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Elucidating common pathogenic
transcriptional networks in
infective endocarditis and
sepsis: integrated insights
from biomarker discovery and
single-cell RNA sequencing
Chen Yi1, Haoxiang Zhang1, Jun Yang1, Dongjuan Chen2*

and Shaofeng Jiang1*

1Department of Biomedical Engineering, Nanchang Hang Kong University, Nanchang, Jiangxi, China,
2Department of Laboratory Medicine, Maternal and Child Health Hospital of Hubei Province, Tongji
Medical College, Huazhong University of Science and Technology, Wuhan, China
Background: Infective Endocarditis (IE) and Sepsis are two closely related

infectious diseases, yet their shared pathogenic mechanisms at the

transcriptional level remain unclear. This research gap poses a barrier to the

development of refined therapeutic strategies and drug innovation.

Methods: This study employed a collaborative approach using both microarray

data and single-cell RNA sequencing (scRNA-seq) data to identify biomarkers for

IE and Sepsis. It also offered an in-depth analysis of the roles and regulatory

patterns of immune cells in these diseases.

Results: We successfully identified four key biomarkers correlated with IE and

Sepsis, namely CD177, IRAK3, RNASE2, and S100A12. Further investigation

revealed the central role of Th1 cells, B cells, T cells, and IL-10, among other

immune cells and cytokines, in the pathogenesis of these conditions. Notably,

the small molecule drug Matrine exhibited potential therapeutic effects by

targeting IL-10. Additionally, we discovered two Sepsis subgroups with distinct

inflammatory responses and therapeutic strategies, where CD177 demonstrated

significant classification value. The reliability of CD177 as a biomarker was further

validated through qRT-PCR experiments.

Conclusion: This research not only paves the way for early diagnosis and

treatment of IE and Sepsis but also underscores the importance of identifying

shared pathogenic mechanisms and novel therapeutic targets at the

transcriptional level. Despite limitations in data volume and experimental

validation, these preliminary findings add new perspectives to our

understanding of these complex diseases.
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Introduction

Infective Endocarditis (IE) and Sepsis are severe multi-systemic

diseases, with the former being initiated by infection of the

endocardial surface (1) and the latter being a life-threatening

organ dysfunction caused by dysregulated host response to

infection (2). Globally, it is estimated that 3-10 per 100,000

people are diagnosed with IE annually, with a rising incidence in

some regions (3). Alarmingly, the global in-hospital mortality rate

for IE is as high as 22%, reaching 45% in a 5-year span (3). IE

frequently co-occurs with severe complications like sepsis. A study

involving 894 IE patients indicated that 17.4% experienced septic

shock during hospitalization (4). Additionally, an estimated 48.9

million people are diagnosed with sepsis worldwide annually,

resulting in 11 million deaths, accounting for 19.7% of global

mortality (5). These data underscore the prevalence and severity

of IE and Sepsis and highlight the pressing need for in-depth studies

to promote more precise and effective treatments.

In recent years, with the continuous advancement of medical

technology, there has been a significant improvement in the

understanding and treatment of IE and sepsis. Existing research

has elucidated many key mechanisms and potential treatments for

both diseases. For instance, in IE, S100A11 and AQP9 have been

identified as potential biomarkers with diagnostic value (6), and

significant associations have been noted with B-cell receptors, IL-

17, and the NF-kappa B signaling pathway (7). Therapeutic drugs

like ceftazidime-avibactam and aztreonam have been successful in

treating IE patients (8). In sepsis, SCAMP5 shows promise for

diagnosis biomarker (9), and the PI3K/Akt-HIF-1a pathway

modulates immunological glycolysis, thereby controlling

neutrophil function in sepsis patients (10). Timely antibiotic use

also significantly improves the prognosis of septic shock patients

(11). However, despite these breakthroughs, numerous challenges

remain, particularly in elucidating disease mechanisms and

developing novel therapeutic strategies.

Notably, although some IE patients present with severe sepsis

complications (4), the shared transcriptional features and molecular

signaling pathways between these diseases have not been

thoroughly explored. Furthermore, the complexity lies in

understanding how candidate genes shared between Infective

Endocarditis (IE) and sepsis may influence the phenotypic

outcomes in patients. Unraveling these phenotypic differences can

provide crucial phenotypic information for personalized

therapeutic strategies. Currently, antibiotics dominate the

treatment landscape for both IE and sepsis but come with the

risks of side effects and drug resistance. This has drawn attention to

the development of small molecule drugs as effective supplements

or potential alternatives, offering lower resistance and side effect

profiles. Furthermore, the broad-spectrum antibiotic use in all

suspected IE or sepsis patients not only increases the risk of

unnecessary exposure in uninfected individuals but also consumes

significant resources. This underscored the importance of early

diagnosis and the development of small-molecule drugs.

This study aims to uncover key biomarkers and signaling

pathways in Infective Endocarditis (IE) and Sepsis, delving into

their co-pathogenesis and phenotypic features, as outlined in
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Figure 1. Advanced bioinformatics techniques were employed for

precise analysis of large-scale microarray data, successfully

identifying key biomarkers and elucidating their functional roles

in disease progression. Additionally, single-cell RNA sequencing

(scRNA-seq) technology was employed to analyze differences in the

expression patterns of immune cells between septic patients and

healthy individuals. This enabled us to capture the expression

patterns of immune cells at a single-cell resolution. This high-

resolution approach further revealed specific functions and roles of

various immune cell subtypes in sepsis development. We also

focused on IL-10 as a potential therapeutic target, providing

scientific rationale for the potential application of small molecule

drugs in treating IE and Sepsis. Through validation studies on target

binding efficacy and mechanisms of action, we explored small

molecule drugs that could serve as antibiotic alternatives, hoping

to mitigate the risks of side effects and antibiotic resistance. This

research not only deepens our understanding of these complex

multi-systemic diseases but also provides valuable insights and

directions for future personalized and precise treatment plans.
Methods

Data source

The data used in this study were sourced from the Gene Expression

Omnibus (GEO) database.We selected anmicroarray dataset related to

Infective Endocarditis (IE): GSE29161, which includes 10 IE samples

and 5 control samples and four microarray datasets related to Sepsis

were chosen: GSE57065 with 82 sepsis samples and 25 control samples;

GSE69063 with 57 sepsis samples and 33 control samples; GSE95233

with 102 sepsis samples and 22 control samples; and GSE131761 with

81 sepsis samples and 15 control samples. A single-cell RNA

sequencing (scRNA-seq) dataset related to Sepsis, GSE175453, was

also included, featuring 4 sepsis samples and 5 healthy control (HC)

samples; and a sepsis RNA-seq data GSE185263, which comprises 348

septic samples and 44 healthy samples. The analysis datasets were

designated as the IE dataset GSE29161, two sepsis microarray datasets

with larger sample sizes (GSE57065 and GSE95233), and the scRNA-

seq data GSE175453. The validation datasets were selected as two sepsis

microarray datasets with relatively smaller sample sizes (GSE69063 and

GSE131761) and the RNA-seq data GSE185263. Platform files

corresponding to each microarray dataset were downloaded from the

GEO database. Annotation and normalization of each dataset were

performed using R software for subsequent analysis or validation.
Identification of differentially
expressed genes

The “limma” package was employed to identify DEGs between

control samples and IE or Sepsis samples, based on the following

criteria: |log2(Fold-Change)|>1,adjPvalue<0.05. Heatmaps and

volcano plots of the differential analysis results were generated

using the “pheatmap” and “ggplot2” packages, respectively.
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Weighted gene co-expression
network analysis

The “WGCNA” package was utilized to construct a co-expression

network. Initially, clustering was performed on the samples to assess

the presence of any noticeable outliers. Subsequently, a “soft”

thresholding power (b) was selected based on the scale-free

topology criterion to achieve a scale-free network topology.

Furthermore, an adjacency matrix was derived from the topological

overlap map (TOM), and stable gene modules were identified using

the dynamic tree-cutting algorithm. Modules with a feature factor

greater than 0.1 were merged to enhance module stability. Based on
Frontiers in Immunology 03
the module eigengene matrix and sample traits, correlations between

modules and traits were calculated and visualized.
Construction of protein-protein interaction
network and enrichment analysis

The intersection of all genes identified through differential

analysis and WGCNA was taken to obtain candidate genes for

further analysis. Protein interactions were predicted using the

STRING database, retaining interactions between two proteins

with a medium confidence score (confidence score≥0.4). The PPI
FIGURE 1

Research flowchart.
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network was constructed using Cytoscape. Functional annotation of

the candidate genes was carried out using the “clusterProfiler”

package in R, which included GO functional annotation and

KEGG pathway enrichment analysis. The criterion for

determining significant enrichment was P-value (adjP-value) <0.05.
scRNA-seq data analysis

Use the Seurat package to process all samples from GSE175453.

Firstly, perform quality filtering on the samples using different

standards (Supplementary Table 1), and then merge them into a

Seurat object. Log-normalize the merged data (scale factor = 10000),

followed by feature selection and standardization. After performing

Principal Component Analysis (PCA), correct batch effects between

different samples using the Harmony package. Subsequently,

identify significant principal components through JackStraw

analysis, cluster cells using FindNeighbors and FindClusters, and

select an appropriate resolution parameter. Finally, perform

dimensional i ty reduct ion through Uniform Manifold

Approximation and Projection (UMAP) for visualization

purposes. Subsequently, the “SingleR” package was used to

compare the transcriptomic expression of each cell with the

“HumanPrimaryCellAtlasData” reference dataset from the Celldex

index (12), annotating each cell using cellular terms derived from

this reference dataset.
Immune cell infiltration-related analysis

The abundance of immune cells in different samples was assessed

using the CIBERSORT algorithm. Additionally, single-sample gene set

enrichment analysis (ssGSEA) was performed using the “GSEAbase”

package based on the expression levels of 29 immune-related markers.

Concurrently, the Wilcoxon rank-sum test was employed to calculate

differentially enriched immune cells between samples.
Unsupervised clustering

For the case of Sepsis, represent ed by the GSE57065 dataset,

unsupervised clustering analysis was performed on the candidate

genes. The number and robustness of clusters were evaluated using

the “ConsensusClusterPlus” package. The k-means clustering

method was applied with 50 iterations, and each validation was

carried out using 80% of the samples to ensure the stability of the

clustering. The “limma” package was used to assess the gene

expression differences between different clusters.
Key gene identification via multiple
machine learning

Twomachine learning algorithms, the Least Absolute Shrinkage

and Selection Operator (LASSO) and Random Forest (RF), were

employed to select key genes. In the LASSO analysis, 5-fold cross-
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validation was used to optimize the selection of the regularization

parameter (a). The importance of genes was determined based on

their coefficients and visualized using bar graphs. The RF algorithm

utilized a Bayesian optimization strategy for selecting the best

hyperparameters for model training. Gene influence was

ascertained through feature importance scores, which were

graphically represented using bar charts to intuitively display the

results. Genes commonly selected by both algorithms were

considered as diagnostic genes or key cluster genes.
mRNA-miRNA interaction and
correlation analysis

Predicting potential regulatory miRNAs for diagnostic genes

from the TargetScan database (www.targetscan.org), the top 10

miRNAs were selected based on the context++ score percentile.

Visualization was performed using Cytoscape software. Genes

related to inflammatory cytokines were retrieved from the

Uniprot database. Pearson’s method was used to calculate the

correlation between diagnostic genes and inflammatory cytokines.

A heatmap was generated to visualize the relationships between

diagnostic genes and inflammatory cytokines.
Molecular docking

The receptor protein structures were downloaded from the

Protein Data Bank (PDB), and the 3D structures of ligand small

molecules were downloaded from the PubChem database. Prior to

molecular docking, water molecules in the protein structures were

removed using Pymol software.Add Hydrogens, charge calculation,

and atom type assignments were performed using AutoDockTools

software (v1.5.7). Molecular docking was carried out using

AutoDock Vina (13), where the processed structures were

subjected to simulations to analyze the binding characteristics of

the small molecule ligands with the target proteins. The molecular

conformation with the highest binding affinity from the docking

results was retained. Subsequent analysis of the ligand-protein

interactions was conducted using the Protein-Ligand Interaction

Profiler (PLIP) web tool (14). Finally, the interactions were

visualized using Pymol.
Real-time quantitative polymerase
chain reaction

To validate the reliability of the biomarkers identified in this

study, real-time Quantitative Polymerase Chain Reaction (qRT-

PCR) was performed on samples obtained from 5 sepsis patients

and 5 healthy controls. The acquisition of these samples was

approved by the Hubei Provincial Maternal and Child Health

Hospital, and informed consent was obtained from each

participant involved in the study. Total RNA from cells or tissues

was extracted using Trizol reagent (Ambion, China), and qRT-PCR

was conducted using the SYBR FAST qPCR Master Mix (KAPA
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Biosystems, China). GAPDH was used as an internal control, and

the relative expression levels were calculated using the formula 2^

(-DDCt). The primer sequences are listed in Supplementary Table 1.
Statistical analysis

R (v 4.3.0) was used for all statistical analysis in this study. And

Python (v 3.11) was used for machine learning. P < 0.05 was

considered statistically significant, and the Pearson coefficient were

used to assess the correlation. In addition, binding energy was used

to evaluate the effectiveness of the molecular docking. The

biological images used in this study were sourced from Smart-

Servier Medical Art (https://smart.servier.com/).
Results

Data preprocessing

Due to the subsequent analysis not merging different

microarray datasets, batch effects between different datasets are

not taken into consideration. Perform quantile normalization on

the microarray datasets using the limma package. As depicted in the

box plots (Supplementary Figure 1) normalization effectively

mitigated technical variations. In cases where different probes

matched the same gene symbol, the first occurrence of the probe

was retained as the gene’s expression value. Notably, datasets

GSE57065, GSE69063 and GSE95233 encompassed samples from

the same sepsis patients collected at various time points. Principal

Component Analysis (PCA) applied to these three datasets

(Supplementary Figure 2) revealed substantial similarity in the

two-dimensional projection of samples collected at different time

points. This observation underscores the high consistency of these

datasets in terms of their features. Therefore, for subsequent

analyses, data collected at different time points after diagnosis

from the same dataset were merged to serve as representative

data for sepsis.

For the RNA-seq dataset GSE185263, raw count data was

retained for genes with counts >1. Normalization was performed

using the DESeq2 package, and conversion of ENSEMBL IDs to

Gene Symbols was accomplished using the org.Hs.eg.db package.
Identification of DEGs between patient
and normal

The differential analysis results for identifying DEGs with the

same threshold across the datasets (GSE29161, GSE57065,

GSE95233) are shown in Figure 2, where the heatmap displays all

identified DEGs. Specifically, for the comparison between IE

samples and normal samples, 816 DEGs were identified in

GSE29161 (355 downregulated and 461 upregulated). For the

comparison between sepsis samples and normal samples, 914

DEGs were identified in GSE57065 (429 downregulated and 485
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upregulated), and 1113 DEGs were identified in GSE95233 (460

downregulated and 653 upregulated).
Identification of co-expressed gene
modules associated with sepsis

WGCNA analysis was performed on the GSE57065 and

GSE95233 datasets to identify gene modules associated with the

sepsis phenotype. In GSE57065, no data were excluded due to

missing values, and cluster analysis excluded three significant

outliers. Soft-thresholding analysis indicated that when b=4
(scale-free R2 = 0.85), the correlation between genes was most

consistent with a scale-free distribution (Figure 3A). With the

minimum module size set at 200, 15 modules were successfully

identified by merging similar modules (Figures 3B, C). Among

them, the MEturquoise module exhibited the highest correlation

with sepsis(r=0.89,p=3e-36), containing 6972 genes. Similarly, in

GSE95233, no data were excluded due to missing values, and two

significant outliers were excluded through clustering analysis. b=3
was chosen as the optimal soft-thresholding value (Figure 3D).

With the minimum module size set at 150, 12 modules were

identified by merging similar modules (Figures 3E, F). Among

these, the MEturquoise module showed the strongest association

with the sepsis phenotype(r=-0.86,p=2e-36), containing 8375 genes.
Functional analysis of DEGs and key
module genes

Intersecting the differentially expressed genes (DEGs) and key

module genes from GSE57065 and GSE95233 separately revealed

614 and 775 commonly expressed DEGs (Figures 4A, B). Taking

these two gene sets as the distinctive genes for sepsis, their

intersection with DEGs from infective endocarditis (IE) identified

76 candidate genes (Figure 4C). Functional analysis was performed

on these candidate genes to explore their biological roles in IE and

sepsis, aiming to identify potential shared pathogenic mechanisms

between the two conditions.

To further investigate the functions of these candidate genes, a

Protein-Protein Interaction (PPI) network was constructed

(Figure 4D), comprising 47 nodes and 93 edges representing

interactions between genes. GO and KEGG enrichment analyses

were performed on the candidate genes. The results showed that these

genes were primarily involved in immune and inflammatory

functions: in terms of Biological Processes (BP), they were

primarily focused on regulating protease activity, defense responses

to bacteria, and cellular activation in immune responses (Figure 4E);

in terms of Cellular Components (CC), they were mainly located in

vesicle lumen and granules or complexes in immune cells (Figure 4F);

in terms of Molecular Functions (MF), they primarily involved

molecular binding, regulation of protease activity, and receptor

activity (Figure 4G); and in KEGG pathway analysis, they were

mainly involved in Th1 and Th2 cell differentiation (Figure 4H).
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scRNA-seq data analysis

The scRNA-seq data analysis incorporated 4 sepsis samples and 5

healthy controls (HC). After quality filtering (Supplementary Table 2),

a total of 32,469 cells were selected. After JackStraw analysis, the top 17

principal components were selected. Cell-to-cell neighbor relationships

were then calculated with a resolution of 0.5, followed by
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dimensionality reduction and projection using UMAP. The UMAP

dimensionality reduction revealed that these cells were classified into 15

clusters (Figure 5A). These 15 clusters were further assigned to 6

known cell lineages (Figure 5B). The proportion of cells in each lineage

was calculated separately for sepsis and HC samples, showing a relative

enrichment of monocytes in sepsis samples, while B cells and T cells

were relatively sparse (Figures 5C, D).
B

C
D

E F

A

FIGURE 2

DEGs visualization of datasets. (A, B) DEGs from GSE29161. (C, D) DEGs from GSE57065. (E, F) DEGs from GSE95233.
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Identification of sepsis clusters

To investigate whether candidate genes influence the

phenotypic outcomes in septic patients, consensus clustering was

performed based on the expression patterns of 76 candidate genes

in the sepsis samples from GSE57065. According to the results of
Frontiers in Immunology 07
Consensus Clustering, the optimal number of clusters for sepsis

samples in GSE57065 was determined to be 2 (k value=2)

(Figure 6A). Based on the criteria of |log2(Fold-Change)|>1 and

adjPvalue<0.05, 95 differentially expressed genes (DEGs) were

identified between the two sepsis clusters, including 64

downregulated genes and 31 upregulated genes (Figures 6B, C).
B

C

D

E

F

A

FIGURE 3

Identification of module genes via WGCNA. (A) Soft threshold analysis in GSE57065. (B) Clustering dendrogram and merging of the gene co-
expression modules represented by different colors in GSE57065. (C) Heatmap of the module–trait relationship in GSE57065. (D) Soft threshold
analysis in GSE95233. (E) Clustering dendrogram and merging of the gene co-expression modules represented by different colors in GSE95233.
(F) Heatmap of the module-trait relationship in GSE95233.
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Due to the fact that GSE57065 consists of samples derived from

blood, the immune cell analysis involves immune cells obtained from

blood samples. Utilize the Cibersort method in conjunction with the

LM22 feature matrix to quantify the abundance of 22 immune cell

types in two sepsis clusters (Figure 6D). The results revealed that B

cell naïve, Monocytes, Macrophages M0, and Eosinophils were more

abundant in sepsis cluster 1 (P<0.05), while B cell memory, T cells

CD8, T cells CD4 memory resting, and Macrophages M2 were more

abundant in sepsis cluster 2 (P<0.05).

The ssGSEA analysis was employed to assess the expression

levels of 28 types of immune cells in the two sepsis clusters

(Figure 6E). The analysis indicated that Activated CD4 T cell,

Activated dendritic cell, Memory B cell, and Regulatory T cell

were more significantly expressed in sepsis cluster 1 (P<0.05).

Conversely, Activated CD8 T cell, Central memory CD4 T cell,

Effector memory CD8 T cell, Eosinophil, MDSC, Monocyte,

Natural killer T cell, Neutrophil, T follicular helper cell, and Type

1 T helper cell showed more significant expression in sepsis cluster

2 (P<0.05).
Frontiers in Immunology 08
Key biomarker identification

To further identify the key biomarkers associated with Infective

Endocarditis (IE) and Sepsis, machine learning algorithms were

applied to screen critical diagnostic genes from 76 genes in the

sepsis datasets (GSE57065, GSE95233). Lasso regression algorithm

identified 41 genes in GSE57065 (Figures 7A–C) and 34 genes in

GSE95233 (Figures 7D–F). The Random Forest (RF) algorithm,

based on gene importance, determined 32 genes in GSE57065

(Figure 7G) and 30 genes in GSE95233 (Figure 7H). Combining

the results from both machine learning algorithms across the two

datasets, four common diagnostic genes (IRAK3, CD177, RNASE2,

S100A12) were finally selected (Figure 7I).

Additionally, in the quest for biomarkers that could effectively

delineate different sepsis clusters, the same two machine learning

algorithms were employed to screen genes from the sepsis cluster

samples. Lasso regression identified 14 genes (Figures 7J–L), while

the RF algorithm determined 25 genes (Figure 7M). Among the

results from both algorithms, six key cluster-specific genes
B C

D E

F G H

A

FIGURE 4

Functional analysis of common genes between DEGs and key modular genes. (A–C) Venn diagram of common genes between DEGs and key
modular genes. (D) The PPI network among candidate genes. (E–G) GO analysis. (H) KEGG analysis.
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(SLC8A1, KLRF1, NAIP, IRAK3, RAB20, CD177) were commonly

identified (Figure 7N).
Evaluation of diagnostic or clustering
potency of key biomarkers

To validate the diagnostic potential of the selected genes for

Infective Endocarditis (IE) and Sepsis, Receiver Operating

Characteristic (ROC) analysis was employed to build predictive

models. By calculating the True Positive Rate (TPR), False Positive

Rate (FPR), and the Area Under the Curve (AUC), ROC curves

were plotted for visualization. The results indicated that the four

diagnostic genes exhibited excellent diagnostic performance in the

IE dataset GSE29161 (Figure 8A), two sepsis validation datasets,

GSE69063 (Figure 8B), GSE131761 (Figure 8C), sepsis RNA-seq

GSE185263 (Figure 8D) and two sepsis analysis datasets

(GSE57065, GSE95233) (Supplementary Figure 3A–H), within the

95% confidence interval, the lowest AUC also reached 0.781.

Additionally, by comparing the expression profiles between

disease samples and control samples, it was found that the

expression levels of CD177, RNASE2, IRAK3, and S100A12 were

significantly elevated in both IE and sepsis samples (Figures 8E-H;

Supplementary Figure 3I–J).

To further validate the diagnostic potency of these biomarkers,

scRNA-seq data analysis was performed. Expression of three

biomarkers (IRAK3, RNASE2, S100A12) was visualized in both

HC and sepsis samples (Figures 8I–K). The expression matrices of
Frontiers in Immunology 09
scRNA-seq were extracted, and the Wilcoxon rank-sum test was

used to analyze the expression differences between HC and sepsis

samples. The results demonstrated a significant upregulation of

these biomarkers in the sepsis samples (Figure 8L).

Moreover, to ascertain whether these diagnostic genes also

possessed good clustering capabilities across different sepsis groups,

an intersection was made between the machine learning-selected

diagnostic genes and key cluster genes, resulting in two intersecting

genes (IRAK3, CD177) (Figure 8M). ROC analysis was performed on

these two intersecting genes, and expression level comparisons were

conducted among different clusters to identify the discriminatory

capability of the intersecting genes in distinguishing sepsis clusters.

The results revealed that CD177 showed a significantly elevated

expression level in Cluster 1 (Figure 8N) and demonstrated

excellent clustering ability (Figure 8O). In contrast, although

IRAK3 showed significant expression differences between the two

clusters (Figure 8N), its clustering performance was less effective

(Figure 8P). In addition, CD177 was found to be the only gene

present among the 95 DEGs in the two sepsis clusters. Despite

conducting enrichment analysis on these 95 DEGs, no significant

pathway enrichment was observed in the KEGG analysis. Results

from the GO analysis, focusing on pathways related to the action of

CD177, were extracted and presented in a bubble chart (Figure 8Q).

Among them, the pathway ‘Neutrophil Extravasation’ is related to

physiological processes, while the remaining pathways are associated

with cellular components. These pathways primarily function in the

inflammation and immune response processes (Neutrophil

Extravasation, the process of neutrophils moving from the blood
B

C D

A

FIGURE 5

scRNA-seq data analysis. (A) Cells were categorized into 15 clusters. (B) The 15 clusters were further assigned to 6 known cell lineages.
(C) Comparison of Cell Distribution between Healthy Control and Sepsis Samples. (D) Percentages of Cells in Healthy Control and Sepsis Samples.
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vessels to infected or damaged tissues), and the structural

components related to immune cells, inflammatory response, and

cell signaling. (specific granule, tertiary granule, secretory granule

membrane, tertiary granule membrane, specific granule membrane,

membrane raft, membrane microdomain, anchored component

of membrane).
Target proteins for treatment

The correlation between four genes was calculated using the

Pearson method based on GSE29161 (Figure 9A), GSE57065

(Figure 9B), GSE69063 (Supplementary Figure 4A), GSE95233

(Supplementary Figure 4B), GSE131761 (Supplementary Figure 4C),

and GSE185263 (Supplementary Figure 4D), revealing tight

associations among them. Utilizing the TargetScan database, an

mRNA-miRNA interaction network was constructed for diagnostic
Frontiers in Immunology 10
genes (Figure 9C). The network comprises 34 nodes and 40 edges, with

the relationships between genes andmiRNAs detailed in Table 1. These

miRNAs play a crucial role in immune response, inflammatory

response, cell cycle regulation, and the development of tumors.

Twenty-six genes related to inflammatory cytokines were

retrieved from the Uniprot database. A PPI (Protein-Protein

Interaction) network was constructed between diagnostic genes

and these inflammatory cytokines, consisting of 19 nodes and 126

edges representing their interactions (Figure 9D). Through analysis

of IE and sepsis samples, the correlation between diagnostic genes

and inflammatory cytokines was calculated. Sixteen of these genes

being expressed within microarray data, while 14 inflammatory

cttokines were expressed within RNA-seq data. The results

indicate that, based on the IE dataset GSE29161 (Figure 9E) as

well as the sepsis datasets GSE57065 (Figure 9F), GSE69063

(Supplementary Figure 4E), GSE95233 (Supplementary Figure

4F), GSE131761 (Supplementary Figure 4G) and GSE185263
B

C D

E

A

FIGURE 6

Differential expression and immune infiltration status between sepsis clusters. (A) Unsupervised clustering results, left top - Consensus Matrix
(visualizes the frequency with which data points are assigned to the same cluster across multiple clustering runs), left bottom - Consensus
Cumulative Distribution Function(CCDF, measures the degree of consistency in the assignment of each data point to different clusters), right top -
Delta Area(indicates the change in slope of the CCDF curve), right bottom - Tracking Plot(depicts the dynamic changes of data points across
different clusters), based on these visualizations, the optimal number of clusters is 2. (B, C) Visualization of DEGs between sepsis clusters.
(D) Differences in abundance of immune cells from blood samples. (E) Differences in expression levels of immune cells from blood samples.
* P<0.05, ** P<0.01, *** P<0.001, ns: not significance.
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(Supplementary Figure 4H), IL10 shows a significant correlation

with diagnostic genes.

Further analysis of the two sepsis clusters revealed inconsistent

correlations of IL10 within the clusters (Figures 9G, H). Comparing the

expression profiles of IL10 between the two sepsis clusters revealed that

IL10 is significantly upregulated in sepsis cluster 1 (Figure 9I).

Based on the median expression levels of IL10, the IE

(GSE29161) and sepsis datasets (GSE57065) were divided into
Frontiers in Immunology 11
high IL10 expression and low IL10 expression groups. Gene set

enrichment analysis (GSEA) was subsequently performed to

identify biological activities and pathways differentially expressed

at varying levels of IL10. The results indicated that in the IE dataset,

labels related to interferon signaling and cellular granule release

were decreased (Figure 9J). In the sepsis dataset, levels of labels

related to cellular granule release were decreased, while antigen

processing and presentation pathways, signaling pathways were
B C

D E F

G H I

J K L

A

M N

FIGURE 7

Machine learning screening for key biomarkers. (A–C) Screening of key biomarkers from GSE57065 using Lasso modeling. (D–F) Screening of key
biomarkers from GSE95233 using Lasso modeling. (G) RF algorithm shows importance of genes from GSE57065. (H) RF algorithm shows importance
of genes from GSE95233. (I) Co-diagnostic genes. (J–L) Screening of key biomarkers from two sepsis clusters samples using Lasso modeling. (M) RF
algorithm shows importance of genes from two sepsis clusters samples. (N) Key cluster genes.
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elevated (Figure 9K). This highlights the role of IL10 in immune

regulation and inflammatory response.
Molecular docking analysis

Through correlation analysis, Interleukin-10 (IL-10) was identified

as an inflammatory cytokine associated with both IE and sepsis. The
Frontiers in Immunology 12
protein structure of IL-10 was obtained from the PDB database, and

the structures of four small molecule drugs—resveratrol, curcumin,

matrine, and taurine—were retrieved from the PubChem database.

Molecular docking was performed between IL-10 and these four

small molecules. The results revealed that resveratrol (Figure 10A),

curcumin (Figure 10B), and matrine (Figure 10C) share similar

binding pockets and have overlapping binding sites on IL-10. On

the other hand, taurine (Figure 10D) exhibits a different binding
B C

D E F

G H I

J K L

M
N

A

O P Q

FIGURE 8

Capacity assessment of key biomarkers. (A–D) ROC curve for the Infective Endocarditis dataset (A), two sepsis validation datasets (GSE69063 - B,
GSE131761 - C) and sepsis RNA-seq data(GSE185263 - D), left top - CD177, left bottom - IRAK3, right top - RNASE2, right bottom - S100A12.
(E) Expression levels of diagnostic genes for GSE29161. (F) Expression levels of diagnostic genes for GSE69063. (G) Expression levels of diagnostic
genes for GSE131761. (H) Expression levels of diagnostic genes for GSE185263. (I) Cellular distribution of IRAK3. (J) Cellular distribution of RNASE2.
(K) Cellular distribution of S100A12. (L) Differences in expression levels of key biomarkers for scRNA-seq. (M) Common genes for diagnostic and
cluster genes. (N) Expression levels of cluster genes for two sepsis clusters samples. (O) ROC curve for sepsis clusters samples, based on CD177.
(P) ROC curve for sepsis clusters samples, based on IRAK3. (G) Pathways associated with the action of CD177 in the enrichment results of two sepsis
cluster DEGs. * P<0.05, ** P<0.01, *** P<0.001, ns: not significance.
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pocket on IL-10 and has considerably different binding sites

compared to the other three molecules.

The affinity and docking sites for each small molecule with IL-

10 are listed in Table 2. Upon comparison, it was found that

resveratrol, curcumin, and matrine exhibit good docking results

with IL-10 (Affinity < -5.0 kcal/mol). In contrast, the docking

effectiveness of taurine with IL-10 is not as promising as the

other three small molecules.
Frontiers in Immunology 13
qRT-PCR validation

To further validate the differential expression of the biomarker

CD177 identified in our single-cell RNA sequencing, we conducted

independent experiments using the qRT-PCR method. The results

(Figure 11) clearly show that the expression level of CD177 is

significantly higher in sepsis samples than in normal samples. This

finding is consistent with our previous observation of CD177
B C D

E F

G H I

J K

A

FIGURE 9

Selection of target proteins. (A) Correlation among diagnostic genes based on GSE29161. (B) Correlation among diagnostic genes based on GSE57065.
(C) mRNA-miRNA network. (D) PPI network for diagnostic genes and inflammatory cytokines. (E) Correlation between diagnostic genes and inflammatory
cytokines in GSE29161. (F) Correlation between diagnostic genes and inflammatory cytokines in sepsis samples from GSE5706. (G–H) Correlation between
diagnostic genes and inflammatory cytokines in sepsis clusters sample(G-sepsis cluster1,H- sepsis cluster2). (I) Expression levels of IL10 for sepsis clusters
samples. (J) GSEA analysis of GSE29161. (K) GSEA analysis of GSE57065. * P<0.05, ** P<0.01, *** P<0.001, ns: not significance.
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overexpression based on data analysis, further confirming the key

role of CD177 in sepsis.
Discussion

Infective endocarditis (IE) shares similar pathogenic mechanisms

with sepsis and may be caused by infections from bacteria such as

Staphylococcus and Streptococcus (15–17). In addition to exhibiting

invasive and destructive properties on the surface of the

endocardium, the pathogenic bacteria of IE may also lead to

systemic infections, excessive activation of the immune system

through the secretion of exotoxins, and the development of sepsis

complications. Therefore, early diagnosis of IE and sepsis is of great

significance in preventing complications and reducing mortality.

In this study, cutting-edge bioinformatics analysis methods

were employed to identify 76 key target genes associated with IE

and sepsis. These genes play significant roles in regulating protease

activity, immune cell activation, molecular interactions, as well as

Th1 and Th2 cell differentiation. Previous studies have shown that

extracellular vesicles from non-immune cells can promote the

differentiation of Th1/Th2 cells in the late stage of sepsis (18).

Specifically, Th1 cells can produce IFN-g, IL-2, and TNF-b, which
activate macrophages and are responsible for cell-mediated

immunity and phagocyte-dependent protective responses.

Meanwhile, Th2 cells enhance antibody production, activate

eosinophils, and inhibit several macrophage functions through

the production of IL-4, IL-5, IL-10, and IL-13, providing

phagocyte-independent protective responses (19). It is worth

noting that studies have found an upregulation of Th1 cells and a

downregulation of Th2 cells in patients with sepsis (20). This

finding suggests that the immune response in sepsis patients may

primarily rely on phagocyte-dependent protective responses.

Through these discoveries, we can gain a deeper understanding of

the molecular mechanisms of IE and sepsis, providing important

evidence for future clinical treatments.

Through scRNA-seq and immune cell infiltration-related

analysis of sepsis patients, we have observed a clear decrease in

the number of B cells and T cells, while the number of monocytes

has correspondingly increased. This data is consistent with previous
Frontiers in Immunology 14
studies that have demonstrated impaired B cell maturation in the

sepsis environment (21), which is not only a key factor in the

reduction of B cell numbers but also closely associated with poor

prognosis of the disease. It is worth noting that the decrease in T cell

numbers is not solely caused by a single factor. According to

literature reports (22), sepsis not only induces T cell apoptosis

but also continuously impairs the function of the remaining T cells.

This complex impact may further weaken the overall efficiency of

the immune system. At the same time, monocytes play an

indispensable role in sepsis (23). This series of changes in the

immune microenvironment in patients with sepsis is likely to

dysfunction the immune system and lead to immunosuppression

(24), so that pathogens invading patients cannot be eliminated

rapidly, making it difficult to treat inflammation and even leading to

new secondary infections. In summary, this series of immune cell

changes provides a new framework for understanding the complex

course and poor prognosis of sepsis, and also points out possible

research directions for future sepsis treatment.

Through analysis of immune infiltrating cells between two

clusters in sepsis, we observed significant differences in the

abundance and expression levels of infiltrating immune cell

populations, revealing potential differences in inflammatory

responses and treatment strategies between the two clusters of

sepsis. It is worth noting that Th1 cells are significantly

upregulated in sepsis cluster 2 compared to sepsis cluster 1, and

this excessive Th1 cell expression may disrupt immune balance,

leading to tissue damage. This observation suggests that the

inflammatory response in sepsis cluster 2 may be more intense,

potentially accompanied by more severe clinical symptoms and

poorer treatment outcomes. Therefore, different treatment

strategies may need to be formulated based on the immune

response characteristics of different clusters in order to more

effectively control the progression and impact of sepsis.

By applying machine learning methods, this study has identified

four potential diagnostic biomarkers associated with Infective

Endocarditis (IE) and Sepsis. Firstly, S100A12 has been identified

as a key molecule, playing a crucial role in the immune and

inflammatory responses in IE patients (7), while primarily

released at the infection site in sepsis patients (25). Additionally,

CD177 showed significantly increased expression in sepsis patients

(26), whereas IRAK3 is associated with the immune suppression

stage (27). Beyond these confirmed genes, this study also discovered

three potential diagnostic genes for IE (CD177, IRAK3, RNASE2)

and one potential diagnostic gene for sepsis (RNASE2) for the first

time. Analysis of both microarray data, RNA-seq data and scRNA-

seq data demonstrated consistent expression levels of the

mentioned genes, providing further validation of the results.

Notably, CD177 not only holds high diagnostic value for both IE

and sepsis but also achieves good classification results in two

distinct sepsis clusters with significant differences in immune cell

populations. Meanwhile, based on the DEGs from two sepsis

clusters, enrichment analysis reveals distinct pathways associated

with CD177. It is evident that these two sepsis clusters exhibit

variations in their roles in immune and inflammatory responses.

For instance, one sepsis cluster may be more sensitive to infection or

inflammation, displaying a more robust immune response, while
TABLE 1 mRNA-miRNA.

Gene
symbol

pp

CD177 hsa-miR-6807-5p, hsa-miR-194-3p, hsa-miR-8088, hsa-miR-1225-
3p, hsa-miR-204-3p, hsa-miR-4646-5p, hsa-miR-4314, hsa-miR-
323a-5p, hsa-miR-3620-5p, hsa-miR-1587

IRAK3 hsa-miR-450a-1-3p, hsa-miR-370-5p, hsa-miR-7106-5p, hsa-miR-
3934-3p, hsa-miR-6814-5p, hsa-miR-505-5p, hsa-miR-140-3p.2,
hsa-miR-124-3p.1, hsa-miR-6822-3p, hsa-miR-1193

RNASE2 hsa-miR-4689, hsa-miR-6858-5p, hsa-miR-4765, hsa-miR-3139,
hsa-miR-450b-3p, hsa-miR-769-3p, hsa-miR-4306, hsa-miR-4644,
hsa-miR-185-5p, hsa-miR-8076

S100A12 hsa-miR-4689, hsa-miR-6858-5p, hsa-miR-4765, hsa-miR-3139,
hsa-miR-450b-3p, hsa-miR-769-3p, hsa-miR-4306, hsa-miR-4644,
hsa-miR-185-5p, hsa-miR-8076
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the other cluster may exhibit a weaker response to the same stimuli.

These findings not only unveil potential development mechanisms

for IE and sepsis but also provide essential new leads for the study of

their immune responses and treatment strategies.

Further analysis suggests that Interleukin-10 (IL-10), as an anti-

inflammatory cytokine associated with both Infective Endocarditis

(IE) and sepsis, could potentially serve as a common therapeutic

target protein for both diseases. Firstly, from previous research, we

understand that IL-10 can act on antigen-presenting cells to inhibit

Th1 cell cytokine production (28), thereby reducing inflammatory

responses and tissue damage. In light of this mechanism, this study
Frontiers in Immunology 15
particularly focused on small molecule drugs with anti-

inflammatory properties: resveratrol, curcumin, matrine, and

taurine. Among these, resveratrol and curcumin have been

confirmed to upregulate IL-10 expression and production, hence

having anti-inflammatory effects (29, 30). Molecular docking results

from this study further confirmed the strong binding of resveratrol

and curcumin with IL-10. For matrine and taurine, this study found

that taurine docked poorly with IL-10, whereas matrine was

molecularly conformationally stable and had the same binding

pocket as resveratrol and curcumin on IL-10 with similar binding

sites. Therefore, it is speculated that matrine may also exert anti-
B

C

D

A

FIGURE 10

Molecular docking of IL-10 with small molecules. (A) Resveratrol. (B) Curcumin. (C) Matrine. (D) Taurine.
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inflammatory effects by targeting IL-10 in IE and sepsis. However, it

is worth noting that due to differential expression of IL-10 between

sepsis clusters, with sepsis cluster 1 showing significantly higher IL-

10 expression than sepsis cluster 2, the potential therapeutic effects

of matrine may vary between different sepsis clusters, with more

pronounced effects in cluster 1 with high IL-10 expression. These

findings provide a new mechanistic understanding and potential

drug candidates for anti-inflammatory treatment of IE and sepsis.

Of course, this study inevitably carries some limitations. Firstly,

while we obtained a certain dataset from the GEO database, we were

restricted by the data volume, and thus, we could only validate the

diagnostic potential of the identified genes in IE using the available

dataset. For a more in-depth understanding of the molecular

mechanisms behind these diagnostic genes and to assess the

association between clinical data and diagnostic genes, future work

will require the integration of additional external datasets, biological
Frontiers in Immunology 16
experimental studies, and clinical trials. Secondly, the potential

therapeutic value of Interleukin-10 (IL-10) proposed in this study

for IE and sepsis, as well as the mode of action of matrine, although

theoretically grounded, indeed demands further empirical research

for validation and deeper exploration. Specifically, the specific

mechanisms of action of matrine in controlling IE and sepsis,

especially in different sepsis clusters, will require more

experimental support. In summary, this study provides a

preliminary outlook on common biomarkers for IE and sepsis and

offers crucial theoretical and empirical evidence for the application of

matrine in treating these diseases. However, further extensive and in-

depth research is needed to refine and support these propositions.
Conclusions

In summary, this study delves into the shared pathogenic

mechanisms between Infective Endocarditis (IE) and sepsis,

uncovering common biomarkers and potential therapeutic targets.

Through an analysis of shared target genes, scRNA-seq data, and

immune factor profiling, we reveal the critical roles of immune cells

such as Th1 cells, B cells, T cells, IL-10, immune cells and cytokines

in the activation and regulation of these two diseases. Particularly,

IL-10, as a vital anti-inflammatory cytokine, is identified as a

common therapeutic target protein, and potential therapeutic

drug matrine is discovered through molecular docking. Further

analysis also demonstrates differences between subtypes of sepsis,
TABLE 2 Molecular docking data.

Small
molecule

Affinity
(kcal/mol)

Binding site

Resveratrol -6.3 LEU-26,PHE-30,PHE-37,TYR-72,
LEU-94

Curcumin -6.9 PHE-30,VAL-33,PHE-37

Matrine -6.4 LEU-26,PHE-30,TYR-72,LEU-98

Taurine -3.3 LEU-73,ASN-92,LYS-99
FIGURE 11

Validation of the reliability of the CD177 as biomarker by qRT-PCR. * P<0.05, ** P<0.01, *** P<0.001, ns: not significance.
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including significant variations in the abundance and expression

levels of immune cell populations, which may lead to distinct

inflammatory responses and treatment strategies. These findings

not only lay the foundation for more precise sepsis diagnosis and

subtyping but also open up new possibilities for personalized

treatment tailored to different subtypes. While this study is

limited by data volume and experimental validation, it

undoubtedly provides a fresh perspective and direction for the

early diagnosis and treatment of IE and sepsis, particularly in

exploring new potential diagnostic biomarkers and therapeutic

targets. Future research will require more extensive datasets and

experimental validation to establish these findings and delve deeper

into potential molecular mechanisms, aiming to provide a more

robust foundation for clinical diagnosis and treatment.
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