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Endophilin is an evolutionarily conserved family of protein that involves in a range

of intracellular membrane dynamics. This family consists of five isoforms, which

are distributed in various tissues. Recent studies have shown that Endophilin

regulates diseases pathogenesis, including neurodegenerative diseases, tumors,

cardiovascular diseases, and autoimmune diseases. In vivo, it regulates different

biological functions such as vesicle endocytosis, mitochondrial morphological

changes, apoptosis and autophagosome formation. Functional studies

confirmed the role of Endophilin in development and progression of these

diseases. In this study, we have comprehensively discussed the complex

function of Endophilin and how the family contributes to diseases

development. It is hoped that this study will provide new ideas for targeting

Endophilin in diseases.
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Introduction

The Endophilin family is a group of protein containing SH3 (Src homology 3) structural

domain and BAR (Bin-amphiphysin-Rvs) structural domain. This family was first discovered in

1996 (1). It consists of two subfamilies, including Endophilin A and Endophilin B. Endophilin

A consists of three isoforms: Endophilin A1, Endophilin A2 and Endophilin A3. Endophilin B

consists of two isoforms: Endophilin B1 and Endophilin B2. Endophilin A regulates endocytosis

through its C-terminal SH3 domain and N-terminal BAR domain. Endophilin B1 (Bax

interacting factor-1, Bif-1) interacts with Bax to promote release of cytochrome C in

mitochondria (2). Endophilin B1 also activates the apoptosis-related signaling pathway to

promote cell apoptosis (2). Endophilin B1 induces autophagy by forming a complex with

Beclin-1, and then activates phosphatidylinositol 3-kinase (PI3KC3) signaling (3). Expression of

Endophilin in different diseases was different, for instance, Endophilin A1 expression was

increased in brain of patients with Alzheimer’s disease and Parkinson’s patients (4, 5).

Endophilin A1 expression is down-regulated in colon cancer, uroepithelial carcinoma.

Endophilin A2 may be protective against cardiovascular diseases. Endophilin A3 was

associated with a poor prognosis of patients with colorectal cancer, where there was higher

expression of Endophilin A3 in patients with more advanced disease (6). Endophilin B1 may

inhibit disease development through induction of autophagy and apoptosis. In recent years,
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Endophilin has attracted widespread attention as an important

endocytosis protein. In this study, we reviewed the biological

functions of Endophilin family and discussed their roles in diseases.
Discovery

After screening cDNA library of mouse embryonic cells, a total

of 18 different SH3 structural domain-containing proteins were

identified. Among the proteins, 10 of which had not been previously

reported, such as SH3P4, SH3P8, SH3P13 (1). On the other hand,

the gene encoding for human Endophilin was originally cloned

from an acute myeloid leukemia case at chromosome 9p13. The

case was named EEN (Extra Eleven Nineteen) due to the fact that it

had a translocation of chromosomes 11 and 19, which allowed the

gene to form a fusion gene with mixed lymphocytic lymphoma

(MLL) (7). There were two homologous sequences named EEN-B1

and EEN-B2, respectively. EEN-B1 was homologous to the mouse

SH3P4 gene, and EEN-B2 was homologous to the mouse SH3P13

gene. Finally, the protein was named Endophilin either in animal or

human based on the affinity for several endocytosed proteins (8, 9).

Moreover, a novel cDNA was identified by two-hybrid screening

using yeast clones, and the gene was named SH3GLB1 (10).

SH3GLB1 interacted with SH3GLB2, which had 65% amino acid

homology with SH3GLB1 (11). SH3GLB was renamed Endophilin

B1 and Endophilin B2 due to its high similarity to the Endophilin

family, especially the SH3 structural domain.
Subtypes and structure

Subtypes and distribution

Endophilin A1 (SH3P4 or SH3GL2) is dominantly expressed in

brain tissue (12). Endophilin A2 (SH3P8 or SH3GL1 or EEN) is

distributed in different tissues and organs, such as pancreas,

placenta, prostate, testicles and uterus. Endophilin A3 (SH3P13 or

SH3GL3) is expressed in brain and testicular tissues (13, 14).

Subfamilies of Endophilin A are mainly localized in cytoplasm of

cells. Endophilin B1 is highly expressed in heart, skeletal muscle,

kidney, and placenta (15). Endophilin B1 is mainly localized in

intracellular membrane, and Endophilin B1 is also localized at

mitochondrial membranes, golgi membranes and autophagosomal

membranes (16). Endophilin B2 is expressed in skeletal muscle,

adipose tissue, lung, brain and mammary gland (17).
Structure

SH3 structural domain is connected to the BAR via a variable

length splice region (18). The SH3 structural domain recognizes and

binds proline-rich structural domain, including synaptic proteins

and dynamin proteins (15, 19, 20). N-BAR structural domain is

required for binding lipid bilayer and inducing membrane bending

(21, 22), and can induce and stabilize membrane curvature upon

dimerization (23–25). N-BAR has three major functional regions,
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inserted into helix 1 (H1), and crescent-shaped body formed by the

dimerized BAR structural domain. H0 mediates membrane binding,

H1 inserts into the membrane and cooperates with the dimerized

BAR body to drive membrane curvature (26–29).
Biological function

Endophilin A

Endocytosis regulates function of eukaryotic cells, including

physiological processes such as nutrient uptake, signal transduction,

and cell growth. Family of Endophilin induces and stabilizes

membrane curvature in the endocytic pathway (13). Endophilin

A is involved in Clathrin-mediated endocytosis pathway (CME),

which regulates synaptic vesicle formation, including Clathrin-

encapsulated vesicle outgrowth, division, and decapsulation (12,

30). SH3 structural domain and N-BAR structural domain of

Endophilin A performs significantly in this process. Endophilin A

is necessary for membrane rupture and vesicle release, where SH3

structural domain binds to proline-rich structural domain of other

endocytosed proteins, including synaptic proteins and dynamin

proteins. SH3 structural domain assembles around the necks of

Clathrin-encapsulated pits with initiators (31–33). Recent studies

have shown that the N-BAR structural domain of Endophilin A

possesses lysophosphatidic acid acyltransferase (LPAAT) activity.

The lipid membrane curvature required for vesicle formation was

induced under this activity.14 Endophilin A1 and Endophilin A2

positively regulate endocytosis, whereas Endophilin A3 may

negatively regulate Clathrin-mediated endocytosis. Endophilin A3

inhibits Clathrin-mediated endocytosis of transferrin, which is

overexpressed in cos-7 cells. Endophilin A3 co-localizes with

dopamine D2 receptors in olfactory nerve terminals, inhibits

dopamine D2 receptor-mediated endocytosis, and promotes cells

differentiation (Figure 1) (34).

Endophilin A is required for fast Endophilin-mediated

endocytosis (FEME) (35). FEME is triggered by a series of

molecular events, and this event is initiated by Cdc42 (36). Cdc42

recruits Cdc42-interacting protein4 (CIP4)/formin binding

protein17 (FBP17), which engages SH2-containing inositol

phosphatase 2 (SHP2) and lamellipodin (Lpd). Endophilin A

binds to the Lpd proline-rich region, concentrating Endophilin

into clusters at discrete sites in the plasma membrane. Liquid-liquid

phase separation (LLPS) is a key mechanism for protein assembly

during FEME. LLPS promotes the formation of dynamically

enriched clusters on the membrane that can act as initiation sites

for FEME. The liquid-like clusters then recruit additional

endocytose proteins such as activated receptors. The LLPS in

Endophilin is mainly driven by the BAR domain, and the SH3

domain also promotes the binding of proline-rich-motifs (PRMs)

proteins to the droplet (37, 38). In the absence of receptor

activation, the clusters disassemble rapidly following local

recruitment of the Cdc42 GTPase-activating proteins RICH1,

SH3BP1, or Oligophrenin-6. Then, a new cycle was formulated,

and was continuously prepared for FEME. After receptor activation,
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the ligand recognizes the receptor. Endophilin can bind directly to

the receptor or indirectly via adaptin, which then form the FEME

carrier. A number of membrane protein receptors were rapidly

internalized by FEME signaling, including G-protein coupled

receptors [for instance, b1-adrenergic receptor, (b1AR)], receptor
tyrosine kinases [for instance, epidermal growth factor receptor,

(EGFR)], cytokine receptors (39, 40).

Endophilin A2 may function as a potential activator of

autophagy. Endophilin A2 overexpression promoted interaction

of Bif-1 with Beclin-1. Then, formation of autophagosomes was

induced, which would promote autophagy (41).
Endophilin B

Endophilin B1 is a multifunctional protein involved in

apoptosis , mitochondria l morphological changes and

autophagosome formation (Figure 2). Bif-1 was initially identified

as a pro-apoptotic protein and acted as a novel Bax activator to

control apoptosis in the mitochondria (42). In response to apoptotic

stimuli, Bif-1 translocates from cytoplasmic lysate to mitochondria,

inserts into the outer mitochondrial membrane (OMM), and forms

oligomeric complexes. Complexes of Bif-1 alter morphology of

monolayer vesicles of the cell membrane, leading to formation of

liposome vesicles and altering membrane curvature (43).

Interaction between Bif-1 and Bax changes in a time-dependent

manner. Bax also translocates to mitochondria to promote

conformational changes, leading to alteration in the permeability

of the OMM and release of apoptosis-related factors, such as

cytochrome C. This process will activate apoptosis-related

signaling pathways and promote cells death (44, 45). It was found

that Bax could not oligomerize Endophilin B1, which lacks C-

terminal SH3, suggesting that the SH3 structural domain at the C-

terminus is important for interaction of Bif-1 and Bax as well as for

the oligomerization of Bif-1 (2).

Autophagy is an evolutionarily conserved cellular process that

initiates extensive degradation of cytoplasmic components in

response to environmental changes (2). The degradation process
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involves in dynamic membrane rearrangements, leading to

formation of double membrane autophagosomes. During

starvation, autophagosomes provide nutrients to eliminate

proteins and organelle through lysosomal degradation,

maintaining intracellular homeostasis (46, 47). Bif-1 binds to

polyproline structural domain (PR) of the ultraviolet radiation

resistance-associated gene (UVRAG) via the SH3 structural

domain, and then bridges Beclin-1. Finally, Bif-1 forms a complex

with Beclin-1 to bend the N-BAR structural domain, resulting in

activation of PI3KC3 and induction of autophagy (48, 49). Vesicle

nucleation is an early step in autophagosome formation, and Bif-1

has intrinsic membrane-bending induced activity (50), suggesting
FIGURE 1

Signalings of Endophilin A. Endophilin A binds to synaptic proteins and dynamin proteins through the SH3 structural domain, and is necessary for
membrane rupture and vesicle release. Endophilin A2 overexpression promotes interaction of Bif-1 with Beclin-1. This process will promote
formation of autophagosomes, thereby promoting autophagy.
FIGURE 2

Signalings of Endophilin B. Endophilin B1 forms a complex with
Beclin-1 through UVRAG and activates PI3KC3, thus inducing
autophagy. Bif-1 interacts with Bax to promote release of
cytochrome C in the mitochondria, activating the apoptosis-related
signaling pathways.
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that this protein may play a role in biogenesis of autophagosomal

membranes. Interestingly, Bif-1 aggregated in cytoplasmic lysate

puncta and co-localized with Atg9 during induction of autophagy,

implying that Bif-1 together with the UVRAG-Beclin-1-PI3KC3

complex could regulate Golgi complex Atg9 vesicles to form

autophagosomal membranes (14, 51) . Formation and

transportation of these vesicles is essential for the biogenesis and

expansion of the autophagosome membrane during induction of

autophagy. Bif-1 co-localizes with Atg5 and LC3. Atg5 is expressed

on phagosomes in the early stage of autophagosome formation, and

LC3 is a characteristic marker of autophagy (49). These results

suggest that Bif-1 is involved in the early stage of autophagosome

formation and may play a role in autophagosome biogenesis or

amplification (Figure 2).
Diseases

Neurodegenerative diseases

Alzheimer’s disease
Alzheimer’s disease (AD) is a neurodegenerative disease (4). Its

pathological features include Ab deposition-induced senile plaques,

excessive accumulation of Tau proteins and neurofibrillary tangles,

neuronal and vascular deformities, endothelial cells (EC)

dysfunction, and disruption of the blood-brain barrier (BBB) (52).

Studies have shown that Ab is the causative factor of AD and

contributes to cognitive deficits in AD. Endophilin A1 expression

was significantly increased in brain of AD patients compared with

that in healthy controls (Table 1) (53). Endophilin A1 expression

was significantly increased in the brain of AD patients compared to

healthy controls. Increased Endophilin A1 expression activates the

JNK signaling pathway, which subsequently induces Ab expression,

leading to mitochondrial dysfunction and neuronal death,

ultimately leading to AD. Increased JNK activity phosphorylates

Tau proteins, leading to neuroinflammation (4). Furthermore,

increased Endophilin A1 promotes expression of reactive oxygen

species (ROS), activates p38 signaling, which then contribute to Ab-
induced mitochondrial dysfunction and synaptic damage (69).

Extracapsular shedding of amyloid precursor protein (APP) is a

key process in Ab production. Endophilin A3 decreases rate of APP

endocytosis and accelerates Ab degradation by promoting APP

shedding (64). Loss of Endophilin B1 may exacerbate pathology of

AD, where there was decreased expression of Endophilin B1 in AD

patients’ brain tissues, brain tissues from AD mice, and Ab-treated
neurons. Deficiency of Endophilin B1 in AD mice exacerbated

amyloid-induced plaquelike, Tau protein phosphorylation,

astrocyte hyperplasia, cognitive decline and synaptic deformation.

Overexpression of Endophilin B1 in mice cortical neurons prevents

Ab-induced mitochondrial dysfunction (70). In the mice with

middle cerebral artery occlusion/reperfusion (MCAO/R) model,

Bif-1 gene deficiency led to larger infarcted areas. Neurons from

Bif-1 gene knockout mice contained fragmented mitochondria.

Similarly, knockdown Bif-1 gene in wild-type neurons also

showed fragmented mitochondria, which were more depolarized,

indicating mitochondrial dysfunction. These data suggest that Bif-1
Frontiers in Immunology 04
is essential for maintaining mitochondrial morphology and

function in neurons compared with non-neuronal cells, and Bif-1

deficiency renders neurons more susceptible to apoptotic stress (71,

72). Therefore, Endophilin A1, A3 and B1 may be new therapeutic

targets for AD.

Parkinson’s disease
Parkinson’s disease (PD) is the most common neurodegenerative

movement disorder. PD is characterized by loss of dopaminergic

(DA) neurons in the substantia nigra and accumulation of a-
synuclein (73). Endophilin A1 expression is related to leucine-rich

repeat kinase 2 (LRRK2), a-synuclein expression in PD patients (74).

Endophilin A1 gene knockout mice showed endocytosis defects at the

synapse, eurodegeneration, and up-regulation of Parkin, an E3

ubiquitin ligase related to PD (75). Knockdown or pharmacological

inhibition of LRRK2 results in defective synaptic vesicle endocytosis

(SVE), altered synaptic morphology and impaired neurotransmission

(76). Interestingly, it was found that the levels of Clathrin and

Endophilin A1 protein were significantly reduced in brain of PD

patients with LRRKmutation. LRRK2 phosphorylates Endophilin A1,

altering its membrane structure and causing dysregulation of the

endocytosis pathway (54). In vitro and in vivo experiments showed

that LRRK2 phosphorylates Endophilin A1 at serine 75 (S75) and at

threonine 73 (T73), which regulates membrane remodeling and

endocytosis activity of Endophilin A1, disrupts SVE and

neurotransmission, and ultimately leads to PD development (46,

77). A recent study found that expression of Endophilin A1 in

lipopolysaccharide (LPS)-induced substantia nigra from PD mice

was increased, which promoted occurrence and development of

PD. Endophilin A1 gene silencing reduces the production of ROS,

inhibits the activation of NOD-like receptor protein 1 (NLRP1)

inflammasomes, reduces the release of inflammatory factors and

damages of dopaminergic neurons (78). Genome-wide association

studies have shown that the rs13294100 polymorphism in the

Endophilin A1 gene is associated with PD susceptibility and may

be a risk locus for PD in European ancestry (79). These results suggest

that Endophilin A1 may relate to development of PD. Accumulation

of autophagy is a hallmark of neurodegenerative diseases (80).

Autophagy causes neurodegeneration (81). Autophagy

dysregulation is associated with PD, and accumulation of

autophagosomes was observed both in PD patients’ brain and in

PD mice models (82). Autophagy is critical for clearance of a-
synuclein aggregates, but excessive autophagy is also associated with

neuronal loss (83). Starvation and overexpression of a-synuclein
increases the level of Cdk5/p35-induced phosphorylation of

Endophilin B1 Thr145 in neurons. Phosphorylation of Endophilin

B1 promotes its dimerization and recruitment of the UVRAG/Beclin-

1 complex to induce autophagy, leading to neuronal death (65). In

response to calcium influx, Endophilin A1 acquires structural

flexibility and diffuses to the synaptic cavity and drives

autophagosomes formation. Genetic mutation in SH3GL2 gene

blocks autophagy by disrupting the calcium sensitivity of SH3GL2.

The process will form a fixed protein that does not respond to calcium

influx, thereby disrupting autophagy induction at synapses (84, 85).

Endophilin A1, A2, and A3 gene knockout mice showed impaired

synaptic transmission, leading to perinatal death. Endophilin A1
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knockout mice have a normal phenotype, suggesting functional

compensation for Endophilin A2 and Endophilin A3. In contrast,

Endophilin family gene partially knockout may result in severe

neurological defects, including epilepsy and neurodegeneration (86).

Tumors
In recent years, more studies focused on role of Endophilin in

cancer development, along with expectation for finding out

promising new targets for cancer and useful prognostic indicators

for cancer.

Endophilin A1 is a tumor suppressor and its expression was

down-regulated in many cancers, including colorectal,

uroepithelial, and breast cancers (6, 55, 56). Silencing expression

of Endophilin A1 in cell line RT4 promoted cells proliferation,

colony formation, suppressed EGF-induced EGFR internalization

(55, 87). Injection of Endophilin A1 gene knockout cell line RT4

into urothelial carcinoma mice promoted impairment of oncogenic

behaviors (88). Studies have shown that Endiphilin A3 expression is

associated with poor prognosis in colon cancer patients, and more

advanced colon cancer patients had higher expression of

Endophilin A3. Endophilin A3 promotes tumor cells (U2OS cell

line) proliferation through enhanced endocytosis, as well as

stimulates U2OS cell line migration through activation of Rac1

small GTPase (6). Endophilin A3 activates endocytosis pathway,

causing U2OS cell line to down-regulate surface expression of

CD166, improve migration and adhesion properties (89). This
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pattern of endocytosis will promote hyperproliferation or

metastasis of U2OS cell.

Endophilin A2 is the only one member of Endophilin family

expressed in hematopoietic cells (57), and acts as a fusion partner of

the MLL gene. EBP is a novel EEN-binding protein, which is mainly

expressed in the cytoplasm. EBP interacts with the SH3 structural

domain of EEN through proline-rich motif PPERP, then forms a

stable trimeric complex by recruiting SOS2. The formed complex

will inhibit Ras signaling-induced cellular transformation and Ras-

mediated activation of ELK-1 transcription (90–92). Endophilin A2

is highly expressed in tumors including colorectal cancer,

glioblastoma, breast cancer, and osteosarcoma (58–61). Inhibition

of Endophilin A2 enhances chemosensitivity of colorectal cancer

cells through downregulation of multidrug resistance protein

(MDR1), by which the effects were mediated via the epidermal

growth factor receptor (EGFR)/extracellular signal-regulated kinase

(ERK)/activator protein (AP-1) pathway (58). In high-grade

glioblastoma, aberrant expression of Endophilin A2 induces a

systemic immune response. Endophilin A2 linked EGFR to

activate the RAS pathway, leading to activation of the MAPK

cascades. This further leads to altered expression of genes

associated with cell proliferation (59). Reduced expression of

Endophilin A2 could inhibit activation of the Akt/GSK-3b/FAK

signaling pathway, leading to reduced cycling-D1 expression,

weakened activation of P-Rb, and cell cycle arrest in the G0/G1

phases, which in turn regulated cell proliferation (61). Thus,
TABLE 1 Expression profile of Endophilin in different diseases.

Cytokine Year Author Disease Sample Expression Reference

Endophilin A1 2008 Ren et al. Alzheimer's disease Brain tissuea Increased (53)

2019 Connor-Robson et al. Parkinson's disease Brain tissuea,b Reduced (54)

2013 Majumdar S et al. Urothelial cancer Bladder tissuea Reduced (55)

2008 Sinha et al. Breast cancer Breast tissuea Reduced (56)

Endophilin A2 2007 Ma LH et al. Leukaemia Seruma Increased (57)

2016 Guan H et al. colorectal cancer colorectal tissuea Increased (58)

2012 Matsutani T et al. glioblastoma Seruma Increased (59)

2017 Baldassarre T et al. breast cancer breast tissuea Increased (60)

2017 Li EQ et al. osteosarcoma osteosarcoma tissuesa,b Increased (61)

2016 Huang EW et al. Atherosclerosis Plasmaa Increased (62)

2021 Norin et al. Rheumatoid arthritis Whole blooda Increased (63)

Endophilin A3 2016 Liu W et al. Parkinson's disease Endothelial cella – (64)

2018 Poudel et al. Colon cancer Colon tissuea Increased (6)

Endophilin B1 2011 Wong AS et al. Parkinson's disease Brain tissueb Reduced (65)

2022 Mohammadi et al. Breast cancer Breast tissuea Reduced (66)

2008 Coppola D et al. Prostate cancer Prostate tissuea Reduced (67)

2016 Xu L et al. Rectal cancer Prostatic tissuea Reduced (45)

2020 Frangež et al. Melanoma Melanoma biopsya Reduced (68)
aHuman.
bMice models.
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EndophilinA2 may pass through multiple signaling pathways and

thus participate in tumor development.

Endophilin B1 gene deficient mice showed spontaneous tumor

development, and knockdown of Endophilin B1 promoted growth of

Hela cells, suggesting that Endophilin B1may suppress tumorigenesis.

Interestingly, there was abnormal expression of Endophilin B1 in

cancer-related tissues compared to adjacent healthy tissues, including

breast cancer, prostate cancer, rectal cancer and melanoma (44, 45,

66–68). Deletion of Bif-1 may inhibit apoptosis and promote

tumorigenesis. Endophilin B1 accelerates Bax degradation by

binding to Bax and enhances apoptosis-induced kinetics in response

to innate apoptosis-related signaling, which will increase the

permeability of the outer mitochondrial membrane (44).

Knockdown of Endophilin B1 inhibited Bax/Bak conformational

changes, cytochrome C release, cysteine asparaginase activation and

cells death. This suggests that Endophilin B1 may represent a novel

Bax activator that regulates mitochondrial apoptosis. In early stages of

colorectal cancer patients, expression of Endophilin B1 was

significantly lower than in controls. Inhibition of Bif-1 inhibits Bax/

Bak activation, PI3KC3 activation and suppresses autophagy (67). Bif-

1 haploinsufficiency attenuates mitochondrial autophagy, leads to up-

regulation of Mcl-1, and inhibits Myc-induced caspase-3 activation in

lymphoma cells (93). Above findings suggest the tumor suppressor

function of Endophilin B1, and Endophilin B1 may be a promising

target for treatment of cancers.
Cardiovascular diseases

Early stages of atherosclerosis (AS) is mainly characterized by

subendothelial deposition of oxidized low-density lipoprotein

(oxLDL) in the vasculature, by which formation of macrophage-

derived foam cells (MFCF) is a key in oxLDL deposition (94).

OxLDL can trigger interaction of Endophilin A2 with CD36 or SR-

A (scavenger receptor-A), and then induce activation of apoptosis

signaling-regulated kinase-1 (ASK-1)/JNK/p38 signalings.

Activated ASK-1/JNK/p38 signalings in turn up-regulated

expression of CD36 or SR-A, promoting binding of oxLDL to the

cell membrane and formation of MFCF (62). Thus, blocking

Endophilin A2 may inhibit deposition of oxLDL and act as a

potential treatment of AS.

Endophilin A2 is expressed in some eukaryotic cells, such as

smooth muscle cells, tumor cells and neuronal cells. Endophilin A2

is able to function as a potential activator of autophagy. Endophilin

A2 overexpression promotes formation of autophagosomes by

binding Bif-1 to Beclin-1, which enhances autophagy and inhibits

H2O2-induced apoptosis in H9C2 cardiomyocytes (41). In addition,

Endophilin A2 protects against H2O2-induced apoptosis in basilar

artery smooth muscle cells by regulating translocation of Bax from

the cytoplasm to the mitochondria. Overexpression of Endophilin

A2 attenuated cardiomyocyte apoptosis and reduced endoplasmic

reticulum stress in response to myocardial infarction (MI) injury

(95). In addition, Endophilin A2 knockdown led to increased

vasodilation. When Endophilin A2 is silenced, addition of 17b-
Estradiol (E2) increases expression of mERa. E2 forms a complex

with mERa to activate the receptor tyrosine kinase, which then
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phosphorylates Endophilin A2 and attenuates its endocytosis.

Finally, the process will stabilize the position of ERa in the lipid

membrane (96). Thus, Endophilin A2 is associated with

cardiovascular diseases progression.
Autoimmune diseases

Dysfunction of antigen-presentation ability of B cells is

associated with development and progression of autoimmune

diseases. Antigen-specific B cell responses require endosomal

transport to regulate antigen uptake and present antigen to helper

T cells. The most characterized mechanism for internalization of B

cell receptors (BCRs) from cell surface is Clathrin-mediated

endocytosis (97). Activated B cells require iron uptake via

endocytosis of transferrin receptors to maintain mitochondrial

respiration (98). Endophilin A2-regulated intracellular transport

is important for B cell-mediated humoral immunity by regulating

antigen uptake, endocytosis homeostasis and cellular metabolism.

Rheumatoid arthritis (RA) is a systemic autoimmune disease

characterized by synovial hyperplasia, development of vascular

opacities, cartilage and bone degeneration (99). Mechanism of bone

destruction in RA is related to proliferation and differentiation of

osteoclasts. Bif-1 may modulate bone homeostasis by controlling the

differentiation and function of osteoclasts. In the presence of nuclear

factor‐kB (NF‐kB) receptor activator ligand (RANKL) and

macrophage colony-stimulating factor (M-CSF), osteoclast

production was accelerated in Bif-1 gene knockout mice, and the

expression of osteoclast differentiation markers such as NFATc1,

matrix metalloproteinase 9 (MMP-9), and cathepsin K (Cath K) was

also increased. In contrast, overexpression of Bif-1 in RAW-D cells

inhibits RANKL-induced osteoclast production, possibly due to

disruption of the balance between pro-apoptotic and anti-apoptotic

proteins. These results suggest that Bif-1 is a negative regulator of

RANKL-induced osteoclast generation. It may be a promising target

for the treatment of RA and osteoarthritis (100). There are excessive

T cells in synovium of RA patients. Endophilin A2 triggers and drives

autoimmune diseases such as RA by regulating T cell receptor

internalization and activation of auto-reactive T cells. Collagen-

induced arthritis (CIA) is a model of human RA with similar

histopathological and clinical features. Endophilin A2 gene

deficient mice reported reduced total joint scores, relieved

inflammation and less development of arthritis. There was

increased expression of Endophilin A2 in CD4+ T cells from CIA

mice and RA patients compared to that in wild-type mice, healthy

controls, suggesting that Endophilin A2 may regulate T cells

activation. Similarly, deficiency of Endophilin A2 in experimental

autoimmune encephalomyelitis (EAE) mice showed alleviated

histopathology (63). Thus, Endophilin A2 is potential for

autoimmune diseases targeting.
Summary and outlook

Endophilin is involved in regulation of different biological

functions, such as mitochondrial metabolism, apoptosis, and
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autophagy. Moreover, Endophilin performs significantly

in the pathogenesis of neurodegenerative diseases, tumors,

cardiovascular diseases, and autoimmune diseases. We have

discussed the biological functions of the Endophilin family and

how they lead to the occurrence and development of diseases.

However, the specific mechanism of Endophilin involved in the

pathogenesis of diseases is still unclear. There are still a number of

issues that deserve attention. First, there is a lack of precise

mechanism of Endophilin in endocytosis, such as how membrane

curvature is generated? In addition, clear biological functions of

Endophilin family in diseases progression are unknown. Thus,

multicenter, large population-based studies are needed to explore

expression profile of Endophilin in diseases, and more functional

studies are warranted to clarify role of Endophilin in

diseases pathogenesis.
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