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revealed the association of
CD4+ central and CD4+ effector
memory T cells linking
exacerbating chronic obstructive
pulmonary disease and NSCLC
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Introduction: Tobacco smoking generates airway inflammation in chronic

obstructive pulmonary disease (COPD), and its involvement in the

development of lung cancer is still among the leading causes of early death.

Therefore, we aimed to have a better understanding of the disbalance in

immunoregulation in chronic inflammatory conditions in smoker subjects with

stable COPD (stCOPD), exacerbating COPD (exCOPD), or non-small cell lung

cancer (NSCLC).

Methods: Smoker controls without chronic illness were recruited as controls.

Through extensive mapping of single cells, surface receptor quantification was

achieved by single-cell mass cytometry (CyTOF) with 29 antibodies. The CyTOF

characterized 14 main immune subsets such as CD4+, CD8+, CD4+/CD8+,

CD4−/CD8−, and g/d T cells and other subsets such as CD4+ or CD8+ NKT cells,

NK cells, B cells, plasmablasts, monocytes, CD11cdim, mDCs, and pDCs. The CD4

+ central memory (CM) T cells (CD4+/CD45RA−/CD45RO+/CD197+) and CD4+

effector memory (EM) T cells (CD4+/CD45RA−/CD45RO+/CD197−) were FACS-

sorted for RNA-Seq analysis. Plasma samples were assayed by Luminex MAGPIX
®

for the quantitative measurement of 17 soluble immuno-oncology mediators

(BTLA, CD28, CD80, CD27, CD40, CD86, CTLA-4, GITR, GITRL, HVEM, ICOS,

LAG-3, PD-1, PD-L1, PD-L2, TIM-3, TLR-2) in the four studied groups.
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Results: Our focus was on T-cell-dependent differences in COPD and NSCLC,

where peripheral CD4+ central memory and CD4+ effector memory cells

showed a significant reduction in exCOPD and CD4+ CM showed elevation in

NSCLC. The transcriptome analysis delineated a perfect correlation of

differentially expressed genes between exacerbating COPD and NSCLC-

derived peripheral CD4+ CM or CD4+ EM cells. The measurement of 17

immuno-oncology soluble mediators revealed a disease-associated phenotype

in the peripheral blood of stCOPD, exCOPD, and NSCLC patients.

Discussion: The applied single-cell mass cytometry, the whole transcriptome

profiling of peripheral CD4+ memory cells, and the quantification of 17 plasma

mediators provided complex data that may contribute to the understanding of

the disbalance in immune homeostasis generated or sustained by tobacco

smoking in COPD and NSCLC.
KEYWORDS

tobacco smoking, stable COPD, exacerbating COPD, non-small cell lung cancer, single-
cell mass cytometry, CD4 central memory T cells, CD4 effector memory T cells
1 Introduction

Tobacco smoking frequently causes airway inflammation and

oxidative stress linking the pathogenesis of chronic obstructive

pulmonary disease (COPD) and lung cancer. In 2019, 212.3

million COPD cases were reported with 3.3 million deaths (1). A

WHO survey showed that COPD was the third leading cause of

death worldwide in 2019 (2). COPD affects more than 50% of the

smoker’s population, and patients with COPD have a two-fold risk

of developing lung cancer (3, 4). Previously, our group and others

reviewed the molecular players and chronic inflammatory

conditions in COPD establishing a lung cancer-prone

microenvironment (5, 6). Free radicals such as reactive nitrogen

or reactive oxygen species damage the DNA; additionally, the

tobacco smoke-induced pulmonary inflammatory milieu and the

genetic and epigenetic predisposition increase the mutational

burden leading to the development of lung cancer (4, 5).

Neoantigens were identified in COPD using mass spectrometry

supporting the epidemiology data that COPD has been considered

as a prestage of lung cancer (7). Non-small cell lung cancer, the

most frequent comorbidity, accounts for 40%–70% of COPD

patients (8). It was reported that nearly 87% of lung cancer-

related deaths were affected by tobacco smoking in the USA (9).

Therefore, the updated US Preventive Services Task Force

(USPSTF) guidelines suggest regular diagnostic screening of

patients at a minimum age of 50 with a minimum of 20 packs

per year of smoking history (10). Lung cancer accounts for almost

23% of all cancer-related mortality and is one of the leading causes

of cancer-related deaths with nearly 1.6 million annual deaths

worldwide (11, 12).

Our current study aims to dissect the effect of tobacco smoke on

the immunophenotype of the peripheral immune system in stable

COPD, exacerbating COPD, and NSCLC patients. The current
02
(2023) guideline of the Global Initiative for Chronic Obstructive

Lung Disease (GOLD) defines COPD as follows: “heterogeneous

lung condition characterized by chronic respiratory symptoms

(dyspnea, cough, expectoration and/or exacerbations) due to

abnormalities of the airways (bronchitis, bronchiolitis) and/or

alveoli (emphysema) that cause persistent, often progressive,

airflow obstruction” (13). COPD is a heterogeneous disease that

represents a spectrum of disease severity in the range from a stable

state to severe exacerbations. Stable COPD is characterized “when

symptoms are well managed and pulmonary decline is minimized”

(14). The exacerbation of COPD is also redefined by the recent

GOLD 2023 guideline as “an event characterized by dyspnea and/or

cough and sputum that worsen over ≤14 days, which may be

accompanied by tachypnea and/or tachycardia and is often

associated with increased local and systemic inflammation caused

by airway infection, pollution, or other insult to the airways” (13).

The dissection of airway inflammation in COPD is beyond the

scope of our current study, but it has been reviewed elsewhere (5,

15, 16).

It is widely known that airway inflammation in COPD is

associated with systemic inflammation frequently causing, e.g.,

cardiovascular disease (17), but the systematic investigation of the

peripheral immune system in COPD has not been resolved yet

completely. The markers of COPD from the biological fluids such as

profiling the peripheral immune system or measuring soluble

markers have been the subject of intensive research in the last

years (18). Xiong et al. published recently the immunophenotyping

of stable COPD and exacerbating COPD patients using an eight-

member antibody panel for flow cytometry (FACS) (19). Xiong

et al. found that Th1 cells, Th17 cells, Treg cell ratio, Th1/Th2 cell

ratio, and the levels of C-reactive protein, interleukin (IL)-6, and IL-

10 were significantly increased in patients with exCOPD. Halper-

Stromberg et al. found that subjects with COPD had significantly
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lower levels of aggregated lymphocytes, aggregated T cells, CD4+

resting memory cells, and naive B cells and increased levels of

monocytes compared with smoker controls (20). Using single-cell

mass cytometry, Vasudevan et al. studied the bronchoalveolar

lavage in COPD patients lacking information on the peripheral

immune composition (21). Kapellos et al. used single-cell mass

cytometry for the immunophenotyping of COPD patient-derived

blood, but their study focused on the role of neutrophils in early-

stage COPD with limited data on other compartments (22).

Therefore, our mass cytometry panel was designed for the

dissection of the complexity of peripheral immunity in stCOPD,

exCOPD, and NSCLC.

In our study, NSCLC patients were recruited to reveal disturbances

of the peripheral immune homeostasis in the context of stable or

exacerbating COPD, all cases being affected by tobacco smoking,

including smoker healthy volunteers. Molecular profiling and

integration of multi-omics data prospectively is a novel approach to

stratify patients with clinically heterogeneous diseases. High-resolution

measurement characterizing a large number of cellular features was our

focus in studying COPD in stable conditions vs. exacerbations. Our

question of interest was the understanding of the disbalance in

immunoregulation in chronic inflammatory conditions of smoker

COPD cases and smoking-associated NSCLC. In our recent work,

with extensive mapping of single cells, surface receptor quantification

was achieved by cytometry by time-of-flight (CyTOF) with a panel

consis t ing of 29 ant ibodies . Our aim was the deep

immunophenotyping of COPD and NSCLC patients with a special

focus on the T-cell compartment in order to shed light on the stCOPD,

exCOPD, and NSCLC-associated T-cell phenotypes and the subsets of

T-cell diversity. Our antibody panel consisted of markers also for the

identification of other subsets such as NK cells, CD4+ NKT, CD8+

NKT, B cells, plasmablasts, monocytes, CD11cdim cells, monocytoid

dendritic cells (mDCs), and plasmacytoid dendritic cells (pDCs). The

dissection of the complex immunophenotype may contribute to the

understanding of the involvement of the immune system in the chronic

inflammatory condition caused by tobacco smoking with a special

focus on smoking-associated diseases such as COPD and NSCLC.

In our current study, 14 main peripheral immune cell

populations were identified and characterized by single-cell mass

cytometry. The CyTOF results shed light on the CD4 effector

memory and CD4 central memory T cells; therefore, the whole

transcriptome profiling was carried out for these FACS-sorted

particular cell types in all smoking conditions, such as healthy

controls, stable COPD, exacerbating COPD, and NSCLC patient-

derived samples. The concentration of 17 soluble mediators was

also measured by the Luminex MAGPIX® system from the plasma

samples to dissect the pattern of relevant cytokines/chemokines and

immune checkpoint modulators circulating in the peripheral blood.
2 Materials and methods

2.1 Study subjects

The following subjects were recruited: 1) smoker healthy

controls (SmHC) without chronic illness and without regular
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medication. 2) Stable COPD patients (stCOPD) were selected

according to the guideline of GOLD with a smoking history and

without known lung cancer. 3) Acute exacerbating COPD

patients (exCOPD) were also selected based on the GOLD

guideline; the withdrawal of the blood was before the

glucocorticoid therapy. ExCOPD patients were selected with

smoking history and without known lung cancer. ExCOPD was

defined as increased dyspnea, cough, or sputum expectoration

(quality or quantity) that led the subject to seek medical attention,

as specified in international guidelines (23). 4) Smoker, non-small

cell lung cancer (NSCL) patients were involved before receiving

therapy. Bacterial or viral infection during the exacerbation

was not tested. Samples were collected from December 2018

to December 2019 before the outbreak of COVID-19. All

subjects were over 18 and self-conscious. The subjects gave

their informed consent before participating in the study. The

study was conducted in accordance with the Declaration of

Helsinki, and the protocol (“Immunophenotyping in COPD

and lung cancer”) was approved by the Ethics Committee of the

National Public Health Center under the 33815-7/2018/EÜIG

Project identification code.
2.2 Study design

Subjects were recruited for CyTOF from the following groups:

1) smoker healthy control (without known disease and without

regular medication, n = 9), 2) smoker-stable COPD (n = 8) patients,

3) smoker-exacerbating COPD patients before receiving

corticosteroid treatment (n = 8), and 4) therapy-naive NSCLC

patients without chemotherapy and/or immunotherapy (n = 8).

Subjects were recruited for Luminex from the following groups: 1)

smoker healthy control (n = 9), 2) smoker-stable COPD (n = 11)

patients, 3) smoker-exacerbating COPD patients before receiving

corticosteroid treatment (n = 13), and 4) therapy-naive NSCLC

patients without chemotherapy and/or immunotherapy (n = 13),

This is a cross-sectional study with the collection of 20 mL venous

peripheral blood at one time point (before receiving medication

where it was applicable). Demographic and clinical data of the

patients are summarized in Supplementary Table 1.
2.3 PBMC isolation

After the collection of 20 mL blood into an EDTA vacutainer

(Becton Dickinson, Franklin Lakes, USA), PBMCs were purified by

Leucosep tubes (Greiner Bio-One, Kremsmünster, Austria)

according to the manufacturer’s instructions. If the pellet was

light red, 2 mL of ACK lysing buffer (ACK: 0.15 M of NH4Cl, 10

mM of KHCO3, 0.1 mM of Na2EDTA, pH 7.3; Merck, Darmstadt,

Germany) was applied at room temperature (RT) for 2 min.

Samples were washed twice with 10 mL of PBS (Merck) and

subsequently cell counted, and viability check was performed with

Trypan Blue exclusion. Cryopreservation of PBMCs was carried out

in stocks of 4 × 106 cells of 1 mL of FBS (Capricorn Scientific,

Ebsdorfergrund, Germany) supplemented with 1:10 of DMSO
frontiersin.org
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(Merk) [v/v] in cryotubes (Greiner Bio-One) in liquid nitrogen

(Messer, Bad Soden, Germany).
2.4 Cell preparation for CyTOF

Cells were processed for CyTOF as described previously by our

group (24). Briefly, cryotubes were thawed in a 37°C water bath for

2 min, and cells were transferred into a 14-mL 37°C warm RPMI

(Capricorn Scientific) and centrifuged at 350×g for 6 min at RT.

PBMCs were washed again with 5 mL of Maxpar Staining Buffer

(MCSB, Fluidigm, South San Francisco, CA, USA) and centrifuged

at 350×g for 6 min at RT, cells were counted in 1 mL of PBS, and

viability was determined with Trypan Blue exclusion.
2.5 Antibody staining

The antibody staining of cells for CyTOF was performed as

described previously by our group with minor modifications (25,

26). Briefly, viability was determined by cisplatin (5 µM of 195Pt,

Fluidigm) staining for 3 min on ice in 300 µL of RPMI. The sample

was diluted by 2 mL of RPMI (MCSB, Fluidigm) and centrifuged at

350×g for 5 min. PBMCs were washed again with 4 mL of MCSB

and centrifuged at 350×g for 6 min at RT. Cells were resuspended in

50 µL of MCSB supplemented with 1:20 v/v TrueStain FcX™ FC

receptor blocking solution (BioLegend, San Diego, USA) and

incubated at RT for 10 min. Cells were stained with 29 antibodies

of the Human Immune Monitoring Panel (Fluidigm) and incubated

at 4°C for 45 min. The antibodies used for CyTOF are listed in

Supplementary Table 2. Cells were washed twice with 1 mL of

MCSB and prefixed with 1 mL of Pierce™ formaldehyde (Thermo

Fisher Scientific, Waltham, MA, USA) solution diluted in PBS to

1.6% and incubated at RT for 10 min. Stained and prefixed cells

were centrifuged at 800×g for 6 min at RT and resuspended in 1 mL

of Fix & Perm solution (Fluidigm) supplemented with 1:1,000 v/v

Ir191/Ir193 DNA intercalator (Fluidigm) for overnight incubation.
2.6 CyTOF data acquisition and
data preprocessing

The acquisition of the samples for CyTOF was executed as

described previously by our group with minor modifications (27,

28). Briefly, samples were washed three times with MCSB before

being filtered through a 30-mm Celltrics (Sysmex Hungaria Kft,

Hungary) gravity filter, and the cell concentration was adjusted to 7

× 105/mL in Maxpar Cell Acquisition Solution (Fluidigm). Finally,

EQ four-element calibration beads (Fluidigm) were added at a 1:10

ratio (v/v) and acquired on a properly tuned Helios mass cytometer

(CyTOF, Fluidigm), and 1 × 106 events per individual PBMC were

collected to be able to identify rare cell subsets. The generated flow

cytometry standard (FCS) files were randomized and normalized

with the default setting of the internal FCS processing unit of the

CyTOF software (Fluidigm, version 7.0.8493).
Frontiers in Immunology 04
2.7 CyTOF data processing

Randomized and normalized FCS files were uploaded to the

Cytobank analysis platform (Beckman Coulter, Brea, USA).

Exclusion of normalization beads, dead cells, debris, and doublets

was performed. There were no significant differences in cell counts

between the examined groups. The FCS files with the CD45-positive

living singlets were exported and further analyzed in R.

Compensation methodology, FlowSOM clustering, and reduction

of dimensionality were adapted from Crowell HL et al.

[BioConductor CATALYST, compensation (29): data analysis

(30):]. Utilizing the CATALYST and flowCore R package, FCS

files were integrated, compensated, and transformed. After signal

spillover compensation, CyTOF marker intensities were inverse

hyperbolic sine-transformed (arcsinh) with cofactor 5. For the main

population definition, we carried out a Self-Organizing Maps-based

method (FlowSOM) metaclustering on compensated and

transformed files. We identified different metaclusters which were

separately subclustered with another round of FlowSOM. High-

dimensional reduction and visualization were performed using the

t-distributed stochastic neighbor embedding (t-SNE) algorithm/

method. A total of 300,000 cells and 29 markers were used to

create the peripheral human immune system UMAP (Uniform

Manifold Approximation and Projection for Dimension

Reduction) (Figure 1).
2.8 RNA sequencing

Cell sorting of CD4+ EM or CD4+ CM T cells was carried out.

The PBMCs were thawed from liquid nitrogen. Cells were counted

in PBS, and viability was determined with Trypan Blue exclusion.

Cells were resuspended in 50 µL of PBS supplemented with 1:20 v/v

TrueStain FcX™ FC receptor blocking solution (BioLegend) and

incubated at RT for 10 min. The enrichment of CD4+ T cells was

performed using the Dynabeads™ FlowComp™ Human CD4

Isolation Kit from PBMC following the instruction of the

manufacturer (Thermo Fisher Scientific). After titrating the

antibodies, the CD4+ T cells were incubated with CD45RA-FITC

(Hl100 clone), CD45RO PERC/Cy5.5 (UCHL1 clone), and CD197

(CCR7)-PB (G043H7 clone) (BioLegend) 25× diluted in FACS

buffer (2% FBS in PBS) in 50 µL at RT for 45 min. After washing

with 1 mL of FACS buffer and centrifugation at 350×g for 5 min,

cells were resuspended in FACS buffer and 2 mM of EDTA for cell

sorting using FACSJazz (Beckman Coulter). Manual gating was

used to sort 1) CD4+ EM (CD45RA−/CD45RO+, CD197−) or 2)

CD4+ CM (CD45RA−/CD45RO+, CD197+) cells. Cells were

centrifuged at 350×g for 5 min and resuspended in 500 µL of

TRIzol (Thermo Fisher Scientific) and stored at −80°C. The

isolation of RNA was performed using the RNeasy Micro kit

(Qiagen, Hilden, Germany). The RNAse inhibitor was added 20

U/µL diluted 100× (Thermo Fisher Scientific). The concentration

and purity of RNA was measured using NanoDrop™One (Thermo

Fisher Scientific). Because of the relatively low number of memory

cells and yielded RNA from one subject, the RNA samples of one
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study cohort were pooled in an equivalent manner (the same

amount from three to five subjects within one group). The RNA

sequencing (Massive Analysis of cDNA Ends = MACE = 3′mRNA-

Seq) was performed by GenXPro GMBH (Frankfurt Am Main,

Germany) as a service. The normalized gene expression data of the

RNA-Seq are listed in Supplementary Table 3.
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2.9 Gene set enrichment analysis

Gene set enrichment analysis was performed using GSEA 4.1.0

(31). We ran the software in CLI mode and analyzed its outputs

through custom R scripts, attached as a supplementary R

Markdown file (Supplementary File 1).
B

A

FIGURE 1

Demonstration of the studied main immune subsets. (A) Unsupervised clustering and the heatmap of expression intensities of the analysed immune
cells. (B) The FlowSOM (Self-Organizing Maps for flow cytometry) and UMAP (Uniform Manifold Approximation and Projection for Dimension
Reduction) analysis identified 14 main subsets as follows: CD4+ T cells, CD8+ T cells, CD4+CD8+ T cells, DN (double-negative) T cells (CD4−CD8−),
g/d T cells, NK cells, CD4+ NKT cells, CD8+ NKT cells, plasmablasts, B cells, monocytes, CD11cdim cells, plasmacytoid dendritic cells (pDCs), and
monocytoid dendritic cells (mDCs). The analysis was carried out on the entire dataset in the R software including 33 FCS files.
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2.10 Measurement of plasma proteins

The measurement of plasma proteins was performed as

described previously by our group with minor modifications (32–

34). Briefly, after the withdrawal of 20 mL of blood into an EDTA

vacutainer (Becton Dickinson), human peripheral blood

mononuclear cells and plasma samples were purified by Leucosep

tubes (Greiner Bio-One, Austria). Plasma fractions were stored at

−80°C in aliquots before running the assay. Luminex xMAP

(MAGPIX®) technology was used to determine the protein

concentrations of 17 distinct immuno-oncology checkpoint

proteins (BTLA, CD28, CD80, CD27, CD40, CD86, CTLA-4,

GITR, GITRL, HVEM, ICOS, LAG-3, PD-1, PD-L1, PD-L2, TIM-

3, TLR-2) performing the Human Immuno-Oncology Checkpoint

Protein Panel 1 - Immuno-Oncology Multiplex Assay (Cat. num.:

HCKP1-11, Merck) according to the instructions of the

manufacturer. Briefly, all samples were thawed and tested in a

blind fashion. A 50-ml volume of each sample, 25 ml of standard, 25
ml of matrix solution, and 25 ml of universal assay buffer were added
to a 96-well plate (provided with the kit) containing 25 ml of capture
antibody-coated, fluorescent-coded beads. A biotinylated detection

antibody mixture and streptavidin-PE were added to the plate after

the appropriate incubation period. After the last washing step, 150

ml of drive fluid was added to the wells, and the plate was incubated

for an additional 5 min and read on the Luminex MAGPIX®
instrument. Luminex xPonent 4.2 software was used for data

acquisition. Five-PL regression curves were generated to plot the

standard curves for all analytes by the Analyst 5.1 (Merck) software

calculating with bead median fluorescence intensity values. The

panel of the investigated 17 plasma proteins and the range of

detection (in pg/mL from the lower limit to the upper limit) are

available in Supplementary Table 4. Data were pooled from two

independent measurements and plotted in GraphPad Prism v8

(Dotmatics, Boston, USA).
2.11 Clustering of samples based on
cytokine levels

The concentration levels of analytes, measured in samples from

four patient categories (smoker healthy control, stable COPD,

exacerbated COPD, treatment-naive smoker NSCLC) were

visualized on a heatmap using the pheatmap R package (35).

Hierarchical clustering was carried out based on Euclidian

distance and using the hclust method in R.
2.12 Statistical analysis

In CyTOF, median signal intensities, cell frequencies, and

subpopulation frequencies were analyzed with GraphPad Prism

8.0.1. The normality of distributions was tested with D’Agostino &

Pearson test and passed if all the group’s alpha values were under

0.05. Normally distributed datasets were compared with the

ordinary one-way ANOVA or Brown-Forsythe ANOVA when
Frontiers in Immunology 06
the standard deviations were not equal. For non-parametric

analysis, the Kruskal–Wallis test was applied. All types of

significance tests were corrected for multiple comparisons by

controlling the false discovery rate (FDR) with the two-stage

Benjamini, Krieger, and Yekutieli approach with an FDR cutoff of

10%. Differences are considered significant at *p < 0.05, **p < 0.01,

and ***p < 0.001 (error bars specify means ± SD). In Luminex,

statistical significance was calculated using Student’s t-test.

Statistical computations were done by dplyr v1.0.6 and rstatix

v0.7.0, while graph generation was done by ggpubr v0.4.0 and

ggprism v1.0.3 R packages.
3 Results

3.1 Single-cell immunophenotyping of
peripheral mononuclear cells shed light on
the disbalance of immune homeostasis in
stable COPD, exacerbating COPD,
and NSCLC

Using single-cell mass cytometry with the 29-membered

antibody panel of the commercially available Human Immune

Monitoring kit, we could identify the main immune subsets in

the peripheral blood of the studied groups, such as smoker healthy

controls (SmHCs), smoker-stable COPD (stCOPD) patients,

smoker-exacerbating COPD (exCOPD) patients, and smoker

NSCLC patients. During the data analysis, calibration beads were

excluded, and singlets, live cells, and CD45+ cells were manually

gated. Further unsupervised analysis was performed on CD45+

living singlets where the following populations were excluded by

manual gating: CD3+CD14+, CD3+CD19+, CD19+CD14+, and

CD19+CD56+ (Supplementary Figure 1) The FlowSOM (Self-

Organizing Maps for flow cytometry) and UMAP analysis

identified 14 main subsets, namely, CD4+ T cells, CD8+ T cells,

CD4+CD8+ T cells, DN (double-negative) T cells (CD4−CD8−), g/
d T cells, NK cells, CD4+ NKT cells, CD8+ NKT cells, plasmablasts,

B cells, monocytes, CD11cdim cells, pDCs, and mDCs (Figure 1;

Supplementary Figure 2). The frequency of the main subsets was

quantified and expressed as the % of living CD45 singlets

(Supplementary Figure 2). The CD4+ T cells were reduced in

stCOPD and exCOPD to one-third and half of the SmHCs,

respectively (Supplementary Figure 2A). The percentage of CD8+

T cells outperformed the SmHCs, but in the exCOPD, these cells

were also half of the SmHCs (Supplementary Figure 2A). The DN T

cells were also the lowest in exCOPD. Conversely, the percentage of

monocytes was two times higher in exCOPD than in SmHCs; the

CD11cdim cells were 10 times higher both in stCOPD and exCOPD

compared with the SmHCs and five times higher than in the

NSCLC group. Both the pDCs and mDCs were with the lowest

frequency in the exCODP group (Supplementary Figure 2D).

The activation of adaptive immunity in smoker COPD patients

and the dysfunction/exhaustion of T cells in lung cancer have long

been known (36–38). Therefore, our focus was on the analysis of T-

cell subsets. Fourteen metaclusters (MCs) were identified in the
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1297577
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
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CD4+ T cells (Supplementary Figure 3). Significant differences were

found in MC10 (CD4+/CD185+) with the decrease in exCOPD and

NSCLC (Figure 2A); the merged MC13 and MC14 were the

CD38bright CD4+ T cells (CD38++ MCs) with the highest frequency

in exCOPD (Figure 2B); conversely, the CD183+ MCs (MC5+MC6+

MC8+MC10) were the lowest in exCOPD (Figure 2C). Regarding

marker expressions on all CD4+ T cells, CD27 decreased in NSCLC

vs. SmHC (Figure 2D), and CD127 decreased in stCOPD vs.

exCOPD (Figure 2E). Our interest turned toward CD4 memory

cells, such as CD4+ CM (central memory) cells and CD4 EM (effector

memory). The CD4+ CM cells were defined as CD4+/CD45RA−/

CD45RO+/CD197+ merging 03, 10, 11, and 13 MCs. The CD4+ EM

cells were defined as CD4+/CD45RA−/CD45RO+/CD197− merging

02, 04, 09, and 14 MCs. The percentage of CD4+ CM and CD4+ EM

cells was the lowest in exCOPD (Figures 2F, G).
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Next, the CD8+ T cells were clustered, and 15MCs were defined

(Supplementary Figure 4). Significant differences were found in

the following MCs as shown in Figure 3: MC01: CD45RAdim,

MC06: CD28+/CD194+, MC09: CD27+/CD45RO+, MC13:

CD27+/CD183+/CD194dim, and MC14: CD45RA+/CD197+

(Figure 3). The CD27+ MCs represent cells of the MC04, MC05,

MC07, MC08, MC09, MC11, MC13, MC14, and MC15, which were

the lowest in stCOPD (Figure 3F). The CD183+ MCs represent cells

of the MC04, MC07, MC09, MC11, MC12, MC13, and MC14,

which were also the lowest in stCOPD (Figure 3G). The expression

of CD27 and CD28 showed a similar pattern with the lowest

frequency in the stCOPD (Figures 3H, I). The CD127 was

significantly reduced in stCOPD vs. SmHC (Figure 3J), and the

CD183 and CD197 were reduced in stCOPD and NSCLC vs. SmHC

(Figures 3K, L).
B C

D E

F G

A

FIGURE 2

The population frequency (A–C) and marker expression profile of CD4+ T cells (D, E). The differences in the percentage of CD4+ CM (F) and CD4+
EM cells (G). *p < 0.05, **p < 0.01, ***p < 0.001.
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Analyzing the CD4+CD8+ double-positive T cells, CD25 was

elevated in exCOPD, CD27 was decreased in exCOPD and NSCLC,

and CD8 was the lowest in NSCLC (Figures 4A–C).

The double-negative CD4−CD8− (DN) T cells delineated five

MCs (Supplementary Figure 5). Significant differences in the

frequency of the cells were recorded in the following MCs: MC02:

CD27+/CD127+/CD161+ that was decreased in exCOPD and

NSCLC, MC04: CD38++ that was in excess in exCOPD, and

MC05: CD38++/CD183+/CD196+ that was gradually increased

from stCOPD to exCOPD and further increased in NSCLC

(Figures 5A–C). The surface expression of CD28 decreased in

NSCLC vs. exCOPD, and CD183 expression was lower in

exCOPD and in the NSCLC groups vs. SmHC (Figures 5D, E).
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The g/d T cells were divided into 11 MCs (Supplementary

Figure 6). The CD27+ g/d T cells were determined merging MC03,

MC04, MC05, MC06, MC07, and MC09 MCs. The CD27

expression on the surface g/d T cells was decreased in exCOPD

compared with SmHC and NSCLC (Figure 6A). The CD27+ g/d T

cells were determined merging MC03, MC04, MC06, MC07,

and MC11 MCs. The CD183 expression in the g/d T-cell

subset decreased in stCOPD and exCOPD compared with

SmHC (Figure 6B).

The deep immunophenotyping using CyTOF revealed

significant differences in 46 specific markers/populations of

other, non-T-cell compartments, but because of the focus of our

current study on T cells, the other subtypes are listed in the
B C

D E F

G H I

J K L

A

FIGURE 3

The population frequency (A–G) and marker expression profile of CD8+ T cells (H–L). *p < 0.05, **p < 0.01, ***p < 0.001.
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Supplementary Material, such as CD4+ NKT cells and CD8+ NKT

cells (Supplementary Figure 7), classic NK cells (Supplementary

Figures 8, 9), B cells (Supplementary Figures 10, 11), plasmablasts

(Supplementary Figure 12), monocytes (Supplementary Figures 13,

14), CD11cdim cells, and mDCs (Supplementary Figures 15, 16).

However, it is worth emphasizing some of the significant differences

which may be relevant in the context of exacerbation of

inflammation in the impairment of the antitumor immune

response, such as the CD16 (FcgRIII) decrease both in CD4+

NKT and CD8+ NKT cells in NSCLC compared with SmHC

(Supplementary Figure 7). We could detect the increase of the G-

protein-coupled receptors, such as the CD183 (CXCR3) or CD194

(CCR4) on the cell surface of NK cells in NSCLC compared with the
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other three groups (Supplementary Figure 9). The MC08

metacluster of B cells positive for CD19+/CD20+/CD45RA

+/CD185+/CD27+ was dramatically decreased in stCOPD,

exCOPD, and NSCLC compared with SmHC (Supplementary

Figures 10, 11). The expression of CD27, CD19, CD185 (CXCR5),

and CD196 (CCR6) was reduced on the surface of B cells in the

NSCLC group (Supplementary Figure 11). CD19, CD27, and

CD45RA were also decreased on the surface of plasmablasts

(Supplementary Figure 12). The main significant changes in the

myeloid compartment of the PBMCs are also highlighted. The cells of

the MC03 (CD14+/CD11chigh+/CD38+/CD45RO+/HLA-DRlow+),

the classical monocytes (CD14+/CD16−), and HLA-DRlow cells

were significantly higher in exCOPD among monocytes
B CA

FIGURE 4

Marker expression (A) CD25, (B) CD27, (C) CD8 profile of CD4+CD8+ T-cells. p *<0.05, **<0.01.
B C

D E

A

FIGURE 5

The population frequency of the metaclusters in CD4−CD8− (DN) T cells (A–C) and the marker expression profile of (D) CD28 and (E) CD183 on the
surface of DN T cells. *p < 0.05, **p < 0.01, ***p < 0.001.
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(Supplementary Figures 13, 14). On the contrary, MC06 (CD14+/

CD11chigh/CD38+low/CD123dim/CD45RO+/HLA-DRhigh+), MC07

(CD14+/CD11chigh/CD38+/CD45RO+/HLA-DR+), MC08 (CD14+/

CD11chigh/CD38+/CD45ROhigh, HLA-DRlow+), and CD16+ cells

were the lowest in exCOPD in the monocyte compartment

(Supplementary Figures 13, 14). The MC01 (CD196high) of

CD11cdim cells was the lowest in exCOPD, but the MC03

(CD196−) cells were of the highest frequency in exCOPD among

CD11cdim cells (Supplementary Figures 15, 16).
3.2 The transcriptome of CD4+ EM or CD4
+ CM cells showed a correlation in NSCLC
with exacerbating COPD samples

The CD183 (CXCR3) showed reduced expression in the

aforementioned T-cell subsets, and its influence on the

development of memory T cells is known (39). Additionally,

alterations in memory T-cells subsets were reported in COPD

previously (40–42). Therefore, the CD4+ EM and CD4+ CM cells

were FACS-sorted for transcriptomic analysis (RNA sequencing) in

our study. The purified RNA was pooled from three to five subjects

within one study cohort in an RNA equivalent manner in order to

avoid bias from differences in the amount of isolated RNA

(Supplementary Table 3). The pooled RNA-Seq identified 203

differentially upregulated and 167 differentially downregulated

genes in the CD4+ CM cells of exacerbating COPD and NSCLC

samples showing 0.807 Pearson correlation (Supplementary

Figure 17). The pooled RNA-Seq identified 234 differentially

upregulated and 90 differentially downregulated genes in the CD4

+ EM cells of exacerbating COPD and NSCLC samples showing

0.747 Pearson correlation (Supplementary Figure 18). The

normalized expression data of the full list of the results of RNA-

Seq are found in Supplementary Table 3. The gene set enrichment

analyses (GSEA) showed a similar pattern between lung NSCLC

and exacerbating COPD-derived peripheral CD4+ CM and CD4+
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EM cells (Figure 7). The Hallmark and Kyoto Encyclopedia of

Genes and Genomes (KEGG) gene sets were analyzed for the

normalized expression values in relation to the healthy control

samples. Pathways in angiogenesis were upregulated in CD4+ CM

cells both in exCOPD and NSCLC, and pathways in cell division,

protein secretion, transcription, response to androgens, or response

to ultraviolet radiation were upregulated in CD4+ EM cells both in

exCOPD and NSCLC. The 10 most repressed genes were in CD4+

CM cells both in exCOPD and NSCLC samples: MAP3K2, SUZ12,

SYNE2, HNRNPF, RNF24, APLP2, HIPK3, FBXL5, SEPT2, and

GLCCI1. The 10 most upregulated genes were in CD4+ CM cells

both in exCOPD and NSCLC samples: AC008481.1, COMMD1,

MRPL41, C12orf57, RPS3AP5, AL009174.1, AC026979.2,

AC108161.1, CUTA, and AL450998.1. The 10 most repressed

genes were in CD4+ EM cells both in exCOPD and NSCLC

samples: FGFBP2, CERKL, RBL2, GNLY, SYNE1, HNRNPLL,

PTPN4, GLS, ITGAM, and TGFBR3. The 10 most upregulated

genes were in CD4+ EM cells both in exCOPD and NSCLC

samples: AC008677.2, AC245033.4, AL450998.1, RPS18P9,

RPS3AP5, EEF1A1P5, RPL27AP, RPL41P5, AC008481.1, and

S100A9. The gene ID, long name of the genes, and normalized

expression values are listed in Supplementary Table 3.
3.3 The clustering based on the
concentration of the immuno-oncology
checkpoint soluble mediators in the
plasma of the peripheral blood

After the withdrawal of peripheral blood, the PBMCs were

purified for CyTOF and RNA-Seq analysis, but the plasma of the

peripheral blood was used for the quantitative analysis of immuno-

oncology mediators using the multiplex Luminex MAGPIX®
technology. The list of the analyzed soluble proteins, the UniProt

ID, and assay sensitivity are listed in Supplementary Table 4. The

individual concentration values of the 17 measured proteins and
BA

FIGURE 6

The population frequency of (A) CD27+ or (B) CD183+ MCs in g/d T-cells. p *<0.05, **<0.01.
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multiple comparisons among the four studied groups are visualized

on the scatter plots in Supplementary Figure 19. We highlighted

only the significant differences in the text. The inhibitory CD366

(TIM-3) was elevated in stCOPD vs. SmHC, and it was lower in

exCOPD vs. stCOPD. The inhibitory CD273 (PD-L2) was

significantly the lowest in exCOPD compared with the other

three groups. The T-cell stimulatory CD86 (B7-2) and GITRL

were higher in exCOPD vs. SmHC (Supplementary Figure 19).

For better clarity of the results, clustering was applied and is shown

in Figure 8. The concentration values after the Z-score

transformation resulted in three main clusters (Figure 8A).

Cluster 1 with the highest concentration of inflammatory

mediators lacks SmHCs and includes three exCOPD patients, two

stCOPD patients, and one NSCLC patient. Cluster 2 with the lowest

concentration of the measured soluble mediators includes five

SmHCs, six exCOPD, four stCOPD, and four NSCLC patients.

The intermediate cluster 3 in terms of the medium expression of

immuno-oncology mediators represents four SmHCs, five stCOPD,

four exCOPD, and eight NSCLC patients.
4 Discussion

The aim of our study was to have a deeper understanding of the

disbalance in the immune homeostasis of smoker-stable COPD and

smoker-exacerbating COPD. Since tobacco smoking and an

established COPD frequently lead to lung cancer, human smoker

NSCLC samples were also investigated. The self-perpetuating
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systemic inflammation caused by tobacco smoking has been

intensively studied earlier by our group and others (5, 43, 44).

Cigarette smoking caused alterations in the peripheral immune

landscape in COPD that has been reviewed by Taucher et al. (45).

Using single-cell mass cytometry, we have recently shown the

peripheral immunophenotype of smoker advanced NSCLC

patients who underwent chemotherapy or immune checkpoint

inhibitor (ICI) therapy (34). However, a limited number of

studies are available using CyTOF for the immunophenotyping of

the PBMCs of smoker COPD and NSCLC samples. Previously,

Vasudevan et al. showed a lower PD-L1 and PD-L2 expression of

myeloid cells that supports chronic inflammation in the

bronchoalveolar lavage (BAL) of smoker COPD patients using

CyTOF (21). Freeman et al. used a 12-color FACS panel for the

immunophenotyping of PBMC BAL and sputum samples of COPD

cases (46). They published gating strategies to define seven

populations (CD4+ and CD8+ T cells, B cells, monocytes,

macrophages, neutrophils, and eosinophils) and proposed future

analysis to reveal the correlation of immune subset phenotypes with

smoking history, spirometry, and other physiologic parameters of

the COPD patients. Using an 8-color FACS panel, Xiong et al.

showed an increase of Th1, Th17, and Treg phenotypes in the

peripheral blood of acute exacerbating COPD patients compared

with stCOPD (19). In a murine model of cigarette smoke exposure,

Kapellos et al. showed an expansion of CD11b+Ly6G+CD117

−CD62L−CD172a− neutrophils in the bone marrow using

CyTOF (22). According to our current knowledge, our study is

the first to compare the peripheral immunophenotype of smoker
FIGURE 7

Results of gene set enrichment analyses of CD4+ central memory and effector memory T cells. The figure shows those Hallmark and KEGG gene
sets that had similar trends in NSCLC vs. smoker healthy controls (SmHCs) and exacerbated COPD vs. SmHC comparisons. Positive normalized
effect score (NES) values indicate enrichment in control. Point sizes indicate false discovery rate (FDR) value ranges.
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healthy controls with stCOPD, exCOPD, and smoker NSCLC. The

peripheral blood of the patients was extensively studied by a 29-

member antibody panel for single-cell mass cytometry. We could

determine and analyze 14 immune subsets, namely, CD4+ T cells,

CD8+ T cells, CD4+CD8+ T cells, DN (double-negative) T cells

(CD4−CD8−), g/d T cells, NK cells, CD4+ NKT cells, CD8+ NKT

cells, plasmablasts, B cells, monocytes, CD11cdim cells, pDCs, and

mDCs. The extensive immunophenotyping of T cells is shown in

the main text, and additionally, 46 further significant differences are

shown about NK, NKT, B, or myeloid cells in the Supplementary

Material. The ratio of CD4+ T cells and CD8+ T cells was

significantly elevated in NSCLC at the expense of the reduction of

monocytes and CD11cdim cells. An increased expression of CD38,

an activation marker functioning as a cyclic ADP ribose hydrolase,

was shown on CD4+ T cells. The increased CD38-mediated

signaling in COPD and the generation of adenosine diphosphate

ribose and cyclic adenosine diphosphate ribose were described

previously by Guedes et al. (47). The CD183 and the chemokine

receptor CXCR3 may interact with CXCL9, CXCL10, and CXCL11

affecting T-cell polarization (48), and we found that CD183+ MCs

were in the lowest frequency both in CD4+ T cells in exCOPD and

in CD8+ T cells in stCOPD. The CD183 expression was also

reduced in DN T cells in exCODP and in g/d T cells in stCOPD.

The CD183 may affect memory T-cell development (39, 49). Indeed

CD4+ CM and CD4+ EM cells were in the lowest frequency in

exCOPD cases. Roberts et al. published earlier the lower percentage

of CD4+ CM and CD4+ EM cells in COPD compared with smoker

controls (40). Because of the central role of CD4+ T cells in the
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polarization of T-cell-mediated responses, the CD4+ CM and CD4+

EM cells were selected for FACS sorting and whole transcriptome

analysis by RNA-Seq. This is the first study to show the peripheral

immunophenotyping and transcriptome of human patient-derived

CD4+ CM and CD4+ EM cells from smoker controls, stCOPD,

exCOPD, and NSCLC subjects. The chronic inflammation

persistent in exacerbating COPD and NSCLC showed 0.8 or 0.74

Pearson correlation of the co-expression of differentially expressed

genes in CD4+ CM or CD4+ EM cells, respectively. Some of the

markers such as S100A9 are induced by tobacco smoking and

contribute to the development of COPD or decreased survival in

NSCLC (50, 51). Neoantigens are generated during tobacco

smoking both in COPD and lung cancer (7), and naive CD4+ T

cells are exposed to HLA-demonstrated epitopes that may lead to

the development of antigen-specific long-lived memory T cells. The

CD4+ CM T cells favor trafficking in the primary or secondary

lymphoid organs from the periphery, while CD4+ EM T cells

migrate to the non-lymphoid sites of inflammation (52). The

analysis of the tissue-resident immune composition of COPD and

lung cancer has been published previously by other groups (41, 53,

54). Our focus was on the characterization of peripheral immunity,

the dissection of single-cell heterogeneity of the subsets of PBMCs,

and the quantitative measurement of peripheral immuno-oncology

mediators. Sahin et al. published about the serum biomarkers in

stCOPD and exCOPD measuring 11 parameters and found that

leukocyte and neutrophil cell count, red cell distribution width, C-

reactive protein, neutrophil-to-lymphocyte ratio, and platelet-to-

lymphocyte ratio were higher in exCOPD than healthy controls (55).
B C

A

FIGURE 8

The analysis of the concentration of immuno-oncology mediators of the plasma of the patients. (A) Analyte concentrations in different samples are
shown color-coded. Concentration levels have been normalized using the Z-score transformation. Three main sample clusters were identified using
hierarchical clustering. (B) The distribution of patient categories in the three clusters. (C) The distribution of clusters among different patient
categories. Clusters 1 and 2 can be characterized by the highest and lowest analyte levels, respectively. Cluster 3 shows intermediate analyte levels
and contains the largest fraction of NSCLC samples.
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Barta et al. recently found in the sputum that IL-6 and growth-

regulated oncogene-a were higher in stCOPD than in non-smoker

controls, and the IL-1Ra, RANTES, MIG, BMP-4, BMP-6, GDNF,

and Acrp30 were higher in exCOPD than stCOPD (56). Our panel

for the Luminex MAGPIX® was a commercially available immuno-

oncology panel that showed the mixed phenotype of COPD and lung

cancer patients. The plasma of exCOPD patients showed an

inflammatory phenotype with the lowest concentration of

inhibitory PD-L2, a lower amount of TIM-3 vs. stCOPD, and an

increased level of stimulatory CD86 and GITRL vs. smoker controls.

The distribution of the defined clusters represents the heterogeneity

of the human subjects belonging to either SmHC, stCOPD, exCOPD,

or NSCLC categories. These disease-associated heterogenic

phenotypes may harbor therapeutic resistance and contribute to

the challenging scenarios for the treatment options.

Among others, the authors reviewed how chronic inflammation

provides the soil for the development of cancer (57). The authors

reviewed previously also how COPD may precondition for the

development of lung cancer (5). One of the main messages of the

current study is the smoking-related systemic inflammation linking

exCOPD and NSCLC demonstrated here as a complex single-cell

mass cytometric profile. The authors reported here a complex view

of the peripheral immunophenotype with a special focus on the T-

cell compartment (Figure 9). Freeman et al. published earlier the

decrease of CD4+ and CD8+ T cells in the peripheral blood of acute

exacerbation COPD patients in agreement with our results (58).
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Focusing on T-cell biology, activation markers such as CD38 on

CD4 T cells, CD25 on CD4+CD8+ T cells, and CD28 on DN T cells

were shown upregulated in exCOPD in conjunction with the drop

of the Th1 marker CD183 and chemokine receptor CXCR3 on CD4,

CD8, DN, and g/d T cells in exCOPD. Similarly, the decrease of

CD183 was also shown on cytotoxic CD8+ T cells and DN T cells in

NSCLC. The decrease of the co-stimulatory CD27 was also shown

on CD4 T cells, CD8 T cells, and CD4+CD8+ T cells in NSCLC.

Although the frequency of CD4+ CM and CD4+ EM cells was not

the same in exCOPD and NSCLC, their transcriptomic profile

showed 0.8 and 0.74 Pearson correlation, respectively. Since CD4

+ helper T cells orchestrate the polarization of the adaptive

immunity, the high coverage of mRNAs in these memory cells

may play a role in the antigen-dependent inflammatory pathways in

exCOPD and NSCLC. The authors hypothesize that tobacco

smoking-generated inflammation polarizes CD4+ CM and CD4+

EM cells that may contribute to the exacerbation of COPD and

impairment of tumor-protective immunity in NSCLC. Taken

together, it is hard to estimate which difference in the

immunophenotype has the most meaningful clinical importance.

Our data may serve as a resource for future studies that will lead to a

deeper understanding of the disbalance in immune homeostasis in

smoker COPD or NSCLC patients.

Our study has limitations which are as follows: 1) that PBMCs

lack a granulocyte compartment which has a significant effect on

the chronic inflammation in the studied lung pathologies. 2) Our
FIGURE 9

The schematic cartoon of our result focusing on three levels: genes, proteins, and cells. The transcriptome of CD4+ CM and CD4+ EM cells showed
a correlation in exCOPD and NSCLC. The three most differentially expressed genes are highlighted. Next, soluble mediators were measured, where
CD86 and GITRL were higher in the plasma of exCOPD patients, while TIM-3 and PD-L2 were lower in exCOPD patients. Lastly, single-cell
immunophenotyping revealed alterations in the composition of peripheral compartments, where the frequency of the immune subsets was
quantified and demonstrated characteristics for exCOPD and NSCLC.
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CyTOF panel consisted of cell surface markers instead of the

implementation of subset-specific cytokine/chemokine

measurement. 3) We could not investigate tissue-resident

immune cells of the affected lung in COPD or NSCLC cases. 4)

We could enroll SmHCs with 10 years younger age than the

patients. The access to the healthy but aging population is limited

with a special focus on the inclusion criteria of the smoking habit.

Therefore, we could enroll smoker healthy subjects for the

withdrawal of blood from this group. 5) Bacterial or viral

infect ions were not excluded and may influence the

immunophenotype of exCOPD or NSCLC. However, according to

our knowledge , th i s i s the fi rs t s tudy on the deep

immunophenotyping of the single-cell heterogeneity in smoker

controls, stCOPD, exCOPD, and NSCLC patients with an

extension of the transcriptome of CD4+ CM and CD4+ EM cells

in the four studied groups. Future studies are warranted to measure

the soluble mediators of the identified disease-associated subsets to

link serum concentrations with the producing immune subsets.
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