclinical studies

(9, 10), and corresponding clinical trials are currently underway, but

their results have not yet been published. Nevertheless, for an

effective CAR-NK cell therapy, it remains a critical challenge to

overcome the immunosuppressive property of the solid tumor

microenvironment (TME) that hinders the activity and function

of NK cells.

Radiation therapy, as a conventional tumor treatment, has

recently garnered attention due to its immunomodulatory effects.

Increasing evidence suggests that it can reshape the TME and

enhance immune cell infiltration (11–13). Several preclinical

studies have investigated the combination of CAR-T cell

therapy and radiotherapy for treating solid tumors and yielded

promising outcomes (Table 1). NK cells, as a component of

the innate immune system, possess distinctive activation

mechanisms. Their combination with radiotherapy may alter the

balance between their activation and inhibition signals, thereby

augmenting the NK cell function. The combination of radiation

therapy with CAR-NK cell therapy may represent a promising

strategy for the treatment of solid tumors. In this review,

we will focus on the mechanisms and challenges of this

combination therapy.
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2 Mechanisms of CAR-NK cell
recognizing and killing cancer cells

2.1 Intrinsic mechanism

NK cells are a subset of innate immune cells that lack specific

antigen-recognition receptors. They can rapidly recognize and

eliminate tumor cells and infected cells without the need for prior

sensitization to antigens (18). The activation and regulation of NK

cells are determined by a delicate balance between activation and

inhibition signals integrated through their surface receptors. Under

normal physiological conditions, the inhibitory receptors on NK

cells bind to Major Histocompatibility Complex class I molecules

(MHC-I) on normal cells to transmit inhibitory signals and put NK

cells in an inactive state, thereby preventing normal cells from being

killed. However, during tumorigenesis or infection, the

downregulation of MHC-I expression in tumor and infected cells

disrupts the inhibitory signals, leading to NK cells being activated

through a recognition mechanism called “missing-self” (19).

Moreover, there are multiple activating receptors on the surface

of NK cells, enabling them to recognize and bind to overexpressed

or aberrantly expressed proteins on the surface of tumor or infected

cells, thereby triggering NK cell activation. The activated NK cells

employ diverse mechanisms to directly eliminate target cells,

including the release of perforin and granzyme. Moreover, they

can induce cell apoptosis through the Fas Ligand/TNF-Related

Apoptosis-Inducing Ligand (FasL/TRAIL) signaling pathway or

by secreting IFN-g and TNF-a to engage in receptor-mediated

interactions with target cells. Additionally, the Fc receptor CD16 on

the surface of NK cells can bind to the Fc region of antibodies and

trigger antibody-dependent cell-mediated cytotoxicity (ADCC) to

clear target cells (20, 21) (Figure 1).
TABLE 1 Preclinical trials of CAR-T cell therapy combined
with radiotherapy.

Tumor
type

RT
dose

Result
Reference

Breast
cancer

10 Gy

Radiotherapy enhanced the
infiltration and cytotoxicity of
CAR-T cells by activating the NF-
kB/ICAM-1 signaling pathway.

Zhou
et al. (14)

Glioblastoma 4 Gy
Radiotherapy increased the
cytotoxicity of NKG2D-CAR-T
cells against glioblastoma cells.

Weiss
et al. (15)

Glioblastoma 5 Gy

Radiotherapy enhanced the
infiltration of CAR-T cells into
tumors, and combination therapy
prolonged the survival time of the
model mice of glioblastoma.

Murty
et al. (16)

Pancreatic
cancer

2 Gy

Radiotherapy increased the
sensitivity of tumor cells to
TRAIL-mediated apoptosis and
enhanced the cytotoxicity of CAR-
T cells.

DeSelm
et al. (17)
CAR-T, chimeric antigen receptor-modified T; RT, radiotherapy; NF-kB, nuclear factor kB;
ICAM-1, intercellular adhesion molecule 1; NKG2D, natural killer group 2 member D;
TRAIL, TNF-related apoptosis-inducing ligand.
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2.2 CAR-dependent mechanism

During tumor development, tumor cells often downregulate

related surface antigens or upregulate some inhibitory receptors to

evade immune surveillance, making it difficult for immune cells to

recognize the tumor (22). Meanwhile, specific antigens are

expressed in certain tumors. These specific antigens can serve as

targets for tumor therapy. Installing a chimeric antigen receptor

(CAR) structure on immune cells can make them recognize specific

antigens. When the CAR binds to the target antigen, the activation

signal is transduced into the cell to stimulate NK cell activation and

release cytotoxic substances (23) (Figure 1). CAR structures have

currently been developed to the fourth generation. The first-

generation molecule consists of a synthetic extracellular receptor

for antigen recognition, a transmembrane domain, and an

intracellular signaling domain. The second and third-generation

CAR molecules have one or more intracellular co-stimulatory

domains to enhance signal transduction. The fourth-generation

CAR, also known as armored CAR, includes molecular payloads

that endow CAR-NK cells with additional characteristics and

functions. Most CARs used for CAR-NK studies have the same

structures as those employed for CAR-T cell therapy because they
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share the same signal pathways and co-stimulatory domains.

However, researchers have developed NK-specific intracellular

signaling domains, such as DNAX-activating protein 10 (DAP10),

DNAX-activating protein 12 (DAP12), and 2B4, to enhance their

cytotoxicity and persistence (24).

Due to the dual cytotoxicity and activation mechanism of CAR-

NK cell therapy, it shows greater potential in overcoming the

heterogeneity of solid tumors over CAR-T cell therapy and is

more effect ive in combination with radiotherapy for

tumor treatment.
3 Challenges encountered by
CAR-NK cell therapy in the
treatment of solid tumors

3.1 Immune cell homing and transport

Immune cells are usually distributed in the peripheral blood and

secondary lymphatic structures of the human body. When the body

suffers from infectious or tumor-related diseases, a large number of

inflammatory mediators like cytokines and histamines can be
FIGURE 1

The killing mechanism of CAR-NK. 1.Intrinsic direct killing mechanism: NK cells directly kill tumor cells through the following mechanisms: Releasing
perforin and granzyme B to directly induce tumor cell lysis; Secreting cytokines TNF-a and IFN-g to induce apoptosis in tumor cells; Mediating
tumor cell apoptosis through the FasL/TRAIL pathway; Exerting antibody-dependent cellular cytotoxicity (ADCC) mediated by CD16. 2. Intrinsic
indirect killing mechanism NK cells have the ability to secrete chemokines, recruiting T cells, DC cells, and other immune cells to engage in
collaborative cytotoxicity against tumor cells. 3. CAR dependent mechanism The CAR structure can recognize tumor-specific antigens, thereby
activating NK cells to kill tumor cells by releasing perforin and granzyme B, among others. The figure is created with BioRender.com. CAR, chimeric
antigen receptor; DC, dendritic cell; NK, natural killer; FasL, Fas ligand; TRAIL, TNF-related apoptosis-inducing ligand; TNF-a, tumor necrosis factor
alpha; IFN-g, interferon-gamma.
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released to induce the migration of immune cells to the lesion site

through the bloodstream. Then the immune cells adhere to the

endothelial cells that line the blood vessels and permeate into

the affected tissue via various cascades (25, 26). Nevertheless,

solid tumors have abnormal vascular structure and function.

Compared with normal blood vessels, their vasculature lacks

hierarchical organization and shows a lower expression of

adhesion molecules on the endothelium (27, 28), which hinders

the migration of immune cells toward tumor tissues. The precise

identification of tumors by CAR-NK cells and their successful

migration to the tumor core through peripheral blood vessels are

crucial prerequisites to ensure the efficacy of immune cell therapy.
3.2 Inhibitory effect of TME on
CAR-NK cells

TME refers to the internal environment of tumor development,

including tumor cells, immune cells, stromal cells, blood vessels,

and extracellular matrix components (29). Abnormal growth of

tumor blood vessels can lead to the hypoxic and acidic TME and

make NK cells undergo several alterations, including decreased

secretion of cytokines, downregulation of activating and death

receptors (30), and decreased cytotoxicity. Conversely, lactate and

low pH levels can inhibit the activity of NK cells and the IFNg
release (31). TME also releases various cytokines that suppress NK

cell activity, such as prostaglandin E2 (PGE2), indoleamine 2,3-

dioxygenase (IDO), extracellular adenosine, transforming growth

factor b (TGF-b), and soluble MICA (sMICA) (32). Among these

factors, TGF-b can significantly diminish the expression levels of

activating receptors NKG2D and NKp30 on the NK cell surface

(33). It can further disrupt IFN-g generation and inhibit its

differentiation into type 1 innate-like lymphoid cells (ILC1) (34,

35), thereby impairing the NK cell cytotoxicity. TME has diverse

immunosuppressive cells, including regulatory T cells (Tregs),
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myeloid-derived suppressor cells (MDSCs), and tumor-associated

macrophages (TAMs), all of which hinder NK cell activity. Tregs

can inhibit NK cell activity by interacting with membrane-bound

protein TGF-b and secreting TGF-b and IL-10 (36). Furthermore,

Tregs compete with NK cells to bind IL-2 and suppress NK cell

activation (37). MDSCs can impede NK cell-mediated ADCC via

the release of nitric oxide (NO) (38). These cytokines and

immunosuppressive cells do not act independently but function

in a complex interaction.
4 Current status of CAR-NK cell
therapy in the treatment of
solid tumors

The currently available data on the efficacy of CAR-NK cell

therapy primarily comes from hematologic malignancies. It has

shown anti-tumor activity in various preclinical models of solid

tumors (9, 39–42), including ovarian cancer, glioblastoma,

pancreatic cancer, breast cancer, lung cancer, and others.

Moreover, several CAR-NK cell therapies have been approved for

treating certain cancers based on their promising performance in

phase I/II clinical trials. Common target antigens include PSMA,

ROBO1, and NKG2D, although their specific data has not

been publicly disclosed. Currently, 13 clinical trials of CAR-NK

cell therapy for solid tumors have been registered on

ClinicalTrials.gov (Table 2).
5 Principle of CAR-NK cell therapy
combined with radiotherapy

Radiotherapy, as the cornerstone of cancer treatment, exerts its

effects by releasing high-energy radiation that directly or indirectly
TABLE 2 Registered clinical trials of CAR-NK cell therapy for treating solid tumors.

NCT number Target Cancer type Trial phase Trial status

NCT05776355 NKG2D Ovarian Cancer Phase I Recruiting

NCT05507593 DLL3 SCLC, Extensive Stage Phase I Recruiting

NCT05410717 CLDN6 Stage IV Ovarian Cancer; Testis Cancer; Refractory, Recurrent Endometrial Cancer Phase I/II Recruiting

NCT05213195 NKG2D Refractory, Metastatic Colorectal Cancer Phase I Recruiting

NCT05194709 5T4 Advanced Solid Tumors Phase I Recruiting

NCT04847466 PD-L1 Gastroesophageal Junction Cancer; Advanced HNSCC Phase II Recruiting

NCT05248048 NKG2D Refractory, Metastatic Colorectal Cancer Phase I/II Unknown

NCT03940820 ROBO1 Solid Tumors Phase I Recruiting

NCT05922930 TROP2 Pancreatic Cancer; Ovarian Cancer; Adenocarcinoma Phase I/II Not yet recruiting

NCT03692663 PMSA Metastatic Castration-Resistant Prostate Cancer Phase I Recruiting

NCT03692637 anti-Mesothelin Epithelial Ovarian Cancer Phase I Unknown

NCT03415100 NKG2D Solid Tumors Phase I Unknown
CAR-NK, chimeric antigen receptor-natural killer; SCLC, small-cell lung cancer; HNSCC, head and neck squamous cell carcinoma.
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damages cellular DNA (43–45). In addition to direct cytotoxicity

towards tumor cells, it can induce a series of biological responses

that have profound impacts on the immune system and TME.

In 1953, Mole proposed the abscopal effect (46), which refers to

the phenomenon where non-irradiated tumor lesions shrink in

addition to the irradiated tumor lesions. This phenomenon is

extremely rare and unpredictable. Subsequent researchers found

that, in immune-deficient mouse tumor models, the radiation dose

required to achieve tumor control was often higher than that in

immune-competent mice (47), suggesting that the immune system

contributes to enhancing the efficacy of radiotherapy. However, this

did not receive much attention at the time. It was not until 2004 that

Demaria et al. (48) confirmed that the abscopal effect induced by

radiotherapy is mediated by the immune system. With the

continuous progress of preclinical studies, more and more

mechanisms have been discovered. Firstly, radiotherapy can

induce immunogenic cell death (ICD) in tumor cells, leading to

the release of damage-associated molecular patterns (DAMPs) (49–

51). The primary components of DAMPs include: 1. The

translocation of calreticulin from the endoplasmic reticulum to

the cell membrane, which activates the antigen presentation

function of dendritic cells (DCs), At the same time, calreticulin

can also be recognized by the NKp46 receptor of NK cells,

enhancing the cytotoxicity of NK cells (52–54). 2. The release of

adenosine triphosphate (ATP), which recruits DC cells,

macrophages, T cells, B cells, etc., to migrate to the injury site,

releases inflammatory factors, and initiates adaptive immune
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responses (55). 3. The release of high mobility group protein B1

(HMGB1) promotes the maturation of dendritic cells, and then

activates T cells (56). On the other hand, radiotherapy can

alter the phenotype of tumor cells, leading to the upregulation of

cell surface molecules and increasing the presentation of

antigens, making the tumor cells more susceptible to immune

cell attacks (57, 58). Lastly, radiotherapy can lead to the

exposure of dsDNA, which is recognized and bound by cyclic

GMP-AMP synthase (cGAS), and stimulates the production of

many immune and inflammatory gene products, such as Type I

interferons, through the cGAS/STING signaling pathway (59, 60).

These pro-inflammatory factors recruit immune cells into the

tumor, thereby remolding the tumor microenvironment and

converting “cold” tumors with less immune cell infiltration into

“hot” tumors with immune cell infiltration (Figure 2). Though

preclinical studies illustrate the mechanisms of radiotherapy-

induced abscopal effects, observation of these effects in clinical

practice remains a rarity when radiotherapy is administered in

isolation. This scarcity may be ascribable to the inability of

radiotherapy alone to adequately surmount the cancer-

induced immunosuppression.

With the emergence of immunotherapy, immune checkpoint

inhibitors have been approved for clinical use, and an increasing

number of abscopal effect cases have been reported. The first report

came from a melanoma patient who experienced disease

progression during a clinical trial of ipilimumab, but subsequently

experienced tumor reduction outside of the irradiated field
FIGURE 2

Role of NK cells in radiotherapy-induced antitumor immunity. 1.Following radiotherapy, the dsDNA of tumor cells is exposed to the cytoplasm to
activate the cGAS/STING pathway, initiate type I interferon response, induce the secretion of some chemotactic factors, and recruit NK cells into the
tumor microenvironment. 2. Radiotherapy can upregulate the expression of several adhesion molecules like ICAM-1 and VCAM-1, which increases
the adhesion of NK cells to the endothelial surface. 3. After radiotherapy, tumor cells exhibit an upregulation in stress proteins MICA/B and ULBP1-6,
which can effectively activate NK cells and initiate an immune response against the tumor. 4. Radiotherapy induces ICD in tumor cells, leads to the
release of DAMPs, and activates NK cells. 5. Radiotherapy plays a pivotal role in decreasing tumor burden and creating a favorable environment for
NK cell infiltration. The figure is created with BioRender.com. NK, natural killer; cGAS, cyclic GMP-AMP synthase; STING, stimulator of interferon
genes; ICAM-1, intercellular adhesion molecule 1; VCAM-1, vascular cell adhesion molecule 1; MIC, major histocompatibility complex class I chain-
related protein. ULBP, UL16-binding protein; ICD, immunogenic cell death; DAMPs, damage-associated molecular patterns.
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following radiotherapy (61). Meanwhile, a retrospective analysis of

24 cases confirmed that abscopal effects are more common in

patients receiving combined radiotherapy and immunotherapy

(62). The impact of radiotherapy on the immune system has

regained attention. Researchers have begun to explore

combinations of radiotherapy with various immunotherapies,

including immune checkpoint inhibitors, adoptive cell therapy,

cytokine therapy, etc. Currently, there are over hundreds of

ongoing cl inica l tr ia ls combining radiotherapy with

different immunotherapies.

It is generally believed that radiotherapy-induced antitumor

immune responses are primarily mediated by T cells. A large body

of research has also confirmed the crucial role of T cells in

radiotherapy-induced immune responses (48, 63, 64). However,

with the development of immunology, researchers have begun to

pay attention to the role of NK cells in this process. We will

subsequently introduce the role of NK cells in radiotherapy-

induced antitumor immunity, as well as the potential mechanism

of combining CAR-NK with radiotherapy.
5.1 Radiotherapy enhancing NK cell
homing and transport

Compared with normal blood vessels, tumor blood vessels

exhibit immature morphology, irregular distribution, and

increased permeability. The effects of radiation therapy on tumor

vasculature vary greatly and depend on several factors like radiation

dose, fractionation schedule, tumor type, and tumor location.

Typically, a single high dose exceeding 10 Gy can cause

endothelial cell death, acute vascular injury, reduced blood

perfusion, and cell hypoxia within hours (65). However, moderate

to low doses can stimulate vascular regeneration and induce

vascular normalization. Studies have reported that a radiation

dose ranging from 5-10 Gy can transiently restore normal

vascular function by inducing NO release and lead to tumor

reoxygenation, improved blood flow, and increased tumor

perfusion (66). Notably, Ganss et al. demonstrated that

irradiation of the RIP1-Tag5 mice of pancreatic islet tumor with a

dose of 10 Gy could normalize tumor blood vessels and enhance

lymphocyte infiltration into the tumor (67). Similarly, Potiron et al.

found that a fractionated radiation regimen (2 Gy per fraction, 5

fractions per week, a total dose of 20 Gy in 10 fractions) could

improve tumor vascular maturity and perfusion and reduce cell

hypoxia in a prostate cancer xenograft model, and it did not alter

the tumor vascular morphology or density (68). Subsequent

experiments have confirmed that low-dose radiation therapy can

normalize tumor vasculature and enhance drug distribution

within the tumor (69). Additionally, radiation therapy can

increase the expression of adhesion molecules like intercellular

adhesion molecule-1 (ICAM-1) and vascular cell adhesion

molecule-1 (VCAM-1) on tumor endothelial cells (70, 71).

These adhesion molecules facilitate the adherence of NK cells to

the endothelial cells and promote extravasation into the tumor.

Based on these findings, the combination of radiation therapy with
Frontiers in Immunology 06
CAR-NK cell therapy may enhance CAR-NK cell homing and

delivery, and the vascular normalization induced by radiation

therapy may reverse the inhibitory effect of hypoxia on CAR-

NK cells.
5.2 Radiotherapy increasing NK cell
infiltration and recognition

The infiltration degree of NK cells in tumor tissues is often

positively correlated with the patient’s prognosis (72–74).

Radiotherapy plays a crucial role in NK cell migration and

infiltration. A study on single-cell sequencing of the paired

cervical cancer samples before and after radiochemotherapy

revealed a substantially increased number of CD16-NK cells in

tumor tissues following treatment. Analysis of the transcriptome

data on infiltrating NK cells after radiochemotherapy demonstrated

an increased expression of genes associated with leukocyte

migration and cytotoxicity (75). Similar results were obtained in

endometrial cancer and colorectal cancer, where radiotherapy

increased NK cell infiltration (76, 77). The influence of

radiotherapy on NK cell migration may be attributed to the

regulation of several chemokines. NK cells have many chemokine

receptor proteins on their surface, such as CXCR1, CXCR2, CXCR3,

CXCR6, and CCR5. These receptors facilitate the tumor cells’

perception of signal gradients of specific chemokines and guide

their migration process. Moreover, radiotherapy can induce DNA

damage, activate the cGAS/STING signaling pathway, trigger a type

I interferon response, and promote the production of some

cytokines like CXCL9, CXCL10, and CXCL11 (78–80). These

cytokines bind to receptors on NK cells and enhance immune cell

migration and infiltration into the tumor site (81).In addition,

radiotherapy-induced production of CXCL8 with CXCL16 has

been reported to be associated with NK cell migration and

infiltration (82, 83).

Radiotherapy can induce the secretion of multiple chemokines,

upregulate the expression of tumor-specific surface antigens, and

enhance the recognition and activation of NK cells. Research has

demonstrated that radiotherapy at a dose of 20 Gy can increase the

expression of MICA/B and ULBP1/2 on the surface of tumor cells,

and, co-culture with these tumor cells can enhance the cytotoxicity

of NK cells (84). Another study analyzed the paired samples from

sarcoma patients before and after radiotherapy; the post-

radiotherapy tumor cells exhibited stem cell characteristics and an

upregulated expression of MICA/B, making them more susceptible

to NK cell-mediated cytotoxicity (85). Moreover, radiotherapy

upregulates the expression of ICAM1 on cell surface, promotes

the adhesion between NK and tumor cells, and enhances NK cell-

mediated toxicity (86).The radiotherapy combined with adoptive

NK cell therapy could significantly prolong overall survival and

suppress lymph node metastasis and distant metastasis in a mouse

model of triple-negative breast cancer. Besides, radiotherapy and

adoptive NK cell therapy showed favorable results in canine

sarcoma models by enhancing NK cell homing and NK cell-

mediated cytotoxicity (87, 88).
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In conclusion, these preclinical studies show that radiotherapy

can enhance the infiltration ability and tumor recognition ability of

NK cells in adoptive therapy (Table 3).
5.3 Radiation therapy reducing tumor
burden and heterogeneity

Solid tumors often display significant heterogeneity, which can

lead to antigen escape during CAR-NK cell therapy. Radiotherapy

can effectively kill a substantial number of tumor cells and reduce

tumor heterogeneity. Furthermore, it can decrease tumor burden

and create a more favorable environment for immune cell

infiltration. Previous literature has reported that patients with

lower tumor burdens have better response rates and outcomes to

CAR-T cell therapy (90).
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6 Challenges faced by the
combination therapy

6.1 Radiotherapy-
mediated immunosuppression

Although radiotherapy and adoptive NK cell therapy have

shown promising synergistic effects in clinical or preclinical

experiments, the immunosuppressive effects brought by

radiotherapy cannot be ignored. Radiotherapy can directly exert

cytotoxic effects on immune cells. Several studies have reported

reduced number and activity of NK cells in patients following

radiotherapy (91, 92), indicating that NK cell therapy should be

administered after radiotherapy and highlighting the significance of

its initiation timing in combination treatment. Moreover,

radiotherapy can recruit immunosuppressive cells from TME,

such as Tregs and MDSCs. Numerous studies have shown a

significantly increased number of intratumoral Tregs after

radiotherapy (93–95), while Tregs can exert strong inhibitory

effects on NK cells (96). The precise mechanism of radiotherapy-

induced expansion of Tregs has not yet been fully elucidated. Recent

research has revealed that radiotherapy at a dose of 10 Gy prioritizes

stimulating proliferation of pre-existing intratumoral Tregs, rather

than recruiting peripheral blood Tregs into the tumor, and this

study further revealed that TGFb and IL33 signaling pathways were

irrelevant to Treg expansion (93). Furthermore, a study on a mouse

model of head and neck squamous cell carcinoma demonstrated

that high-dose radiotherapy induced tumor cells to secrete the

chemokine CCL20, which could enhance Tregs to infiltrate into

the tumor tissue via the CCR6-CCL20 axis and exert their

immunosuppressive effects (97). These studies indicate that

radiotherapy-induced infiltration of Tregs into tumors may

involve various factors, including tumor type, radiation dose, and

fractionation schedule. The effectiveness of radiotherapy combined

with targeted inhibitors against Tregs has been confirmed in some

preclinical studies (98). Radiation therapy can induce the release of

chemokine CCL2 to recruit MDSCs, while CCL2 can activate the

CCL2/CCR2 and CCL2/CCR5 signaling pathways, leading to

MDSCs infiltration into the TME and immune suppression (99–

101). Moreover, radiation therapy can modulate the expression of

tumor-associated antigens like MHC class I molecules (58, 102),

decrease the NK cell’s ability to recognize the tumor. Therefore, it is

crucial to address the immunosuppressive effects induced by

radiation therapy and maximize the synergistic effects of

radiotherapy and CAR-NK cell therapy. Further experiments are

warranted to gain deeper insights into the complex interaction

between radiation therapy and immunotherapy.
6.2 Optimal radiotherapy dose and
fractionation scheme

There is a lack of clinical and preclinical data supporting the

therapeutic efficacy of the combination of radiotherapy with CAR-

NK cell therapy, and the optimal dosage and schedule of

radiotherapy remain unclear. A critical issue is whether higher
TABLE 3 Preclinical evidence for radiotherapy combined with NK cells.

Tumor
model

Radiation
Dose

Mechanism Reference

Breast Cancer 12 Gy×1

Radiation therapy
enhanced the
infiltration of NK cells
into tumors and
improved the tumor
control rate.

Kim et al. (87)

Pancreatic
Cancer

20 Gy×1

Radiation therapy
induced CXCL8
secretion and
promoted the
infiltration of NK cells
into tumors.

Walle
et al. (82)

Breast Cancer
Cell Lines;
Colorectal
Cancer
Cell Lines

20 Gy×1

Radiotherapy increased
ICAM-1 expression
and enhanced NK
cell cytotoxicity.

Jeong
et al. (86)

Breast Cancer
Cell Lines

20 Gy×1

Radiation therapy
enhanced CXCL16
secretion and induced
the migration of NK
cells toward
tumor cells.

Yoon
et al. (83)

Melanoma;
Lung Cancer;
Cervical Cancer
Cell Lines

20 Gy×1

Radiotherapy increased
the expression of the
NKG2D ligand on the
surface of tumor cells
and the cytotoxicity of
NK cells.

Kim et al. (84)

Sarcomas 9 Gy×1
Radiotherapy increased
the cytotoxicity and
homing of NK cells.

Canter
et al. (88)

Nasopharyngeal
Carcinoma

2 Gy×1

RT combined with
immunotherapy
increased the
cytotoxicity of
NK cells.

Laurent
et al. (89)
NK, natural killer; RT, radiotherapy; CXCL8, C-X-C motif chemokine ligand 8; CXCL16, C-
X-C motif chemokine ligand 16; ICAM-1, intercellular adhesion molecule 1; NKG2D, natural
killer group 2 member D.
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ablative doses or lower doses of radiotherapy can yield better

outcomes in combination therapy. Furthermore, different cancers

may exhibit distinct responses to the combination therapy. The

higher ablative doses of radiotherapy may promote ICD, release

DAMPs, and activate immune cells (103). Nevertheless, its low dose

may reverse tumor immune desertification and increase the

infiltration of immune cells into tumors (104).

Numerous studies have shown an increased infiltration of

NK cells into tumor tissues after administering standard

radiation doses of 50-60 Gy (75, 77, 105). A preclinical

investigation aimed to explore the impact of dose per fraction

(DPF) and cumulative dose on the immunomodulatory capability

of radiotherapy. Utilizing an AT3-OVA mouse model, it was

observed that lower DPFs (3x4 Gy, 9x4 Gy, 3x8 Gy) could

significantly stimulate CD8+ T cell-mediated antitumor activity

compared with a single administration of a high dose fraction (1x12

Gy, 1x20 Gy). Conversely, the activation of NK cell-mediated

antitumor function was found to be dependent on the cumulative

dose rather than the DPF, and its remarkable enhancement was

observed after surpassing a biologically effective dose of 36 Gy.

These findings strongly suggest the application of conventional

radiotherapy doses in combination with CAR-NK cell therapy

(106). A dose threshold exceeding 7.5 Gy in the single high-dose

radiation therapy has been shown to increase Treg infiltration and

lead to immune suppression. Therefore, it is advised to set the

radiotherapy dose below this threshold to optimize treatment

outcomes and minimize immunosuppressive effects (107). Further

research is required to determine the most effective dosage

and fractionation schedule of radiotherapy in combination with

CAR-NK cell therapy. The existing evidence suggests that ablative

high-dose and low-dose radiotherapy have advantages in

immunogenicity and immune activation, but their efficacies may

vary depending on the specific cancer model.
6.3 Therapeutic sequence

Radiation is commonly regarded as detrimental to NK cells,

leading to apoptosis and dysfunction of these cells (108). Therefore,

it is recommended that radiotherapy be administered prior to CAR-

NK cell infusion to prevent direct damage to the NK cells. In recent

years, advancements in radiotherapy technology have allowed for

greater precision in dose delivery, minimizing damage to

surrounding blood vessels, lymph nodes, and normal tissues, and

subsequently reducing the impact on immune cells (109). However,

the timing of radiotherapy intervention within the context of

combination therapy remains a critical factor. Min Zhou et al.

(14) conducted a study exploring the optimal timing of

radiotherapy intervention in a breast cancer mouse model treated

with a CAR-T cell therapy and radiotherapy combination. Their

results showed no statistically significant differences in tumor

volume control and survival of mice when administering

radiotherapy before or after infusion. This research is the sole

study investigating the treatment sequence of adoptive

immunotherapy in combination with radiotherapy.
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According to previous studies, the post-radiotherapy

administration of CAR-NK cells appears to be an effective

approach for several reasons. Firstly, the lymphopenia resulting

from radiotherapy may cultivate an optimal milieu for the

proliferation of the introduced CAR-NK cells. similar to the

pretreatment before CAR-T infusion (110, 111). Furthermore,

lasting chemokine release is precipitated by radiotherapy

enhancing the chemotaxis of these immune cell (82, 83). Also,

radiotherapy mediates a significant reduction in tumoral burden,

thereby improving the potential for efficient tumoral infiltration by

the subsequent CAR-NK cell administration. Overall, these findings

are more supportive of using CAR-NK after radiotherapy. Notably,

research has indicated that a single low dose of radiation (<2Gy) can

enhance the expansion and cytokine secretion function of NK cells

in vitro (112, 113). Simultaneously, low-dose radiation therapy in a

mouse model has been shown to increase the cytotoxic function of

NK cells, consequently inhibiting the growth of experimental tumor

(114, 115). Due to the limited duration of CAR-NK cells in the body

(8), multiple injections are required to maintain therapeutic efficacy.

The application of low-dose radiotherapy following CAR-NK cell

infusion may represent a potential strategy for bolstering the

functionality and durability of CAR-NK cells. Additional research

and thorough investigation are crucial to validate the effectiveness

of this potential therapeutic strategy (Figure 3).
7 Discussion

Based on the aforementioned preclinical research findings, a

theoretical basis is provided for the combined therapy of NK cells

and radiotherapy. A phase II randomized controlled trial reported

favorable results from the use of autologous NK cell adoptive

therapy following chemo-radiotherapy in non-small cell lung

cancer (116). At present, multiple clinical trials using non-

engineered NK cells combined with therapies for solid tumors,

including chemo-radiotherapy, immune checkpoint inhibitors, and

targeted therapies, are under way. Furthermore, an increasing

number of researchers are beginning to use engineered NK cells

for combination therapy. Apart from endowing NK cells with

innate cytotoxicity, engineered NK cells have been given

additional functionalities, potentially increasing their effectiveness

in combined therapy. Though clinical data for CAR-NK therapy of

solid tumors have yet to be published, and clinical trials combining

it with radiotherapy have not started, we hold an optimistic view of

the potential of this combination therapy. Firstly, in the case of solid

tumors such as glioblastoma, pancreas and ovarian cancer, they are

usually diagnosed at a late stage and generally show resistance to

existing treatments, with almost no current targeted treatment

options. CAR-NK cells may demonstrate a synergistic effect with

standard treatments (chemotherapy, radiotherapy, targeted

therapies), offering a possible treatment option for late-stage

patients. The aim is to improve the targeting, endurance,

chemotaxis, and safety of CAR-NK cells. current development

strategies for CAR-NK therapy in solid tumors focus on

identifying reliable new targets and constructing dual-targeted or
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multi-targeted CAR structures to enhance targeting, durability,

chemotaxis, and safety. The increased exposure of neoantigens

and expression of chemokines in tumor cells induced by

radiotherapy may offer new avenues for CAR-NK therapy

development, such as CARs targeting NKG2DL or overexpressing

chemokine receptors (CXCR1, CXCR2, and CXCR4) through CAR

design (117–120).
8 Conclusion

In summary, this article reviews the role and latest advancements

of NK cells in radiotherapy-induced anti-tumor immunity. On the

basis of this evidence, we propose that a combination of CAR-NK cell

therapy and radiotherapy may be a method to overcome solid tumors.

This hypothesis could provide treatment options for patients with

advanced solid tumors and also offer strategies for the development of

CAR-NK. However, to determine the optimal radiation dosage,

fractionation scheme, and order of administration, a substantial

amount of preclinical and clinical experiments is still necessary.

Moreover, identifying specific biomarkers is crucial for selecting

appropriate patients and minimizing potential treatment-related

toxicity to the maximum extent.
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FIGURE 3

Timing of radiotherapy intervention. 1. Low-dose radiotherapy induces NK cell expansion. 2. Low-dose radiotherapy stimulates NK cells to secrete
INF-g and TNF-a. 3. Radiotherapy reduces tumor burden and facilitates CAR-NK infiltration. 4. Radiotherapy-induced lymphopenia provides space
for CAR-NK expansion. 5. Radiotherapy induces chemokine release and attracts CAR-NK to the tumor. CAR, chimeric antigen receptor; NK, natural
killer; TNF-a, tumor necrosis factor alpha; IFN-g, interferon-gamma.
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