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Emerging strategy towards
mucosal healing in
inflammatory bowel disease:
what the future holds?
Min Wang1†, Jingyan Shi2†, Chao Yu1†, Xinyi Zhang1†,
Gaoxin Xu1, Ziyan Xu1* and Yong Ma1*

1Department of General Surgery, Nanjing First Hospital, Nanjing Medical University,
Nanjing, China, 2Medical School, Nanjing University, Nanjing, China
For decades, the therapeutic goal of conventional treatment among

inflammatory bowel disease (IBD) patients is alleviating exacerbations in

acute phase, maintaining remission, reducing recurrence, preventing

complications, and increasing quality of life. However, the persistent

mucosal/submucosal inflammation tends to cause irreversible changes in

the intestinal structure, which can barely be redressed by conventional

treatment. In the late 1990s, monoclonal biologics, mainly anti-TNF (tumor

necrosis factor) drugs, were proven significantly helpful in inhibiting mucosal

inflammation and improving prognosis in clinical trials. Meanwhile, mucosal

healing (MH), as a key endoscopic and histological measurement closely

associated with the severity of symptoms, has been proposed as primary

outcome measures. With deeper comprehension of the mucosal

microenvironment, stem cell niche, and underlying mucosal repair

mechanisms, diverse potential strategies apart from monoclonal antibodies

have been arising or undergoing clinical trials. Herein, we elucidate key steps

or targets during the course of MH and review some promising treatment

strategies capable of promoting MH in IBD.
KEYWORDS

inflammatory bowel disease, mucosal healing, intestinal mucosal barrier, emerging
strategy, organoid
1 Introduction

Inflammatory bowel disease, a chronic and recurrent gastrointestinal disorder

encompassing Crohn’s disease (CD) and ulcerative colitis (UC), is characterized by

non-specific inflammation of the intestinal mucosa (1). The vast majority of IBD

patients experience cycles of recurrence and remission marked by abdominal pain,

diarrhoea, fever, and tenesmus (2, 3). The natural history of IBD is highly
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individualized, which varies across disease stages, ranging from

asymptomatic or mild disease to severe manifestations necessitating

hospitalization, surgery, disability, or even mortality (4). Most

patients with IBD can achieve long-term symptom control

through pharmacological therapy alone (5). However, in most

cases where drug therapy fails to adequately suppress intestinal

inflammation or when complications such as obstruction,

perforation, and bleeding arise, surgical interventions are often

indispensable to remove the affected intestine (6, 7). In turn,

intestinal resection significantly impacts patients’ postoperative

quality of life and may result in complications such as

anastomotic leakage, bleeding, and short bowel syndrome, which

could cause severe gastrointestinal damage or even systemic
Frontiers in Immunology 02
dysfunction (8). Though several treatment methods are available,

unfortunately, IBD cannot be cured.

Various elements contribute to the pathophysiology of IBD

(Figure 1). In the interplay of various intricate factors, a cascade of

events occurs, resulting in modified microbial communities, aberrant

expression of tight junction (TJ) proteins, and impairment to the

mucus layer that facilitates the infiltration of luminal bacteria into the

submucosa (9, 10), leading to mucosal inflammation and destruction.

Subsequently, neutrophils are recruited to the site of infection, where

phagocytose microorganisms and generate neutrophil extracellular

traps (NETs) to immobilize pathogens (11). The demand for

neutrophils during acute inflammation is met by rapid

granulopoiesis in the bone marrow driven by the IL17-IL23A-CSF3
FIGURE 1

Intestinal pathophysiological characteristics during homeostasis, specific injury, and IBD. Schematic diagram showing prominent pathophysiological
variations of intestinal mucosa and lamina propria in different states. Left: Gradients of biochemical signals secreted by neighboring Paneth cells,
fibroblasts and enterocytes regulate the self-renewal and differentiation of ISCs synergistically. By programmed proliferation, differentiation, and
migration towards top of the villi, ISC plays a significant role in intestinal barrier integrity and homeostasis. Middle: Epithelial cells are vulnerable to
microorganism invasion or radiation damage, which usually bring about acute or subacute inflammation in lamina propria. The exposure to intestinal
pathogens launches regulated immunoreaction. Upon receiving the activation from immune signal and physicochemical changes within the stem
cell niche, ISCs exert stemness and produce terminally differentiated epithelial cells to replace injured ones and rehabilitate mucosal barrier. Right,
Despite the vague etiology and different pathogenic site; IBD patients share common pathophysiological features, including immune dysregulation
within lamina propria, enteric dysbacteriosis, fibrosis. Recently, much investigations have verified protracted post-transcriptional modification and
damaged viability of ISCs as well as distinct differentiation pattern alongside the intestinal epithelium, which could be the potential immediate cause
to delayed mucosal healing in IBD patients. ISC, Intestinal stem cell; DKK1, Dickkkopf-1; TLR, Toll-like receptor; EGF: Epidermal growth factor; TGF,
Transforming growth factor; BMP, Bone morphogenetic protein; DC, Dendritic cell; Treg, Regulatory T cell; NOD2, Nucleotide-binding
oligomerization domain 2.
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axis (12). Monocytes and macrophages eliminate cellular debris

generated by neutrophil activity, producing TNF, IL-6, IL-12, and IL-

23 (2, 13). Subsequently, monocyte-macrophages act as antigen-

presenting cells (APC) and participate in T helper cell differentiation

into Th1, Th2, Th17, and other subtypes (14). B cell activation occurs

in IBD, and the expansion of B cells has been shown to impede

epithelial-stromal cell interactions (15). Further comprehension of the

pathogenesis of IBD is pivotal in propelling research and development

of targeted pharmaceuticals and novel therapeutic approaches, thereby

facilitating the treatment and management of IBD while enhancing the

quality of life for patients afflicted with this condition.

As the etiology of IBD remains elusive, the primary objective of

treatment is to alleviate inflammation through various therapies

including 5-aminosalicylic acid (5-ASA), antibiotics, corticosteroids,

immunosuppressive agents and biological interventions (16). In the

past, symptom assessment remains the cornerstone of clinical practice

in the diagnosis and management of IBD, playing a pivotal role in

evaluating disease severity, surgical candidacy, and treatment response

(17). This underscores the importance of adopting a symptom-driven

approach to managing symptoms such as abdominal pain, diarrhea,

gastrointestinal bleeding, among others (17, 18). Ultimately, achieving

clinical remission represents a key therapeutic goal for most IBD

patients, which is accepted by patients and doctors. The utilization of

standardized clinical scoring systems, such as the Truelove and Witts

criteria, facilitated a more objective evaluation of the disease (19). The

resolution of intestinal inflammation, repair of intestinal damage, and

restoration of intestinal ecological balance should not be solely inferred

from the relief of clinical symptoms (20). Currently, mucosal healing

has emerged as a new long-term goal in IBD treatment and has

garnered significant attention in recent years (21, 22).
2 Definition of Mucosal healing

A crucial characteristic of IBD is the impairment of the

intestinal mucosal barrier (IMB) (23), which leads to the

translocation of microorganisms and other antigens into the

internal environment, resulting in uncontrolled immune

activation (24). Current studies believe that the impairment of

IMB may be the initial link in the development of IBD, whose

severity is closely related to the symptoms (23). The foundation of

mucosal healing is based on an undamaged barrier that limits the

movement of bacteria and subsequent immune response activation

(25). Definitions specific to mucosal healing often rely on

endoscopic criteria such as the absence of ulcers with no fragility,

blood, erosion or ulceration in CD and UC; or complete resolution

of inflammatory and ulcerative lesions in both forms of IBD (25,

26). The evaluation criteria of mucosal healing are constantly

changing, but Simplified Endoscopic Activity Score for Crohn’s

Disease (SES-CD) andMayo score based on endoscopy is still one of

the mainstream methods of mucosal healing diagnosis (27) (28). In

fact, microscopic inflammation has been reported in up to 25% of

patients with endoscopic mucosal healing (29). Additionally, the

histological evaluation of mucosal healing is constantly evolving,

and the histological definition and criteria of mucosal healing have

evolved from “elimination of mucosal ulcer/erosion” to “absence of
Frontiers in Immunology 03
neutrophilic infiltration” (30). Therefore, the presence or absence of

active inflammation has become a consensus in histological

evaluation of mucosal healing. Currently, more than 30 different

histological scoring systems have been created (31, 32), despite the

fact that their utilization in clinical settings is still restricted. The

Simplified Histologic Mucosal Healing Scheme (SHMHS) can

identify active inflammation that may not be visible during

endoscopy, and facilitate clinical application (33). Some scholars

integrated endoscopy, histology, and other factors to avoid the

potential inaccuracies of single index diagnosis. They focused on

assessing neutrophil infiltration as a key determinant of disease

progression and histological remission (34). In fact, the diagnosis of

mucosal healing based on endoscopic techniques faces significant

challenges in clinical practice (35, 36). For certain IBD patients,

endoscopy is neither tolerable or necessary (37). Therefore, it is

worth exploringto balance the advantages and disadvantages of

endoscopy or expand the definition of mucosal healing further

while avoiding invasive interventions. Some scholars have suggested

that fecal calprotectin and other markers can serve as substitutes for

serum or fecal markers (38–40). This approach would alleviate the

discomfort experienced by IBD patients and reduce treatment costs

(41). In the past few years, the application of artificial intelligence

(AI) has mitigated operator errors in endoscopy or pathological

interpretation and optimized diagnostic criteria for mucosal healing

(42, 43). It is foreseeable that mucosal healing evaluation will need

to evolve towards a multifactorial approach.

The process of mucosal healing involves a complex interplay

between ISCs and signaling molecules throughout the course of

regeneration. The regulation of ISC-driven differentiation into

epithelial cells is mediated by BMP, Wnt, and Notch signalling

pathways (44, 45). It is widely accepted that intestinal epithelial cells

(IECs) located at the border of damaged mucosa, regulated by

transforming growth factor-alpha/beta (TGF-a/b), trefoil factor

and other signaling molecules (46–48), undergo redifferentiation,

lose their columnar phenotype and acquire a migratory phenotype

to migrate towards the defect site in order to form a primary barrier

(49). Subsequently, regulated by nuclear factor-kb (NF-kB) and

other factors (50), epithelial cells facilitates the stabilization and

maturation of the nascent mucosal barrier. Ultimately, these newly

formed undifferentiated epithelial cells undergo a process of

differentiation, giving rise to a diverse array of mature intestinal

epithelial cell types, encompassing Paneth cells, goblet cells,

enteroendocrine cells, enterocytes and M cells, which give rise to

the intestinal epithelial barriers (IEB).
3 The progress and dilemma of
traditional therapies

When considering the possibility of incomplete healing of a

patient’s intestinal mucosa, how to repair the intestinal ecosystem

becomes a crucial question. Currently available treatments, such as

sucralfate, 5-ASA, antibiotics, corticosteroids, and immunosuppressive

agents (51, 52), primary focus symptom alleviation and mitigating of

chronic inflammation rather than mucosal healing and intestinal
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ecological restoration as the end point of treatment. Although

corticosteroids, methotrexate, and some immunosuppressive drugs

promote healing of the intestinal mucosa to some extent in some

studies (53, 54), they also lead to an increased risk of infection and

cancer due to immunosuppression (55), so clinicians must balance the

benefits with the risks.

Through continuous exploration of the complex mechanisms

underlying IBD, treatment based on precise molecular targeting of

inflammatory cascades has greatly advanced IBD therapy from

clinical symptom relief to mucosal healing. Since the development

and application of anti-TNF-a, a variety of monoclonal antibodies

have been continuously developed and applied to enrich the

precision targeted therapy for IBD.As first-line agents for the

treatment of IBD, anti-TNF-a monoclonal antibodies such as

infliximab and adalimumab have long been utilized to mitigate

inflammation and promote mucosal healing (56). Anti-TNF-a
therapy targets proinflammatory cytokines by obstructing soluble

and membrane-bound TNF-a, inducing direct and indirect

apoptosis of TNF-a-producing T cells and macrophages (57).

Ultimately regulating intestinal inflammation, restoring the

integrity of the IEB, and promoting mucosal healing. Several

clinical studies have established a correlation between serum anti-

TNF drug levels and mucosal healing in patients. For instance, Bella

Ungar et al. (58) reported that maintaining a serum infliximab level

of 6-10mg/mL can result in mucosal healing in 80% to 90% of adult

IBD patients.

In certain patients, anti-TNF-a therapy may exhibit either non-

response or withdrawal response, which could be attributed to

specific network connections among IgG plasma cells,

inflammatory mononuclear phagocytes, activated T cells and

stromal cells (59). For such individuals, treatment alternatives

have shifted towards monoclonal antibodies that target other

inflammatory factors. For example, the monoclonal antibody

ustekinumab, which specifical ly targets IL-12/23p40,

demonstrated a significant reduction in endoscopic range of

motion among patients with IBD, thereby exhibiting its capacity

to facilitate the restoration of mucosal integrity (60). Risankizumab,

guselkumab, and mirikizumab are inhibitors of IL-23p19 that have

demonstrated efficacy in clinical trials for symptom improvement,

endoscopic findings enhancement, and histological remission (61–

63). Additionally, the specific target of vedolizumab is the a4b7
integrin, which interacts with cell adhesion molecule 1 (MAdCAM-

1). In a long-term study conducted on 374 individuals diagnosed

with UC, vedolizumab treatment resulted in clinical remission and

mucosal healing for more than half of the participants (64). In

recent years, a plethora of novel oral small-molecule drugs have

emerged, including the JAK inhibitors tofacitinib, filgotinib, and

upadacitinib as well as the sphingosine-1-phosphate (S1P) receptor

modulator ozanimod, which have been granted regulatory approval

for treating IBD (65, 66). Limited clinical trials have unequivocally

confirmed their potential to foster mucosal healing (66, 67).

Currently, an array of monoclonal drugs are being actively

developed with promising available clinical data (65–67).

Anti-tumor necrosis factor-alpha (TNF-a) drugs have ushered
in a new era of IBD treatment (68). At present, the use of

monoclonal antibodies as a treatment for IBD presents a novel
Frontiers in Immunology 04
therapeutic approach that yields favorable outcomes for the

majority of patients (69, 70). Nevertheless, some individuals

remain unable to achieve optimal results despite this intervention,

and clinicians continue to grapple with issues related to antidrug

antibody-mediated ineffectiveness and withdrawal reactions (55, 71,

(72). Additionally, physiological inflammation serves as a self-

protective mechanism of the body; however, excessive immune

response inhibition may result in other risks such as infection. The

intricate involvement of proteins and signaling pathways in IBD

highlights the significance of individual differences and remains a

significant field for further investigation (73, 74).
4 Novel and potential
emerging therapies

In recent years, there has been continuous development of drugs

for the treatment of IBD and significant progress in therapeutic

strategies. However, current treatment methods such as 5-ASA,

monoclonal antibodies, and other drugs have not yet achieved

optimal results (51). For some patients, these treatments may even

lead to serious complications. Most of the current treatment methods

are based on the “immunity” strategy, and exploring approaches to

mitigate immune suppression may present a novel concept, as

immunity is indispensable for maintaining human health. While

some of these methods may seem impractical for clinical

implementation, others such as enteral nutrition (EN), faecal

microbiota transplantation (FMT), and the utilization of certain

growth factors have been partially integrated into clinical practice

(75–77). These approaches demonstrate their potential in promoting

mucosal healing without immunosuppression. These novel treatment

methods have significantly advanced the development of intestinal

mucosal healing and even hold the potential for curing IBD (Figure 2).
4.1 Dietary management and
enteral nutrition

Dietary factors influence the occurrence and progression of IBD.

Several epidemiological studies have confirmed the association

between dietary macronutrient and micronutrient intake and the

pathogenesis of IBD. For instance, adhering to a dietary pattern rich

in fruits, vegetables, and fish has been shown to reduce the risk of

developing UC by 50% among high school students (78). The role of

diet in IBD is further supported by advancements in understanding

genetic architecture and the gut microbiome’s influence on immune

dysregulation leading to gut inflammation. However, parenteral

nutrition (PN) adversely affects intestinal growth, reducing mucosal

mass, cell proliferation, and mucosal immune function, which

undoubtedly worsens the condition of IBD. Diet can impact gut

inflammation through various mechanisms including modulation of

the microbiome, tight junctions, and mucosal barriers. Dietary

interventions that alter a patient’s microbiome composition during

remission have demonstrated the potential for reversing many

features associated with active diarrhea by affecting its metabolic
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function alongside its composition (79). A range of dietary

approaches have been developed for patients with IBD, including

Crohn’s Disease Exclusion Diet, IBD Anti-Inflammatory Diet,

Specific Carbohydrate Diet, and others (80–82). These diets

commonly emphasize a high intake of fruits and vegetables, and

lean meats, while excluding most dairy products, canned foods, tea,

coffee, and alcohol. However, they exhibit variations in

recommendations regarding certain foods such as yogurt, beans,

and nuts. The aforementioned also implies the necessity for further

research into the impact of alterations in individual dietary

components on the human physique and the development of more

suitable dietary patterns. Moreover, the intricacy involved in food

handling, processing, and packaging exacerbates the heterogeneity

observed in dietary intervention studies (83). Consequently, finding a

solution to effectively achieve homogeneity comparison becomes an

issue that demands resolution.

The efficacy of enteral nutrition treatment modalities has been

partially demonstrated, with exclusive enteral nutrition (EEN) serving

as a primary therapeutic approach for pediatric patients with CD,

effectively alleviating clinical symptoms and promoting mucosal

healing (84). Clinical studies have demonstrated that over 70% of

children with CD treated with EEN achieved mucosal healing (85, 86).

However, in adult patients, poor palatability often leads to low
Frontiers in Immunology 05
compliance with EEN, thereby diminishing its therapeutic efficacy

(87). To assess the feasibility of using EEN in adult patients, Wall et al.

(88) employed EEN alone or in combination with partial enteral

nutrition for individuals suffering from active CD. The results

showed clinical remission, reduced levels of serum CRP and FC, as

well as increased serum insulin-like growth factor 1 (IGF-1) levels,

suggesting a potential treatment for achieving mucosal healing. In

another study conducted by Yang et al. (89), 47% of patients with

complex active CD attained endoscopic mucosal healing following

EEN treatment. Although not commonly used in UC patients, available

evidence confirms the viability of synergistic corticosteroid therapy in

cases of acute severe UC, significantly reducing CRP and FC levels (90).

When attempting to elucidate the mechanism underlying mucosal

healing induced by exclusive EEN, studies have observed a reduction in

intestinal flora diversity, which appears contradictory to treatment

expectations (91, 92). Alternative explanations encompass the

modulation of inflammatory factors and hormones by EEN,

including the secretion of serum IGF-1 and TGF-b1, as well as the
promotion of mucosal healing (93). The future research directions

should primarily focus on elucidating the underlying mechanisms by

which EN enhances mucosal healing and its differential effects in

patients with UC and CD. The forthcoming endeavors hold great

promise in unraveling the intricate principles of enteral nutrition
FIGURE 2

Novel therapeutic strategy towards mucosal healing in IBD. Symptoms in IBD patients are highly correlated with the degree of mucosal damage.
Although emerging therapies target different intestinal components, they are beneficial to mucosal barrier rehabilitation and mucosal healing via
intertwined pathophysiological changes in IBD.
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through extensive multicenter randomized trials, a pursuit that carries

immense significance. Furthermore, enhancing palatability of EEN

may facilitate wider adoption among adult patients.
4.2 Organoid culture engraftment

Organoids, derived from stem cells through in vitro culture and

self-assembly, represent three-dimensional (3D) cell cultures that

possess both structural and functional specificity akin to the

corresponding tissues (94). The organoids formed by ISCs in vitro

usually form Bud-like organs composed of hyperplastic protruding

cryptlike domains, closely resembling the structure of intestinal

epithelium in vivo (95). In 2009, Clevers and Sato first reported a

method for long-term culture of intestinal epithelium from purified

stem cells (96). Intestinal organoids have made many

breakthroughs in basic research and personalized treatment

development for IBD with the mature application of stem cell in

vitro 3D culture technology. Intestinal organoids are used for

disease modelling and as preclinical tools in regenerative

medicine through in vivo transplantation (97). Multiple studies

have demonstrated the possibility of transplanting organoids of

intestinal stem cells into damaged colons to lead to tissue

regeneration and mucosal healing (98, 99). Back in 2012, a study

presented a comprehensive account of epithelial organoid

transplantation into the colon of a mouse model with

inflammatory enteritis. In this experiment, organoids were

administered via enema and exhibited effective adherence to the

injured site, thereby facilitating epithelial restoration (100).

Previous studies also demonstrated that intestinal organoids

implanted into dextran sulfate sodium (DSS) -induced colitis

models can accurately target donor cells to locate on the surface

of colitis-induced ulcers and begin to rebuild and repair crypt

structures (101). Consistent with these findings, the same mouse-

derived intestinal organoids were injected anally by Watanabe and

colleagues to facilitate colon repair in UC mice. These cultured

organoids exhibited precise targeting within the damaged intestinal

epithelium, as anticipated based on prior developmental

investigations, these organoids retained their regional

characteristics and exhibited functional enteric properties (102).

The rapid development of endoscopic techniques for organoid

infusion has now been shortened to 10 minutes (102). However,

there remain numerous challenges to be addressed in organoid

transplantation. It is yet to be determined whether the success of

organoid cultures in non-IBD tissues can be replicated in IBD

tissues, and whether autologous transplantation offers advantages

over allogeneic transplantation. Additionally, evaluating the

stability of cultured karyotypes is essential to understand the risk

of tumorigenesis associated with these techniques (98).

Furthermore, there is a need for improvement in the current

protocols utilized for the isolation and cultivation of intestinal

organoids. Studies have shown that intestinal organoids may not

develop appropriately when derived from inflamed segments with

damaged or lost epithelial layers (103). Nonetheless, the concept of
Frontiers in Immunology 06
cultivating new tissue in vitro and subsequently transplanting it into

areas devoid of mucosa holds great promise for the future.
4.3 Mesenchymal stem
cells transplantation

Mesenchymal stem cells (MSCs) are thought to be a versatile

type of stem cells capable of differentiation, which can be derived

from various sources, such as bone marrow, adipose tissue,

umbilical cord and so on (104). MSCs have demonstrated the

capacity to relocate towards areas affected by colitis-induced

damage, where they possess the ability to differentiate into

constituent cells of the intestinal epithelium or vascular

endothelium. Alternatively, they can work together with intestinal

epithelial stem cells in producing cytokines and promoting the

healing process of the mucosal layer (105). MSCs mediate intestinal

immune regulation through the secretion of prostaglandin E2

(PGE2), hepatocyte growth factor (HGF) and nitric oxide (NO)

(106). Due to the presence of these soluble factors, MSCs exhibit

immunomodulatory effects on various immune cell subsets. It has

been documented that MSCs suppress Th1 and Th17 responses

while promoting Th2 and Treg-mediated responses, thereby

ameliorating colonic inflammation (107). Furthermore, MSCs

supported intestinal barrier function by inducing the proliferation

of IECs and up-regulating expression of TJ proteins, thereby

ensuring intestinal barrier integrity (108). Hence, the

transplantation of MSCs emerges as a promising therapeutic

strategy for IBD due to their ability to secrete diverse bioactive

molecules. Various clinical trials are currently underway to assess

the safety and efficacy of MSCs in patients with IBD, and these

findings have yielded positive outcomes in animal studies. Although

the safety and short-term effectiveness of MSCs administration has

been demonstrated, further validation is required to ascertain their

long-term efficacy in transplantation. Prior research has shown that

local injection of adipose-derived MSCs can effectively treat fistulas

in CD (109, 110), and the recent meta-analysis encompassing seven

trials investigating the efficacy of MSCs derived from bone marrow

and umbilical cord in patients with UC demonstrated a certain level

of efficacy (111). Despite some positive findings, the outcomes of

systemic MSCs therapy in luminal CD patients thus far have been

underwhelming. The results of various clinical trials have exhibited

significant heterogeneity to date (112, 113), emphasizing the

necessity for high-quality randomized controlled clinical trials

and fundamental research.

In fact, less than 1% of intravenous MSCs can reach the

damaged colon (114), and the method of MSCs transplantation is

controversial. Despite the non-immunogenicity of allogeneic and

autologous MSCs (115), stem cell transplantation may present

certain drawbacks, including significant financial costs and the

possibility of malignant transformation (112). Furthermore, the

safety profile of systemic MSCs remains to be thoroughly

investigated due to reports of exacerbated outcomes in patients

with UC or CD, necessitating further exploration. Additionally, it is
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imperative to address the optimal source, route of administration,

and dosage of MSCs.

Some studies have turned their attention to exosomes secreted

by mesenchymal stem cells (MSC-Exos) and have been used in

various IBD models with promising results (116). Yang et al. (117)

have significantly improved IBD symptoms by intraperitoneal

injection of MSC-Exos. MSC-Exos can alleviate intestinal

inflammation by increasing the expression of tumor necrosis

factor-stimulating gene 6 (TSG-6) expression to repair the IMB

and maintain immune balance (117). The utilization of MSCs for

regenerating damaged mucosa holds great promise in expanding

both the scope and efficacy of this therapeutic approach. A primary

limitation of MSC-Exos therapy lies in its low yield, which presents

a significant impediment to its clinical application. However, this

challenge can be effectively overcome by embracing a 3D culture

system as an alternative to the conventional 2D culture

system (118).

The therapeutic approaches for MSCs can be complex and

varied, incorporating autologous application, allogeneic MSCs, and

cellular derivatives. These advancements hold immense potential in

paving the path towards groundbreaking therapeutic strategies in

IBD. Nevertheless, attaining this goal requires tackling fresh

challenges by skillfully integrating cutting-edge methodologies

and technologies while judiciously selecting ideal sources of MSCs

to specifically target the multifaceted pathophysiological

mechanisms involved in IBD.
4.4 Fecal microbiota transplantation (FMT)

Intestinal dysbiosis plays a pivotal role in the pathogenesis and

progression of IBD, as well as in the persistence of complications

that significantly impact patients’ prognosis and overall quality of

life (119). Research findings have indicated a notable decrease in the

prevalence of advantageous microorganisms, including

Bifidobacterium, Lactobacillus (Enterobacter), and Firmicutes,

among IBD patients (120, 121). Conversely, the abundance of

pathogenic intestinal bacteria, such as Escherichia coli or

Salmonella typhimurium, is significantly increased, which

facilitates the progression of chronic mucosal inflammation by

disrupting the integrity of the IMB (122–124). FMT, also known

as the transfer of healthy individuals’ fecal microbiota to the

intestinal tract of patients with IBD, presents a novel approach

for treating IBD (76). The administration of FMT is commonly

performed through nasogastric or nasojejunal tube, colonoscopy,

enema, or oral capsule delivery routes (125). FMT can increase the

diversity or abundance of the intestinal flora of the recipient.

Specific microorganisms and microbial metabolites can regulate

the wound repair of colonic epithelium after mucosal injury (126–

128), thereby relieving clinical symptoms and promoting mucosal

healing. Biao et al. (129), through repeated FMT combined with

partial enteral nutrition, demonstrated improved clinical symptoms

and enhanced mucosal healing in pediatric patients with active CD.

However, severe IBD patients often experience adverse

consequences due to compromised intestinal mucosal barrier

function when undergoing FMT (130, 131). A systematic review
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of 129 studies on FMT across various medical conditions revealed

an overall incidence rate of adverse events (ADE) at 19%,

encompassing symptoms such as abdominal pain, diarrhea, fever,

and other gastrointestinal disorders (132). In future research,

greater attention should be devoted to aspects such as fecal donor

selection, delivery system optimization, treatment duration

determination, and standardization of emphasis in the field of

fecal transplantation. The infection caused by Clostridium difficile

(CDI) is a prevalent complication of IBD and is closely linked to the

unfavorable prognosis of IBD. Recently, the Food and Drug

Administration (FDA) has granted approval for rectal

administration of Live-JSLM (REBYOTA) and oral delivery of

Vowst, both microbiota-based products, for the treatment of CDI

(133, 134). However, clinical trial evidence that excludes patients

with IBD and uses clinical symptom relief as an effective indicator

for treating CDI is still insufficient to apply these drugs to patients

with IBD (135). Furthermore, considering the presence of potential

adverse reactions associated with these drugs, it is imperative to

meticulously evaluate both efficacy and safety aspects in

forthcoming clinical trials.

Short-chain fatty acids (SCFAs), as crucial metabolites of the

intestinal microbiota, primarily consist of acetate, propionate, and

butyrate (122). They not only facilitate the proliferation and

differentiation of colonic epithelial cells, maintaining intestinal

mucosal epithelial barrier stability, but also regulate gut

inflammatory response (135, 136), thereby potentially serving as

treatments for FMT. In vitro and animal studies have demonstrated

that butyrate possesses anti-inflammatory properties by inhibiting

the production of pro-inflammatory cytokines and chemokines,

thereby alleviating inflammation during IBD progression (122,

137). This discovery holds significant implications for IBD

treatment, suggesting that supplementation of short-chain fatty

acids could be a promising approach to promote intestinal

mucosal healing. Both oral administration and enema delivery

can be employed to administer short-chain fatty acids; however,

enema administration circumvents challenges associated with

intestinal absorption while ensuring direct drug delivery to the

colon (138). Consequently, this may lead to divergent outcomes in

patients with UC and CD. In colitis-induced mouse models, acetate

supplementation plays a crucial role in the gut’s response to injury

and tissue repair (139). A preliminary study by Facchin et al.

confirmed that sodium butyrate supplementation reduces

inflammation in patients with IBD (140). Although there exists

some preclinical evidence along with limited clinical data

supporting potential therapeutic applications based on SCFAs

therapies, further research is warranted to comprehensively

elucidate their mechanisms of action, safety profiles, optimal

dosage regimens, as well as long-term effects for treating IBD.
4.5 Extracellular matrix

The intestinal extracellular matrix (ECM) is a functional protein

complex assembled in a specific grid structure composed of

glycosaminoglycans (GAGs) (141, 142). Its major components

include collagens, elastin, laminins and proteoglycan (143). In
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1298186
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wang et al. 10.3389/fimmu.2023.1298186
addition to providing structural support for cells in tissues, the

ECM also plays an active role in various cellular processes such as

proliferation and migration (144). An increasing body of evidence

demonstrates that in the process of mucosal healing, patients with

IBD experience an augmented damage and repair mechanism of

extracellular matrix due to enhanced protease activity and

deposition of ECM degradation products, thereby disrupting the

delicate equilibrium between ECM damage and repair (145, 146).

Lindholm et al. (147) found that DSS caused direct damage to the

intestinal basement membrane in an acute colitis rat model, and

established a robust association between Collagen III remodeling

and matrix regeneration during resolution of the injury. Meanwhile,

the reconstruction of the mucosal layer in vitro was observed to be

facilitated by fibronectin and Collagen IV, thereby enhancing the

migration of intestinal epithelial crypt cells (148). The study

conducted by Stronati et al. (149) revealed that dipotassium

glycyrrhizate (DPG) effectively facilitated the process of mucosal

healing through upregulation of the expression levels of ECM

remodeling enzyme PLAUR and its ligand VTN. These

collectively indicate that ECM remodelling is associated with the

degree of intestinal mucosal healing. Therefore, the modulation of

medical pathways that impact the ECM and its regenerative

capacity following injury may hold promise as potential

therapeutic interventions for IBD (150, 151). In the field of tissue

engineering, hydrogel formulations based on ECM have

demonstrated their reparative potential in specific tissues (152).

Therefore, considering the use of ECM-derived hydrogels from the

gut to promote healing of intestinal mucosal injuries alone appears

to be a worthwhile consideration. However, due to the intricate

composition of ECM and its associated pathophysiological

processes that remain incompletely elucidated, in addition to the

increasing integration of ECM as a carrier and other technologies in

current studies (153), challenges arise when confirming the

independent role of ECM in intestinal repair, necessitating

further discussion.
4.6 Intestinal growth factors

TGF-b is a multifunctional cytokine synthesized by various cell

types, which exerts pivotal regulatory effects on diverse cellular

processes, immune responses, intestinal epithelial cell proliferation

inhibition, and differentiation induction (154). In the context of

intestinal immunity, TGF-b serves to suppress inflammatory

responses elicited by luminal bacterial antigens and attenuate the

production of pro-inflammatory cytokines (155, 156). The efficacy

of TGF-b treatment in ameliorating methotrexate-induced

intestinal mucositis in rats has been substantiated by studies,

which revealed its ability to augment p-ERK and b-catenin-
mediated intestinal cell proliferation while concurrently inhibiting

apoptosis and preventing mucosal injury (157). Activation of the

Smad pathway mediated by TGF-b can promote mucosal injury

repair through enhanced epithelial revascularization while driving

processes such as intestinal fibrosis, angiogenesis, and obstruction

(158). High levels of Smad7 are intracellular inhibitors of TGF-b/
Smad signaling (156). It has been reported that oral administration
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transduction in the intestinal tract, thereby promoting clinical

symptom resolution and endoscopic healing in patients with CD

(159, 160). Despite these promising findings, a Phase 3 clinical trial

yielded no clinical or endoscopic efficacy for Mongersen. However,

the underlying reasons for this observed ineffectiveness remain

uncertain, encompassing potential factors such as inadequate

concentrations of the drug in colonic or ileal tissues, intended

pharmacological mechanisms, or characteristics of the patient

population (161). Although no definitive evidence exists, recent

research suggests that variations in diastereoisomer content across

different batches of mongersen used during the development

program may contribute to disparate outcomes observed in

clinical trials, thus explaining the failure of the Phase 3 trial

(162). Further research and exploration are required to determine

whether specific modifications in manufacturing schemes can

effectively reduce diastereoisomer complexity. Moreover, the

study revealed a significant association between long-term Smad7

deficiency and heightened progression of intestinal fibrosis (163). It

is evident that additional experiments are warranted to further

investigate the role of Smad7 in inflammatory responses related to

IBD and reassess the efficacy and potential risks of mongersen as a

therapeutic approach for IBD.

The Trefoil factor (TFF) family comprises three peptides,

known as TFF1, TFF2, and TFF3, which are released by goblet

cells located in the mucosa of the intestines (164). Among these

peptides, TFF3 is predominantly synthesized by goblet cells in both

the small and large intestine (165). Notably, TFF3 plays a crucial

role in upholding the integrity of the IMB through its regulation of

cytokine expression and immune cell migration (164), and PI3K/

Akt signaling pathways are activated to enhance wound healing in

vitro (166). An evident upregulation of serum TFF3 is observed in

IBD patients and confirmed to be associated with disease activity,

indicating its potential as a non-invasive marker (167). Studies have

demonstrated that the utilization of TFFs facilitates the restoration

of gastrointestinal mucosa, thereby presenting an innovative

method for addressing the management of IBD. However,

conflicting outcomes are frequently observed in DSS-induced

colitis animal models due to variations in TFF forms, dosages,

and routes of administration (168–170). In order to optimize the

application of TFFs, a recombinant adenovirus vector was

constructed to deliver the human intestinal trefoil factor (hITF)

gene for improved healing of intestinal mucosal injury (171). The

optimal dosing strategy and underlying signaling pathways of TFF3

remain unclear; however, TFF3 has demonstrated significant

potential in both the diagnosis and management of IBD.
5 Conclusion

With the further development of the definition of mucosal

healing, the requirements of mucosal healing are no longer limited

to the repair of the intestinal barrier under endoscopy and the

restoration of intestinal function but require the balance and

homeostasis of the intestinal ecosystem in terms of omics and

biology, that is the dynamic balance between the intestinal barrier
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and intestinal flora. Because intestinal mucosal healing is closely

related to the prognosis of IBD patients, and in the absence of

means to promote mucosal healing, how to further improve the

efficacy of current therapeutic measures and further develop new

therapeutic modalities is a matter that needs to be considered at

present and in the future. These new promising mucosal repair

methods, including enteral nutrition, organoid transplantation,

and intestinal microbiota transplantation, have been proposed,

but the specific clinical practice remains a formidable challenge.

Subsequent research will determine the viability of potentially

promising pathways, while also weighing their impact against

potential hazards and complexities like availability within

biological systems, cell proliferation stimulation, and

tumor formation.
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