
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Hongda Liu,
Nanjing Medical University, China

REVIEWED BY

Xuan Zhou,
Shanghai Changzheng Hospital, China
Tongtong Zhang,
Nanjing Medical University, China

*CORRESPONDENCE

Guohao Wu

prowugh@163.com

RECEIVED 19 September 2023
ACCEPTED 26 October 2023

PUBLISHED 14 November 2023

CITATION

Sui X and Wu G (2023) Immune landscape
and prognostic gene signatures in gastric
cancer: implications for cachexia and
clinical outcomes.
Front. Immunol. 14:1297363.
doi: 10.3389/fimmu.2023.1297363

COPYRIGHT

© 2023 Sui and Wu. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that
the original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

TYPE Original Research

PUBLISHED 14 November 2023

DOI 10.3389/fimmu.2023.1297363
Immune landscape and
prognostic gene signatures in
gastric cancer: implications for
cachexia and clinical outcomes

Xiangyu Sui and Guohao Wu*

Department of General Surgery, Zhongshan Hospital of Fudan University, Shanghai, China
Cachexia, a debilitating condition that worsens patient outcomes, often

accompanies gastric cancer, a malignancy that is prevalent worldwide. The

extensive research explored the interconnected molecular and immune

aspects of stomach cancer, with a particular emphasis on cachexia. By

employing the GEO database, we identified genes that were expressed

differently in gastric cancer patients suffering from cachexia. Following the

analysis of Weighted Gene Co-expression Network (WGCNA), gene modules

intricately linked to particular immune cells were revealed, indicating a

significantly disrupted tumor microenvironment. A strong predictive model

was developed, centered around key genes such as CAMK4, SLC37A2, and

BCL11B. Surprisingly, this particular model not only showed better predictive

abilities in comparison to conventional clinical factors but also exhibited a strong

connection with increased infiltration of macrophages and T cells. These

discoveries suggest the presence of an immune-suppressing and tumor-

promoting atmosphere among individuals at a greater risk. Moreover, the

utilization of Gene Set Enrichment Analysis (GSEA) established a connection

between the genes linked to our risk score and vital immune-related pathways,

thereby strengthening the pivotal involvement of immunity in the development

of gastric cancer. To summarize, our discoveries provide a more profound

comprehension of the molecular and immune mechanisms that support

cachexia in gastric cancer, presenting a hopeful basis for upcoming

advancements in treatment.

KEYWORDS
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Introduction

Stomach cancer, also called gastric cancer, continues to be a highly prevalent and

deadly form of cancer across the globe (1). Globally, gastric cancer is identified as the third

most significant contributor to cancer-related fatalities, as stated by the World Health

Organization.Gastric cancer demonstrates significant geographical disparities in its
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epidemiology, with Eastern Asia, especially Japan and South Korea,

displaying the highest occurrence rates (2). Various factors that

increase the risk of developing this cancer have been identified, such

as infection with Helicobacter pylori, dietary patterns, smoking, and

specific genetic mutations (3). Although there have been

improvements in the early identification and treatment methods,

the outlook for individuals diagnosed with advanced gastric cancer

continues to be unfavorable (4). Surgical removal, frequently

accompanied by chemotherapy or radiotherapy, is the primary

approach to treatment (5). Novel therapeutic approaches, such as

targeted therapies and immunotherapies, are currently under

investigation and offer promising avenues for improving patient

outcomes (6). Understanding the epidemiological trends and

evolving treatment landscape is crucial for devising effective

strategies to combat this formidable disease.

The development of gastric cancer is influenced by both tumor

cells and the surrounding microenvironment, making it a

multifaceted condition (7). The immune cell infiltration is a

crucial element in this microenvironment, as it has a twofold

impact on both tumor progression and suppression (8). In gastric

cancer, TILs, including cytotoxic T cells, helper T cells, and

regulatory T cells, have been identified as highly significant (9).

The balance and interaction of these immune cells can determine

the tumor’s immunogenicity and the patient’s prognosis. The

emergence of immunotherapy has sparked an increasing

fascination with harnessing the natural defenses of the body to

fight against gastric cancer (10). Clinical trials have demonstrated

the potential of immune checkpoint inhibitors that target the PD-1/

PD-L1 and CTLA-4 pathways, providing a ray of hope for

individuals suffering from advanced illness (11).

Cachexia, commonly known as cancer cachexia in connection

with malignant tumors, is a complex condition marked by the

continuous depletion of skeletal muscle mass (with or without

reduction in fat mass), resulting in gradual decline in physical

function (12). Although cachexia holds clinical importance, its

pathophysiology remains incompletely comprehended. It’s not

merely a result of decreased food intake but involves a complex

interplay of reduced protein synthesis, increased protein

degradation, and metabolic alterations (13). In cancer patients,

cachexia is particularly concerning, affecting up to 80% of

advanced cancer patients (14). It has been associated with

unfavorable treatment results, diminished life quality, and

heightened mortality rates. Cachexia’s existence can restrict the

patient’s available treatment choices and frequently decrease the

effectiveness of therapies because of decreased tolerance.

Tregs, also known as regulatory T cells, are a distinct group of

CD4+ T cells that have a crucial function in preserving immune

balance and averting autoimmune responses (15). Tregs, which are

crucial in inhibiting abnormal or exaggerated immune reactions,

thus safeguarding against harm to tissues and autoimmune

disorders, are distinguished by the presence of the transcription

factor Foxp3 (16). In addition to their crucial function in regulating

self-reactivity, Tregs have been linked to various disease states,

including cancer and infectious diseases. Tregs play a central role in

cancer immunotherapy research as they have the ability to suppress

the immune response against tumors (17). Conversely, their
Frontiers in Immunology 02
suppressive function can be harnessed therapeutically to prevent

graft-versus-host disease in transplant settings or to treat

autoimmune disorders (18). The dual nature of Tregs, as both

potential therapeutic targets and tools, underscores their

significance in the field of immunology and medicine.

Our main objective is to examine the relationship between

Tregs and gastric cancer, as demonstrated above. In the past few

years, the advancement of bioinformatics analysis has led to

extensive exploration of various approaches focused on the

impact of immune-related functions on cancer. The analysis of

immune cell infiltration was utilized in this study to acquire the

infiltration of immune cells in a cohort of gastric cancer.

Furthermore, the investigation of immune-related genes in the

gastric cancer cohort was extended through the implementation

of single-cell analysis.
Methods

Data acquisition from TCGA and GEO

Gastric cancer genomic and transcriptomic data, including

RNA sequencing, clinical features, and mutation data, were

procured from the TCGA database via the GDC Data Portal

(https://portal.gdc.cancer.gov/). Also, microarray datasets related

to gastric cancer were sourced from the GEO database (https://

www.ncbi.nlm.nih.gov/geo/). GSE131835 includes 8 patients from 3

groups (cancer cachexia, cancer weight stable and control). In this

work, the GSE84433 in GEO database was involved, which includes

a total of 357 gastric cancer samples. In addition, the clinical

features of the gastric cancer patients were also included. To

ensure data consistency and reduce batch effects, both TCGA and

GEO datasets underwent rigorous quality control, normalization,

and batch effect adjustments. Genes were annotated using the

Human Genome Organisation (HUGO) Gene Nomenclature

Committee (HGNC) database, and expression values were log2-

transformed for subsequent analyses.
Analysis of immune cell data using the
Weighted Gene Co-expression Network
Analysis (WGCNA)

The DESeq2 package in R was used to normalize the raw

expression data obtained from immune cells. Genes with counts

less than 10 in more than 80% of samples were excluded. The

resultant matrix was then transformed into a variance stabilizing

transformation (VST) for subsequent analysis. To ensure sample

homogeneity and to detect potential outliers, samples were

hierarchically clustered based on Euclidean distance. Before

constructing the network, any outliers that were detected were

eliminated. A gene co-expression network with signed weights was

built using the WGCNA package in R. The soft-thresholding

strength was chosen according to the criterion of approximate

scale-free structure. To reduce the impact of noise and false

connections, the adjacency matrix was converted into a
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topological overlap matrix (TOM). The TOM underwent average

linkage hierarchical clustering, resulting in the identification of gene

modules through the utilization of the Dynamic Tree Cut

technique. To identify modules of interest, external traits were

used to correlate with modules. To identify modules significantly

linked to specific immune cell characteristics, the correlation

between eigengenes (representing the initial principal component

of a module and serving as a representative gene expression profile)

and external sample traits was examined.
Immune cell infiltration analysis
using CIBERSORT

Using the CIBERSORT web portal, the normalized expression

data were uploaded for deconvolution. We chose the LM22

signature matrix, which consists of 22 unique types of immune

cells (such as T cells, B cells, macrophages, and various others). To

evaluate the statistical importance of the deconvolution outcomes,

the algorithm was executed using the standard 1000 permutations.

CIBERSORT generated a matrix of results that linked every sample

to a proportion of the 22 different immune cell types. The fractions

of each cell type within the sample add up to 1 (or 100%), indicating

the relative proportions of each cell type in the sample.
Utilizing GO and KEGG,
conduct an analysis on pathway and
functional enrichment

The `clusterProfiler` package in R was utilized to conduct the

GO and KEGG analysis. The database encompasses three domains,

namely Biological Process (BP), Cellular Component (CC), and

Molecular Function (MF), to which the key genes were mapped. A

p-value of 0.05 was considered significant for terms with an

adjusted p-value.
Prognostic model construction using Cox
and LASSO regression

Univariate Cox proportional hazards regression was used to

assess the individual association of each clinical and molecular

variable with overall survival through initial survival analyses.

Potential predictors were selected for the subsequent LASSO

regression based on their p-values being less than 0.05 in the

univariate analysis. In order to address multicollinearity and

improve predictor selection, we utilized LASSO regression with

the `glmnet` package in R. The penalty parameter was determined

through 10-fold cross-validation, with the goal of minimizing the

average cross-validated error. Features that had non-zero

coefficients in the LASSO regression were kept for the subsequent

analysis using multivariate Cox regression. The LASSO regression

was used to select features for building a multivariate Cox

proportional hazards regression model. The importance of every
Frontiers in Immunology 03
variable in the multivariate model was evaluated, and variables with

a p-value less than 0.05 were kept in the ultimate model. To validate

the Cox regression, the proportional hazards assumption was

examined for every variable in the ultimate model.
Validation of prognostic model accuracy

Based on the prognostic model, patients were categorized into

high-risk and low-risk groups according to their calculated risk

scores. Survival outcomes were evaluated using the log-rank test by

plotting Kaplan-Meier survival curves for both groups. ROC curves

were plotted at different time points to assess the model’s ability to

discriminate over time. To measure the model’s predictive accuracy,

the calculation of the area under the curve (AUC) was performed.

Perfect discrimination is indicated by an AUC value of 1, whereas

an AUC value of 0.5 suggests the absence of discrimination. Using

the `rms` package in R, a nomogram was built by employing a

multivariate Cox regression model. This nomogram visually

displayed the prognostic model and enabled personalized risk

estimation by summing the points assigned to each predictor

variable. To evaluate the concordance between the projected and

observed survival probabilities at particular time intervals,

calibration plots were produced. A perfectly calibrated model

would result in a 45-degree line, indicating complete concordance

between predicted and observed outcomes. Both univariate and

multivariate Cox regression analyses were performed to identify

independent prognostic factors. The variables that were found to be

statistically significant (p < 0.05) in the univariate analysis were

included in the multivariate analysis. To evaluate the relationship

between survival and each variable in the multivariate model,

hazard ratios (HR) and 95% confidence intervals (CI) were

computed, indicating the strength and direction of their association.
The process of analyzing gene sets for
enrichment using Gene Set Enrichment
Analysis (GSEA)

To ascertain if pre-defined gene sets displayed statistically

significant and consistent disparities between two biological

conditions, we utilized Gene Set Enrichment Analysis (GSEA).

The GSEA analysis was conducted utilizing the GSEA software

version 4.1. For the analysis, we utilized the Molecular Signatures

Database (MSigDB) collections, focusing primarily on the c2 and c5

collections. To estimate the significance level of the enrichment

scores, the number of permutations was set to 1000. The sets of

genes were deemed significantly enriched with a false discovery rate

(FDR) below 0.25, as suggested by the creators of GSEA. GSEA

calculates an enrichment score (ES) for every gene set, which

indicates the extent to which a gene set is overrepresented at the

top or bottom of a list of ranked genes. Afterwards, a normalized

enrichment score (NES) is computed for every gene set, taking into

consideration variations in gene set magnitude and associations

between gene sets and the expression dataset.
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Immunohistochemistry (IHC)

To perform IHC analysis, sections embedded in paraffin were

treated to remove the paraffin and restore hydration. To block the

endogenous peroxidase activity, a solution of 3% hydrogen peroxide

in methanol was applied for a duration of 10 minutes. The slides

were heated in a citrate buffer (pH 6.0) for 20 minutes to perform

antigen retrieval. To prevent non-specific binding, sections were

subsequently treated with 5% BSA (bovine serum albumin) for a

duration of 30 minutes. Specific markers of interest were targeted

using primary antibodies, which were then left to incubate

overnight at a temperature of 4°C. Following the rinsing with

phosphate-buffered saline (PBS), the sections were exposed to

biotinylated secondary antibodies for a duration of 30 minutes.

Subsequently, the streptavidin-peroxidase complex was introduced.

The resulting product was observed by utilizing 3,3 ’-

diaminobenzidine (DAB) as a chromogen, and the sections were

stained with hematoxylin for contrast. Slides were then dehydrated,

cleared, and mounted. The expression patterns of the markers were

examined and scored under a light microscope.
Statistical analysis

R software was utilized for all the analyses. To determine

statistical significance, a P-value of 0.05 was used. Student’s t-tests

were employed for variables that exhibited a normal distribution,

while the Mann-Whitney U-test was utilized for variables that did

not conform to a normal distribution.
Results

The analysis of differential expression
identified the genes that were expressed in
a similar manner in the GEO database

The GEO database, renowned for its rich repository of gene

expression datasets, presented an ideal platform to delve deeper

into the gene expression profiles associated with cachexia.

Leveraging this resource, our study zeroes in on dataset

GSE131835, which encompasses data from a diverse cohort,

providing a robust foundation for our analysis. For the purpose

of investigating the crucial genes that have a significant impact on

cachexia, the utilization of the geo database was incorporated to

enhance the exploration of the cohort associated with cachexia.

GSE131835 includes 8 patients from 3 groups (cancer cachexia,

cancer weight stable and control). Furthermore, the microarray

platform was employed to analyze gene expression in both visceral

and subcutaneous adipose tissue of every participant. In

comparison to the normal groups, a total of 951 genes exhibited

altered expression with a p value less than 0.05 in relation to

visceral adipose tissue (Figures 1A, B). In comparison to the

normal groups, a total of 561 genes were identified as the
Frontiers in Immunology 04
differentially expressed genes in subcutaneous adipose tissue

(Figures 1C, D).
The single-cell RNA sequence revealed the
role of immune-related cells in gastric
cancer cohort

Unraveling the intricate interplay between immune cells and

the tumor microenvironment is pivotal in understanding the

multifaceted dynamics of gastric cancer progression. Especially in

an era where immunotherapy is making significant strides, a

granular understanding of immune cell composition and their

interactions within the tumor milieu holds immense therapeutic

promise. In order to explore the role of immune-related cells in

gastric cancer cohort, the single-cell RNA sequence was used for the

further analysis. Firstly, we single-cell RNA sequence was

performed the quality check analysis (Figure 2A). Then, we

evaluate the proportion of multiple immune-related cells in

gastric cancer cohort, especially for CD4 and CD8 cells

(Figures 2B–D). Finally, we also performed the correlation

analysis to evaluate the correlation between metabolism-related

pathways and immune-related cells (Figure 2E).
The WGCNA analysis of the immune
system revealed a gene set that is
associated with various immune cells

Immune infiltration within the tumor microenvironment has

emerged as a critical determinant of tumor behavior, prognosis, and

therapeutic responsiveness in many cancers, including gastric

cancer. Decoding the nature, extent, and interplay of immune

cells within gastric tumors holds the promise of refining our

understanding of disease mechanisms, guiding prognosis, and

potentially offering therapeutic targets. To assess the potential

infiltration of immune cells, an analysis of immune cell

infiltration was conducted in a cohort of gastric cancer patients

(Figure 3A). The correlation analysis also indicated that the

immune-associated genes exhibited possible internal correlation

among themselves (Figure 3B). By employing WGCNA, we

examined the gene expression patterns of gastric cancer

specimens in order to detect gene co-expression clusters

associated with immune responses (Figure 3C). Following the

preprocessing and quality assurance of the data, we built a gene

co-expression network with a soft-thresholding power of 13, chosen

according to the criterion of achieving an approximate scale-free

topology. There were a total of 13 different modules, with each

module being represented by a distinct color. To understand the

relevance of the identified modules to immune phenotypes, we

correlated each module’s eigengene with immune-related traits

(Figure 3D). The brown module demonstrated a strong positive

correlation with memory B cell. In addition, the cyan module was

positively associated with plasma cell. Also, the grey60 module

demonstrated a strong positive correlation with memory B cell.
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Multiple analysis identifies
prognostic factors

In the realm of oncology, the quest for identifying genetic

markers that provide insights into disease prognosis has gained

immense traction. Such markers not only unravel the intricate

genetic landscape of tumors but also empower clinicians with tools

to predict patient outcomes, tailor treatments, and potentially

identify novel therapeutic targets. Initially, the genes related to

MEsalmon were utilized to investigate the genes linked to CD4 T

cells. The venn diagram displayed the genes that were both

upregulated and downregulated (Figure 4A). An initial analysis of

the TCGA dataset using univariate Cox regression revealed a

number of genes that showed a significant correlation with

patient survival. Prominent genetic markers comprised F13A1,

FOLR2, CSF1R, ADAP2, SCPEP1, STAB1, FAM20A, SLC9A9,

CAMK, KLRF1, PTGDR, SLC37A2, BCL11B, and SELL

(Figure 4B). In order to avoid model overfitting and identify the

most important prognostic genes, LASSO regression analysis was

utilized. After adjusting the penalty parameter through ten-fold

cross-validation, a total of 8 genes were chosen (Figures 4C, D).
Frontiers in Immunology 05
These genes encompassed F13A1, FOLR2, SCPEP1, CAMK4,

KLRF1, PTGDR, SLC37A2 and BCL11B. A multivariate Cox

regression model was established by including the genes identified

through LASSO regression. According to the analysis, survival

could be predicted independently by CAMK4, SLC37A2, and

BCL11B. The risk score formula, derived from the coefficients of

multivariate Cox regression, was calculated as follows: CAMK4

multiplied by 0.473431547722129, plus SLC37A2 multiplied

by 0 .224072082639641 , p lus BCL11B mul t ip l i ed by

-0.468973448999082 (Figure 4E). Moreover, the risk chart

indicated that patients with gastric cancer were categorized into

groups with low and high risks, according to the median risk score.
Validating the risk model in a cohort of
gastric cancer

The development and validation of a reliable risk model is of

paramount importance in cancer prognosis, offering clinicians a

tool to stratify patients, inform treatment decisions, and anticipate

clinical outcomes. Furthermore, in order to further evaluate the
A B

DC

FIGURE 1

(A) The differentially expressed analysis in visceral adipose tissue; (B) The heatmap showed the top 30 differentially expressed genes in visceral
adipose tissue; (C) The differentially expressed analysis in subcutaneous adipose tissue; (D) The heatmap showed the top 30 differentially expressed
genes in subcutaneous adipose tissue.
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predictive value of risk model in both training set and test set, the

risk plot was constructed. The risk plot showed that gastric cancer

patients were divided into low- and high-risk groups based on the

median risk score (Figures 5A, B). Also, the survival analysis

revealed that gastric cancer patients involved in high-risk groups

showed poorer overall survival in both training and test set

(Figures 5C, D). Moreover, to investigate the predictive

significance of the risk model in a cohort of gastric cancer, we

subsequently conducted multiple analyses. Furthermore, the
Frontiers in Immunology 06
analysis of prognostic factors independently demonstrated that

age, grade, stage, T stage, N stage, and risk score are significant

risk factors. Nevertheless, in the analysis of prognostic factors that

are not dependent on each other, the findings indicated that the age,

stage, and risk score are significant factors contributing to the risk of

gastric cancer in patients (Figures 6A, B). To further assess the

predictive significance of the risk model, we proceeded with the

ROC curve analysis. The ROC curve, which varies with time,

showed that the AUC scores for the 1-year, 3-year, and 5-year
A B

D

E

C

FIGURE 2

(A) The results of quality check in single-cell RNA sequencing; (B) The cell marker of different immune-related cells in single-cell RNA sequence; (C)
The different distribution of different immune-related cells in multiple samples; (D) The dimensionality reduction analysis results of UAMP method;
(E) The correlation between potential enriched pathways and immune-related cells. ns, not significant.
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A
B

DC

FIGURE 3

(A) The CIBERSOFT analysis revealed the multiple immune-related cells in renal cell carcinoma cohort; (B) The correlation analysis between different
immune-related cells; (C) The dendrogram on the top showcases the hierarchical clustering of genes based on their expression patterns. Different
colors underneath the dendrogram indicate gene modules identified by the analysis. Each module comprises a group of co-expressed genes with
similar expression profiles; (D) The bar plot depicts the correlation between gene modules and external traits. Modules with strong correlations to
specific traits can suggest potential biological relevance.
A B

D EC

FIGURE 4

(A) The venn diagram demonstrated the genes that are associated with CD4+ T cells and cachexia; (B) The results of univariate COX regression
analysis; (C, D) The results of LASSO regression analysis; (E) The results of multivariate COX regression analysis;.
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periods were 0.667, 0.629, and 0.636, correspondingly (Figure 6C).

Furthermore, the clinical receiver operating characteristic (ROC)

curve indicated that the risk model exhibited superior predictive

efficacy compared to clinical characteristics including age, gender,

grade, stage, T stage, M stage, and N stage (Figure 6D). Ultimately,

to acquire the risk model that offers the most accurate predictions,

we conducted the nomogram (Figure 6F). According to the

calibration curve, the nomogram demonstrated enhanced ability

in forecasting the prognosis of individuals with gastric cancer

(Figure 6E). Furthermore, the correlation analysis revealed a

significant association between the risk model and the grade of

gastric cancer patients (Figure 6G).
The risk assessment model demonstrated a
strong association with immune-related
characteristics in the cohort of individuals
with gastric cancer

The tumor microenvironment (TME) is a complex milieu,

comprising not only of tumor cells but also a myriad of stromal

and immune cells that play pivotal roles in tumor progression,

immune evasion, and therapy response. In order to clarify the

connection between the risk score that was previously determined

and the tumor microenvironment, we examined the association
Frontiers in Immunology 08
between the risk score and the infiltration of immune cells in

samples of gastric cancer. The immune cell composition was

estimated using several state-of-the-art algorithms, including

CIBERSORT, quanTIseq, TIMER, and xCell.Consistently, in all

algorithms, an elevated risk score was linked to heightened

infiltration of macrophages and T cells (Figures 7A–G).
The GSEA revealed the key pathways
involved in risk model

Genes do not operate in isolation. They interact in networks and

pathways, orchestrating a symphony of cellular processes and

responses. In the context of cancer prognosis, understanding the

functional implications of key prognostic genes can offer profound

insights into the underlying biological mechanisms that drive

patient outcomes. In order to obtain understanding into the

biological pathways and processes affected by the genes included

in our prognostic risk score, we conducted Gene Set Enrichment

Analysis (GSEA) on the trio of genes comprised in the score.

Through GSEA analysis, it was discovered that the genes

associated with the risk model exhibited strong associations with

numerous immune-related pathways, including primary

immunodeficiency and the intestinal immune network for IGA

production (Figures 8A–F).
A B

DC

FIGURE 5

(A) The risk plot in TCGA cohort; (B) The risk plot in GEO cohort; (C) The survival analysis between patients involved in low- and high-risk groups of
TCGA cohort; (D) The survival analysis between patients involved in low- and high-risk groups of GEO cohort.
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The IHC assay reveals the different
distribution of immune-related markers
between normal and tumor samples

Immunohistochemistry (IHC) stands as a potent tool in

bridging the gap between molecular insights and the clinical

reality of cancer. It provides a visual snapshot of the cellular

landscape within tumor tissues, offering an opportunity to explore

the presence and distribution of specific immune cell markers. In

our quest to decode the immune dynamics within gastric cancer, we

turned to IHC to assess the expression patterns of critical immune

markers, specifically CD4, CD8, and CD20, which are pivotal in

delineating T cell and B cell populations. These markers not only

illuminate the immune composition within the tumor

microenvironment but also hint at potential immune responses

and therapeutic avenues. To demonstrate the expression pattern of

immune-related markers in normal and tumor samples, we
Frontiers in Immunology 09
conducted the IHC assay as part of this study. The CD20 is the

biomarker for B cell. In addition, the CD4 and CD20 are the

biomarker for T cell. The results of immunohistochemistry (IHC)

indicated that there was no notable disparity in the expression levels

of CD8 and CD20 between the normal and tumor specimens

(Figures 9A–D). In our specimens, CD4-positive T cells were

predominantly identified within the lymphoid follicles and in the

inter-follicular regions (Figures 9E, F). The results of the IHC

analysis showed that the level of CD4 expression in the tumor

sample is elevated compared to the normal sample.

Discussion

The detailed examination emphasizes the complex connection

among immune infiltration, patterns of gene expression, and the

clinical results in individuals with gastric cancer, specifically those

experiencing cachexia.
A B

D E

F G

C

FIGURE 6

(A) The results of univariate independent prognosis analysis; (B) The results of multivariate independent prognosis analysis; (C) The time-dependent
ROC curve revealed the AUC score of 1-year, 3-year and 5-year; (D) The ROC curve showed the AUC score in risk plot and clinical features; (E) The
calibration curve showed the predictive value of nomogram; (F) The nomogram based on risk plot and clinical features; (G) The correlation analysis
between clinical features and risk score.
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Analyzing the GEO dataset allows for the identification of genes

that are expressed differently, leading to a fundamental

comprehension of the molecular variances that form the basis of

cachexia in individuals with gastric cancer. The considerable amount

of modified genes in visceral and subcutaneous adipose tissue in

cachectic individuals compared to controls highlights the extensive
Frontiers in Immunology 10
molecular alterations that happen in response to the advancement of

cancer. This observation supports the notion that cachexia is not

merely a symptom of advanced cancer but might be driven by specific

molecular pathways that exacerbate disease progression.

The analysis of enriched pathways, combined with the findings

from WGCNA, reveals an altered immune microenvironment in
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FIGURE 7

(A, B) The immune cell infiltration analysis based on the multiple algorithms; (C) The correlation between risk score and CD4+ memory T cells; (D)
The correlation between risk score and CD4+ T cells; (E) The correlation between risk score and central memory CD8+ T cell; (F) The correlation
between risk score and naïve B cell; (G) The correlation between risk score and immune-related cells and genes involved in risk score.
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gastric cancer. The potential role of adaptive immunity in shaping

the tumor microenvironment is emphasized by the favorable

connections between particular gene modules and immune cells,

including memory B cells and plasma cells. This is especially

important when considering the emerging immunotherapies that

utilize the body’s natural defense system to fight against cancer.

The prognostic model we developed, which relies on genes such

as CAMK4, SLC37A2, and BCL11B, offers a hopeful approach to

categorize patients according to their risk of survival. The validity of

this model, as evidenced by its predictive accuracy and ability to

outperform traditional clinical parameters, suggests its potential

clinical utility. The correlation between this risk model and clinical

characteristics, specifically grade, suggests its wider significance in

comprehending the advancement and seriousness of the disease.

Moreover, the significant connection between our risk assessment

and the infiltration of immune cells, particularly macrophages and T
Frontiers in Immunology 11
cells, provides a more profound understanding of the tumor

microenvironment. Tumor growth, angiogenesis, and metastasis

have been linked to the involvement of macrophages, especially

tumor-associated macrophages. The heightened occurrence among

patients at high risk could suggest a heightened immunosuppressive

and tumor-promoting setting. The increased infiltration of T cells in

high-risk patients is a subject of great interest due to their dual

function as effector cells that target tumors and as regulatory cells

that suppress anti-tumor immunity. Further research is necessary to

explore the potential influence of various immune cells on patient

outcomes and their dynamic interaction.

Lastly, the GSEA results emphasize the potential pathways

through which our risk score-associated genes might influence

disease progression. The connection to pathways related to the

immune system strengthens the pivotal role of immunity in the

development and advancement of gastric cancer.
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FIGURE 8

(A) The GSEA analysis of KEGG terms with CAMK4; (B) The GSEA analysis of GO terms with CAMK4; (C) The GSEA analysis of KEGG terms with SLC37A2;
(D) The GSEA analysis of GO terms with SLC37A2; (E) The GSEA analysis of KEGG terms with BCL11B; (F) The GSEA analysis of GO terms with BCL11B.
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To summarize, our research offers a diverse viewpoint on how

genes and the immune system influence the clinical results of

individuals with gastric cancer. The risk model that has been

identified shows a promising potential for future research due to

its strong association with immune infiltration and possible

molecular pathways. As we move toward more personalized

medicine, such models can be instrumental in guiding treatment

decisions and tailoring therapeutic strategies. Future studies should

focus on validating these findings in larger cohorts and exploring

potential therapeutic targets within the identified pathways.
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FIGURE 9

(A) The IHC analysis of CD8 in normal samples; (B) The IHC analysis of CD8 in gastric cancer samples; (C) The IHC of CD20 in normal samples; (D)
The IHC of CD20 in gastric cancer samples; (E) The IHC of CD4 in normal samples; (F) The IHC of CD4 in gastric cancer samples.
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