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Identification and validation of
hub genes and molecular
classifications associated with
chronic myeloid leukemia
Fangmin Zhong, Fangyi Yao, Shuai Xu, Jing Zhang,
Jing Liu* and Xiaozhong Wang*

Jiangxi Province Key Laboratory of Laboratory Medicine, Jiangxi Provincial Clinical Research Center
for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi
Medical College, Nanchang University, Nanchang, Jiangxi, China
Background: Chronic myeloid leukemia (CML) is a kind of malignant blood

tumor, which is prone to drug resistance and relapse. This study aimed to identify

novel diagnostic and therapeutic targets for CML.

Methods: Differentially expressed genes (DEGs) were obtained by differential

analysis of the CML cohort in the GEO database. Weighted gene co-expression

network analysis (WGCNA) was used to identify CML-related co-expressed

genes. Least absolute shrinkage and selection operator (LASSO) regression

analysis was used to screen hub genes and construct a risk score model based

on hub genes. Consensus clustering algorithm was used for the identification of

molecular subtypes. Clinical samples and in vitro experiments were used to verify

the expression and biological function of hub genes.

Results: A total of 378 DEGs were identified by differential analysis. 369 CML-

related genes were identified by WGCNA analysis, which were mainly enriched in

metabolism-related signaling pathways. In addition, CML-related genes are

mainly involved in immune regulation and anti-tumor immunity, suggesting

that CML has some immunodeficiency. Immune infiltration analysis confirmed

the reduced infiltration of immune killer cells such as CD8+ T cells in CML

samples. 6 hub genes (LINC01268, NME8, DMXL2, CXXC5, SCD and FBN1) were

identified by LASSO regression analysis. The receiver operating characteristic

(ROC) curve confirmed the high diagnostic value of the hub genes in the analysis

and validation cohorts, and the risk score model further improved the diagnostic

accuracy. hub genes were also associated with cell proliferation, cycle, and

metabolic pathway activity. Two molecular subtypes, Cluster A and Cluster B,

were identified based on hub gene expression. Cluster B has a lower risk score,

higher levels of CD8+ T cell and activated dendritic cell infiltration, and immune

checkpoint expression, and is more sensitive to commonly used tyrosine kinase

inhibitors. Finally, our clinical samples validated the expression and diagnostic

efficacy of hub genes, and the knockdown of LINC01268 inhibited the

proliferation of CML cells, and promoted apoptosis.
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Conclusion: Through WGCNA analysis and LASSO regression analysis, our

study provides a new target for CML diagnosis and treatment, and provides a

basis for further CML research.
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Introduction

Chronic myeloid leukemia is a malignant tumor that affects the

blood and bone marrow (1). It is mainly induced by the BCR-ABL1

fusion gene, which encodes a protein with strong tyrosine kinase

activity and activates various signaling pathways (2). At present, the

main therapeutic drugs for CML are tyrosine kinase inhibitors (TKIs)

targeting BCR-ABL1 (2). The development of the first-generation

TKI imatinib (IM) has changed the treatment status of CML, and the

prognosis of patients has been significantly improved (3). It is widely

used and has a good therapeutic effect. However, due to the existence

of escape mechanisms, tumor cells often develop resistance to kinase

drugs, leading to the malignant progression of the disease, which

seriously affects the health of patients (4). In addition, the long-term

use of TKI will also produce many complications, affecting the quality

of life of patients (5). Therefore, there is an urgent need to identify

novel molecular targets for the diagnosis and treatment of CML.

With the progress and development of sequencing technology,

bioinformatics has been widely used to explore the genetic changes of

tumors, and to find new targets for early diagnosis and therapeutic

intervention of tumors. The Gene ExpressionOmnibus (GEO) database

contains gene expression profiles of various diseases and tumor samples

and corresponding clinical information, which can be used for in-depth

analysis (6). Weighted gene co-expression network analysis (WGCNA)

is a bioinformatics tool to screen genes with similar expression patterns

related to disease phenotypes by constructing free-scale gene co-

expression networks (7). The reliability of this method has been widely

verified (8–10), and to a large extent, it overcomes the limitations caused

by only focusing on differentially expressed genes (DEGs). Therefore,

hub genes that are highly correlated with clinical phenotypes can be

defined as potential biomarkers and therapeutic targets.

In this study, we systematically analyzed the CML dataset

GSE13159 in the GEO database, combined with differential

expressed expression analysis and WGCNA analysis, identified a set

of co-expressed genes significantly associated with CML, and

determined the biological functions of these genes by enrichment

analysis. Subsequently, the least absolute shrinkage and selection

operator (LASSO) analysis was used to screen out signature genes

that had high diagnostic value for CML and could predict treatment

response in CML patients. We also identified two molecular subtypes

with distinct immune landscapes based on hub gene expression.

Finally, the diagnostic performance of the risk score model

constructed by hub genes was further improved. These signatures
02
were validated using an additional public cohort and our clinical real-

world cohort. Therefore, these findings will help reveal more

underlying mechanisms of CML, as well as the potential value of

these targets in CML treatment.
Materials and methods

Data acquisition and processing

We downloaded the CML data sets (GSE13159, GSE144119)

from the GEO database. GSE13159 contains 76 CML samples and

74 normal samples, and we normalized the original “cel” files.

GSE144119 contained 48 newly diagnosed CML samples and 32

remission CML samples, as well as 17 normal samples, and the data

were converted to transcripts per kilobase million (TPM) values for

subsequent analyses. GSE13159 was used as the analysis cohort, and

GSE144119 was used for subsequent validation. The normalized

RNA-seq data (TPM values) of 173 TCGA-LAML (The Cancer

Genome Atlas-Acute Myeloid Leukemia) samples containing

clinical information were downloaded from the UCSC XENA

database (https://xenabrowser.net/datapages/).
Pathway activity assessment and function
enrichment analysis

The gene set variation analysis (GSVA) algorithm was used to

calculate the enrichment score of the gene set to quantify the

activity of the corresponding biological process or signaling

pathway. The GSVA score was calculated based on the overall

position of the gene set genes in the expression ranking of all genes,

and the higher the overall expression level of these genes, the higher

the GSVA score. KEGG enrichment analysis was used to analyze the

function of phenotypic-related genes identified by WGCNA. We

perform these analyses in the “clusterProfiler” package (11).
Analysis of immune cell infiltration

CIBERSORT algorithm based on support vector regression

analysis was used to analyze the infiltration proportion of 22

kinds of immune cells in CML samples (12).
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Weighted correlation network analysis

WGCNA is a tool for assessing gene expression correlations and

visualizing co-expression networks. The “WGCNA” software

package was used to identify CML-related genes in the GSE13159

cohort. Pearson correlation analysis was used to form an adjacency

matrix for all matched genes, and the scale-free topology of the

adjacency matrix was realized based on the optimal soft threshold

power. Then, we further transform the adjacency matrix into a

topological overlap matrix (TOM). Based on the TOM difference

measure, the minimum module size was set to 30, the cutting height

was set to 0.2, and the genes with similar expression patterns were

divided into the same modules through average linkage hierarchical

clustering. Then, the correlation between module characteristic genes

(MEs) and CML was assessed, and the modules that met the purpose

of the study were determined according to the degree of correlation.
Identification of DEGs between normal and
CML samples

The empirical Bayesian approach via the “limma” package was

used to determine DEGs between normal and CML samples (13).

Genes with adjusted P-values < 0.05 and |logFC| > 1 were

considered significantly different.
Construction of risk score model

Overlapping genes of CML-related genes and DEGs identified by

WGCNA were used for the identification of CML hub genes. Then,

the LASSO regression algorithm was used for dimensionality

reduction analysis to screen out the most related genes with CML

(14). In addition, based on the correlation of hub genes, LASSO

regression analysis assigned a coefficient to each gene, and the

expression of each gene was multiplied by its coefficient and added

to obtain a risk score, which was used to analyze the diagnostic value

of the combination of hub genes in CML. Risk score = NME8 × 1.160

+ DMXL2 × 0.853 + CXXC5 × -0.126 + SCD × 0.610 + FBN1 × 0.405,

where gene ID refers to the expression value of each gene.
Identification of molecular subtypes based
on hub genes

Consensus cluster analysis was performed to identify CML

molecular subtypes based on hub gene expression using the

“consensusclusterplus” package. Clustering was performed for 1000

iterations to ensure reliable and stable results. t-distributedstochastic

neighbor embedding (t-SNE) was used to validate the classification.
Construction of competing endogenous
RNA network

Target miRNAs of hub genes were found in the miRTarBase,

miRDB, and TargetScan databases. Perl programming language was
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used to perform the prediction analysis of the target lncRNAs of

these miRNAs in the miRcode database.
Prediction of treatment response for
different molecular subtypes

The half-maximal inhibitory concentrations (IC50) of different

CML samples to therapeutic drugs were predicted based on drug

response data of blood cell lines from the Cancer Genome Project

(CGP) database (https://cancer.sanger.ac.uk/cosmic) via the

“pRRophetic” package. Tumor Immune Dysfunction and Exclusion

(TIDE, http://tide.dfci.harvard.edu/) was considered a good predictor

of immunotherapeutic response for molecular subtypes.
Clinical sample collection

CML samples and normal samples were collected for sequencing

analysis in accordance with the Declaration of Helsinki and

institutional guidelines, and informed consent was obtained from

each patient and healthy volunteer who had undergone the

appropriate workup. Our study was approved by the Ethics

Committee of the Second Affiliated Hospital of Nanchang

University, and sample processing was performed according to the

norms. We collected samples from 5 untreated patients with newly

diagnosed CML and 5 normal samples from healthy volunteers. The

methods and details of sample collection, next-generation sequencing,

and processing procedures were described in our previous report (15).

Moreover, peripheral blood samples from 15 CML patients and 15

normal controls were collected for quantitative real-time polymerase

chain reaction (RT-qPCR) assay to detect hub gene expression. RT-

qPCR was performed using a Japanese TAKARA kit on an ABI7500

instrument. The primers are shown in Supplementary Table S1.
Cell culture and detection of cell
proliferation and apoptosis

The CML cell line K562 was cultured in RPMI1640 medium

supplemented with 10% fetal bovine serum and 1% penicillin-

streptomycin in a humidified atmosphere incubator at 37°C with 5%

CO2. Two different siRNAs targeting LINC01268 (si-LINC01268) and

control siRNA (si-NC) were procured from Ribobio (China) and

transfected into K562 cells using Lipofectamine 3000 (Thermofisher

Scientific) (Supplementary Table S1). RT-qPCR was employed to

assess the transfection efficiency. Cell proliferation was evaluated

using the Cell Counting Kit-8 (CCK-8). For the CCK8 assay, a total

of 2×104 cells from various treatment groups were seeded in individual

wells of a 96-well plate, with each group being repeated five times.

Subsequently, at time points of 0, 24, 48, and 72 hours, respectively, 10

ml of CCK8 solution was added to each well. After incubation at 37°C

for two hours, the optical density (OD) value at a wavelength of 450 nm

was measured using a microplate reader. Apoptosis assays were

performed by staining the cells with Annexin V-PE/7-AAD

Apoptosis Assay Kit followed by analysis on a flow cytometer.
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Statistical analysis

We performed the Wilcoxon rank sum test and the Kruskal-

Wallis test to determine differences between two or more groups,

respectively. The “survminer” package divides patients into high-

and low-gene expression groups based on the cut-off point at the

minimum p-value of the log-rank test, and the Kaplan-Meier

survival curve analysis was used to analyze survival differences

between the two groups. The receiver operating characteristic

(ROC) curve was used to analyze the diagnostic efficacy of genes.

A two-sided P value < 0.05 was considered statistically significant.
Results

CML-related genes were identified by
WGCNA analysis

We first performed differential expression analysis between CML

and normal samples and obtained a total of 378 DEGs. Heatmap

analysis showed that more DEGs were down-regulated in CML

(Figure 1A). We further performed WGCNA analysis to identify

more CML-related genes. The cluster tree diagram showed the

clustering characteristics of the samples, and the CML samples had

a high degree of discrimination from the normal samples (Figure 1B).

Figures 1C, D show the scale-free fit exponent and average

connectivity analysis for various soft threshold powers. We set cut

height = 0.25 to merge the blue and green module feature genes

(Figure 1E). According to the optimal soft threshold power b = 12

(unscaled R2 = 0.9), the 5000 genes with the highest standard
Frontiers in Immunology 04
deviation were divided into eight independent co-expression

modules (Figure 1F). The correlogram of module-trait relationships

showed that the brown module, which contains 369 genes, had the

highest correlation with CML (Figures 1G, H) (Supplementary Table

S1). We also found that the blue, green, yellow, black, and pink

modules were negatively correlated with CML, and these results were

associated with the downregulated expression of most genes in CML.
Functional analysis of CML-related genes

The brown module genes were mainly related to metabolic-

related signaling pathways such as Starch and sucrose metabolism,

Pantothenate and CoA biosynthesis, Amino sugar and nucleotide

sugar metabolism, Pentose phosphate pathway, and Galactose

metabolism (Figure 2A). While yellow and turquoise module

genes were negatively associated with CML, these genes were

mainly enriched in immune-related signaling pathways such as

Th17 cell differentiation, Th17 cell differentiation, Cytokine-

cytokine receptor interaction, and Hematopoietic cell lineage, T

cell receptor signaling pathway, NOD-like receptor signaling

pathway, Natural killer cell mediated cytotoxicity (Figure 2B).

These results indicate that CML has stronger metabolic activity

and some immunodeficiency. Immune infiltration analysis showed

that CML samples had fewer naive and memory B cells, plasma

cells, CD8+ T cells, naive CD4+ T cells, activated memory CD4+ T

cells, resting NK cells, and activated dendritic cells, and contained

more regulatory T cells (Tregs) than normal samples (Figure 2C),

which confirm the immunosuppressive features evident in

CML samples.
A B D

E F G H

C

FIGURE 1

Identification of CML-related genes. (A) The heatmap shows differentially expressed genes (DEGs) between CML and normal samples. (B) Clustering
dendrogram of CML and normal samples. (C, D) Scale-free fit index (C) and average connectivity (D) analysis of various soft threshold powers. (E) the
cluster of module feature genes. The red line indicates the cutting height (0.25). (F) Dendrogram of clustering based on different measures (1-TOM).
(G) Heatmap of correlation between module genes and phenotypes. Each cell contains a p-value and a correlation coefficient. (H) Scatter plot of
module characteristic genes associated with CML samples in brown module.
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Identification of CML hub genes

We intersected DEGs and WGCNA brown module genes and

obtained 17 overlapping genes (Figure 3A), and the correlation

coefficients of these genes with the brown module in WGCNA and

with CML samples were greater than 0.4 (Supplementary Table S2),

indicating that they were significantly positively correlated with

both CML and brown module. LASSO regression analysis further

reduced the dimension and screened out 6 hub genes most related

to CML, which were LINC01268, NME8, DMXL2, CXXC5, SCD,

and FBN1 (Figures 3B, C). Boxplots showed that LINC01268,

NME8, DMXL2, SCD, and FBN1 were significantly up-regulated

and CXXC5 was significantly down-regulated in CML samples

compared with normal samples (Figure 3D).
Diagnostic value and prognostic
correlation of CML hub genes

We further analyzed the predictive value of CML hub genes for

CML. ROC curve analysis showed that all 6 hub gens had high AUC
Frontiers in Immunology 05
values for the diagnosis of CML, among which LINC01268 was

0.864 (95%CI: 0.796-0.924), NME8 was 0.869 (95%CI: 0.808-0.924),

DMXL2 was 0.866 (95%CI: 0.805-0.91), CXXC5 was 0.831 (95%CI:

0.761-0.895), SCD was 0.856 (95%CI: 0.790-0.919), and FBN1 was

0.836 (95%CI: 0.767-0.900) (Figure 4A). In addition, considering

that approximately 70% of CML cases in blast crisis progress to

AML, we analyzed the prognostic predictive value of 6 hub genes in

the TCGA-AML cohort. High expression groups of LINC01268,

SCD, FBN1, and CXXC5 had significantly shorter overall survival

than their low expression groups, respectively, while high

expression groups of NME8 and DMXL2 showed better

prognosis, but there was no statistical difference (Figure 4B).
Validation of the diagnostic value of CML
hub genes

The GSE144119 cohort contains samples from newly diagnosed

and treatment-remission CML. Encourageously, the results of the

differential analysis were consistent with the GSE13159 cohort, in

which NME8, DMXL2, SCD, and FBN1 expression was
A B

C

FIGURE 2

Functional analysis of CML-related genes and immune infiltration analysis. (A) KEGG enrichment analysis of brown module genes. (B) KEGG
enrichment analysis of genes in yellow and turquoise modules. (C) Differences in infiltration of 22 immune cells between CML and normal samples.
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significantly increased and CXXC5 expression was significantly

decreased in newly diagnosed (chronic phase) CML patients (The

expression of LINC01268 was not detected). These hub genes also

had predictive value for CML treatment remission. The expression

levels of NME8, DMXL2, SCD, and FBN1 were significantly

decreased in CML treatment-remission patients, while the

CXXC5 expression level was significantly increased, and they all

returned to normal control levels. ROC curve analysis confirmed

the diagnostic value of these hub genes in CML (Figure 5A). The

AUC values of NME8, SCD, FBN1, DMXL2, and CXXC5 were

0.906 (95% CI: 0.836-0.960), 0.958 (95% CI: 0.908-0.995), 0.933

(95% CI: 0.870-0.980), 0.795 (95% CI: 0.695-0.878), and 0.932 (95%

CI: 0.868-0.982), respectively (Figure 5B). In our clinical cohort, we

confirmed that SCD and FBN1 expression was significantly

upregulated CXXC5 was significantly downregulated in CML, and

NME8 and DMXL2 expression were not significantly different due

to the small sample size (Figure 6A).
Potential biological mechanisms of CML
hub genes

To better explore the biological functions of CML hub genes, we

analyzed their correlation with tumor marker pathway activity and
Frontiers in Immunology 06
immune cell infiltration. CXXC5 expression was related to P53

PATHWAY, DNA REPAIR, MYC TARGETS, and APOPTOSIS,

and may be involved in the regulation of CML cell proliferation.

DMXL2 was positively correlated with cell cycle-related pathways

such as MITOTIC SPINDLE, and G2M CHECKPOINT. FBN1,

LINC01268, and SCD were related to the metabolic pathway

activity of MTORC1 SIGNALING, GLYCOLYSIS, FATTY ACID

METABOLISM, ADIPOGENESIS (Figure 6B). The expression of

NME8 was negatively correlated with the activity of most tumor

marker pathways. In addition, CXXC5 expression was positively

correlated with infiltration of CD8+ T cells, resting memory CD4+

T cells, resting NK cells, activated dendritic cells, and memory B

cells, suggesting that CXXC5 may be involved in CML anti-tumor

immunity (Figure 6C). Figure 6D shows the location of five hub

genes in chromosomes. In addition, we identified a group of

transcription factors with potential regulatory effects on hub

genes (Figure 6E). According to the construction of the CeRNA

network (Figure 6F), lncRNA FAM13A-AS1 with upregulated

expression may promote the expression of FBN1 by competitively

binding hsa-miR-24-3p and hsa-miR-363-3p. lncRNA CRNDE

may promote the expression of FBN1 by binding hsa-miR-363-

3p, hsa-miR-508-3p and hsa-miR-140-5p. The downregulation of

lncRNAs DLEU2 and HCP5 may reduce the binding of miR-363-

3p, thereby inhibiting the expression of CXXC5.
A B

D

C

FIGURE 3

Identification of CML hub genes. (A) The intersection of DEGs and brown module genes in WGCNA. (B) The penalty coefficient of the minimum 10-
fold cross-validation error point was calculated to determine the hub genes. (C) determination of hub gene coefficients. (D) Differences in the
expression of hub genes between CML and normal samples. ***p < 0.001.
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A B

FIGURE 4

Analysis of the diagnostic and prognostic value of hub genes. (A) ROC curve analysis of hub genes. (B) K-M curve analysis of hub genes.
A B

FIGURE 5

Validation of the expression and diagnostic value of hub genes in the validation cohort. (A) Differences in the expression of hub genes in normal samples,
newly diagnosed CML samples, and treatment-remission samples. (B) ROC curve analysis of hub genes. **p < 0.01; ***p < 0.001; ns, no significance.
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The construction of a risk score model can
further improve the diagnostic value of
hub genes

To better improve the diagnostic value of hub genes, we used

LASSO regression analysis to construct a risk score model for 5

genes shared by the three cohorts. All three cohorts observed

significantly higher risk scores in CML samples than in normal

samples, and risk scores in patients in remission tended to be

normal (Figures 7A–C). ROC curve analysis showed that the

diagnostic AUC values in the GSE13159 cohort, GSE144119

cohort, and clinical cohort were 0.925 (95% CI: 0.877-0.964),

1.000 (95% CI: 1.000-1.000) and 0.840 (95% CI: 0.520-1.000),

respectively, confirming that the diagnostic value of risk score of

hub genes combination was further improved.
Frontiers in Immunology 08
Molecular subtypes identified based on
hub genes and prediction of
treatment response

We performed cluster analysis of CML samples based on hub

gene expression and identified two distinct molecular subtypes

(Cluster A and Cluster B) (Figure 8A). The t-SNE algorithm

verified the reliability of the clustering (Figure 8B). Compared with

Cluster B, LINC01268, DMXL2, SCD, and FBN1 were up-regulated

and CXXC5 was down-regulated in Cluster A (Figure 8C). Cluster A

also had a significantly higher risk score than Cluster B (Figure 8D).

Immune infiltration analysis showed that the infiltration levels of

CD8+ T cells and activated NK cells were significantly higher in

Cluster B than in Cluster A (Figure 8E). The expression of immune

checkpoints PD-L1, CTLA4, HAVCR2, and PD-1 was also
A

B

D E F

C

FIGURE 6

Expression Validation of hub genes in clinical cohort and biological function analysis. (A) Differences in the expression of hub genes between CML
and normal samples in a clinical cohort. (B) Correlation analysis of hub genes and tumor marker pathway activity. (C) Correlation analysis of hub
genes, and immune cell infiltration. (D) The location of hub genes on chromosomes. (E) Transcription factors with potential regulatory effects on
hub genes expression. (F) CeRNA networks with potential regulatory effects on hub genes expression. *p < 0.05; **p < 0.01; ns, no significance.
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significantly up-regulated in Cluster B (Figure 8F). In addition, the

TIDE score of Cluster B was significantly higher than that of Cluster

A (Figure 8G), indicating significant immunosuppression in Cluster

B. We also compared the activity of tumor-marker gene sets in the

two molecular subtypes (Figure 8E). We found metabolic and cell

proliferation-related pathways such as MYC targets V1, oxidative

phosphorylation, G2M checkpoint, E2F targets, mTORC1 signaling

and fatty acid metabolism were more active. In Cluster B, the

enrichment scores of cancer-promoting pathways such as

hedgehog, epithelial-mesenchymal transition, and TNFA signaling

via NFKB were higher (Figure 8H). We then predicted the response

of different molecular subtypes to TKIs commonly used for CML

treatment, and the results showed that Cluster B patients had higher

therapeutic sensitivity to imatinib, nilotinib, bosutinib, and dasatinib.

Moreover, there was a significant positive correlation between the risk

score and the IC50 of the four drugs, that is, the higher the risk score,

the less sensitive the treatment to the four drugs (Figure 8I).
Expand clinical sample size to validate the
expression of hub genes and confirm the
oncogenic role of LINC01268

The expression of hub genes was validated by RT-qPCR in

expanded clinical samples. Encouragingly, the results also

confirmed that LINC01268, NME8, DMXL2, SCD, and FBN1

were up-regulated while CXXC5 was down-regulated in CML

samples (Figure 9A). Previous studies have shown that DMXL2,

NME8, and FBN1 primarily exert oncogenic roles through

mutations and splice variants (16–18); moreover, the role of SCD
Frontiers in Immunology 09
in CML has also been reported previously (19). Therefore, we chose

to initially explore the biological function of LINC01268 in CML

cells. The expression of LINC01268 was significantly inhibited by

siRNA (Figure 9B). CCK8 assay showed that compared with the si-

NC group, the proliferation ability of CML cells in the si-

LINC01268 group was significantly reduced (Figure 9C).

Moreover, the apoptosis rate of the si-LINC01268 group was

higher than that of the si-NC group (Figures 9D–F). These results

reveal the oncogenic role of LINC01268 and its potential as a

therapeutic target for CML.
Discussion

The development and application of TKIs have significantly

improved the prognosis of CML patients, but these drugs can only

delay the progression of the disease, and cannot be used as a

curative treatment (2). Due to the existence of resistance

mechanisms, patients inevitably relapse (5). Therefore, it is

particularly important to explore more potential therapeutic

targets and markers for disease prediction and progression

assessment in CML. In this study, we focused on the diagnostic

markers of CML and their underlying biological mechanisms. Based

on the DEGs between CML and normal samples and the CML-

related genes identified by WGCNA analysis, we used LASSO

regression analysis to screen out 6 hub genes (LINC01268,

NME8, DMXL2, CXXC5, SCD, and FBN1).

We also focused on the co-expressed gene network identified by

WGCNA analysis. The results showed that the brown module was

significantly positively correlated with CML (Cor=0.39, P=7e-07). It
A B C

FIGURE 7

Construction and validation of risk score model. (A–C) Expression characteristics and diagnostic value of risk scores in the three cohorts.
***p < 0.001; ns, no significance.
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reflects the correlation of the module as a whole with the CML

phenotype. Although this correlation did not reach an exceptionally

high level, a coefficient close to 0.4 suggests its reliability to some

extent. Thus, it can be inferred that the brown module partially

reflects gene co-expression patterns in CML transcriptome while

uncovering underlying biological mechanisms. We found that the

brown module genes positively correlated with CML were enriched

in a variety of metabolic pathways, revealing the more active

metabolic characteristics of CML cells. Several studies confirmed

that targeting mitochondrial oxidative phosphorylation and glucose

uptake is a potential therapeutic target for CML (20, 21). Most of

the module genes negatively correlated with CML were involved in

immune regulation and immune cell activation. Subsequent

analysis showed that the infiltration of immune killer cells such as

CD8+ T cells was significantly reduced in CML samples, confirming

the immune deficiency characteristics. Cayssials et al. found that the

sustained treat-free remission of CML was associated with an

increased frequency of innate CD8+ T cells (22), and Harada

et al. revealed that the inhibition of differentiation of dendritic
Frontiers in Immunology 10
cells in the hematopoietic microenvironment, as well as the up-

regulation of immune checkpoint expression such as PD-L1, were

responsible for the impairment of CML immune function (23).

Based on this, we believe that targeted inhibition of metabolism and

enhancement of immune response are important strategies for

CML treatment.

It is worth noting that Figure 1G illustrates the association

between module membership (MM) and gene significance (GS), it

reflects the association of individual genes in the module with the

module (x-axis, MM) and with the CML phenotype (y-axis, GS). If

the correlation between MM and GS is high, the higher the

correlation between the module gene and the module, the higher

the correlation between the module gene and the CML phenotype,

showing an overall distribution trend. We further calculated the

correlation coefficient between these two types of coefficients;

although Cor=0.2 with P=0.00011 indicates a weak positive

relationship, it still signifies statistical significance. In this

scatterplot analysis, we focused on points with strong correlations

with both MM and GS. The correlation coefficients for both GS and
A B D

E F G
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FIGURE 8

Identification of molecular subtypes of CML and prediction of drug response in different subtypes. (A) The consensus clustering algorithm divided
CML patients into two different molecular subtypes based on the expression of hub genes. (B) t-SNE algorithm was used to verify the classification
reliability of the two molecular subtypes. (C–F) Differences in expression of DEGs (C), risk score (D), infiltration of 22 immune cells (E), expression of
immune checkpoints (F), TIDE scores (G), and activity of tumor hallmark gene sets (H) between the two molecular subtypes. (I) Differences in
therapeutic sensitivity of the two molecular subtypes to four TKIs. *p < 0.05; **p < 0.01; ***p < 0.001; ns, no significance.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1297886
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhong et al. 10.3389/fimmu.2023.1297886
MM of the 17 overlapping genes shared by differentially expressed

genes and brown module genes were found to be greater than 0.4.

Additionally, the correlation coefficients for both GS and MM of

hub genes identified through LASSO regression analysis were

greater than 0.5. This indicates that hub genes were significantly

positively correlated with both the CML phenotype and the brown

module. In this study, we utilized WGCNA analysis and LASSO

regression analysis to identify hub genes of CML, and analyze their

diagnostic value and potential biological functions. Therefore,

WGCNA played a discriminating role to some extent. For the

phenomenon that the correlation coefficients between module and

phenotype and between MM and GS did not reach a high level, we

believe that it may be due to the small size of CML samples included

in the study. Since CML accounts for only about 15% of all

leukemias, this disease is much less studied than other acute

leukemias, and thus, the relevant sequencing data will be smaller.

However, the two CML cohorts included in our study are currently

the largest sample size cohorts with normal samples that can be

found in public databases and are also representative.

The hub genes we identified are likely to be important molecules

in CML metabolism and immune regulation. Stearoyl coenzyme A

desaturase (SCD), a lipase that converts saturated fatty acids to

monounsaturated fatty acids, is a key regulator of fatty acid

metabolism pathways, its expression is also associated with poor

prognosis in several cancer types (24), and elevated SCD levels also

protect cancer cells from ferroptosis (25–27). Its upregulation in

CML may also contribute to cancer cell growth and treatment

resistance by affecting fatty acid metabolism. The high expression of

LINC01268 promotes the progression of HCC by regulating

MAP3K7 (28). Exosomal lncRNA LINC01268 is also a cancer-

promoting factor for pancreatic cancer (29). NME/NM23 family

member 8 (NME8) has been identified as a predisposition variant in

breast cancer and a prognostic marker in diffuse large B-cell
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lymphoma (30, 31). DMXL2 has also been proposed as a

potential therapeutic target for breast cancer and oral mucosal

melanoma (32, 33). CXXC5 is a member of the CXXC-type zinc

finger protein family. It can regulate various signal transduction

processes, including TGF-b, Wnt, and ATM-p53 pathways, thereby

regulating cell proliferation, differentiation, and apoptosis, and has

been implicated in cancer occurrence and progression in many

studies (34). Fibrillin-1 (FBN1) promotes gastric cancer progression

by activating TGF-b1 and PI3K/Akt pathways, and is targeted by

miR-486-5p to inhibit the growth of thyroid cancer cells (35, 36).

These studies have all revealed the promoting role of hub genes in a

variety of cancers, however, their relationship to CML has not been

elucidated, and more in-depth mechanistic exploration is expected

to reveal their role and potential value as therapeutic targets.

Moreover, we confirmed the diagnostic value of hub genes in

both the analysis and validation cohorts. The risk score model

constructed by LASSO regression analysis further improved the

diagnostic accuracy. The discovery of these markers provides new

targets for the diagnosis and treatment of CML. Finally, we

identified two distinct molecular subtypes based on hub gene

expression, with Cluster B having a lower risk score and

infiltrating a higher proportion of CD8+ T cells and activated

dendritic cells. However, the expression of immune checkpoints

such as PD-L1, CTLA4, HAVCR2, and PD-1 was significantly up-

regulated in Cluster B, as well as the higher TIDE score, indicating

that this molecular subtype has a certain degree of

immunosuppression, which inhibits the tumor-killing function of

immune cells. Therefore, immunotherapy of patients in this subtype

may have a higher response. In addition, drug prediction analysis

showed that Cluster B was more sensitive to commonly used TKIs.

The identification of molecular subtypes provides a new strategy for

precise treatment of CML. Finally, we verified the expression of hub

genes in larger clinical sample sizes, and confirmed that inhibition
A

B D E FC

FIGURE 9

Expression characteristics of hub genes and its relationship with malignant phenotypes of CML cells. (A) Differences in mRNA expression of hub
genes in peripheral blood samples from 15 CML patients and 15 normal controls. (B) mRNA expression level of LINC01268 in K562 cells in
LINC01268 knockdown group (si- LINC01268) and control group (si-NC). (C) Absorbance at 450nm wavelength after CCK8 treatment in different
LINC01268 treatment groups at different time nodes. (D–F) Apoptosis levels in different LINC01268 treatment groups. (*P < 0.05; *** P < 0.001;
**** P < 0.0001).
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of LINC01268 expression significantly reduced CML cell viability

and promoted apoptosis in vitro. These results reveal the oncogenic

role of LINC01268 and its potential as a therapeutic target for CML.

Another study showed that LINC01268, a lncRNA involved in the

epigenetic regulation of AML, exerts deacetylation by directly

activating HDAC2 and generating positive feedback with

HDAC2. In addition, HDAC2 stimulates the transcription of

LINC01268, and the expression of LINC01268 is also associated

with poor prognosis and cell proliferation in AML (37). Therefore,

combined with our findings, LINC01268 is most likely a malignant

regulator of myeloid leukemia. However, our study also has some

limitations, such as the still small size of clinical samples for the

validation of diagnostic signatures and the lack of a more in-depth

experimental analysis of hub genes function in CML cells. In

addition, the correlation and biological mechanisms of hub genes

with CML progression and drug resistance deserve further

exploration, thus providing new targets for CML drug resistance

treatment, which we will further refine in future studies.
Conclusion

In summary, through WGCNA analysis and LASSO regression

analysis, this study provides a better understanding of the role of

biomarkers LINC01268, NME8, DMXL2, CXXC5, SCD, and FBN1,

and provides a biological basis for further investigation of CML

diagnosis and treatment.
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