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Gastric precancerous lesions (GPL) are a major health concern worldwide due to

their potential to progress to gastric cancer (GC). Understanding the mechanism

underlying the transformation from GPL to GC can provide a fresh insight for the

early detection of GC. Although chronic inflammation is prevalent in the GPL,

how the inflammatory microenvironment monitored the progression of GPL-to-

GC are still elusive. Inflammation has been recognized as a key player in the

progression of GPL. This review aims to provide an overview of the inflammatory

microenvironment in GPL and its implications for disease progression and

potential therapeutic applications. We discuss the involvement of inflammation

in the progression of GPL, highlighting Helicobacter pylori (H. pylori) as a

mediator for inflammatory microenvironment and a key driver to GC

progression. We explore the role of immune cells in mediating the progression

of GPL, and focus on the regulation of inflammatory molecules in this disease.

Furthermore, we discuss the potential of targeting inflammatory pathways for

GPL. There are currently no specific drugs for GPL treatment, but traditional

Chinese Medicine (TCM) and natural antioxidants, known as antioxidant and anti-

inflammatory properties, exhibit promising effects in suppressing or reversing the

progression of GPL. Finally, the challenges and future perspectives in the field are

proposed. Overall, this review highlights the central role of the inflammatory

microenvironment in the progression of GPL, paving the way for innovative

therapeutic approaches in the future.
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Key points
Fron
• Chronic inflammation stimulates cells to secrete

inflammatory factors and changes in immune cell

function, which further promotes inflammatory changes

in the gastric mucosa and even leads to cancer.

• Altered inflammatory immune microenvironment due to H.

pylori infection enhances cytogenic Correa cascade

progression based on epidemiological investigation and

basic research.

• Inflammatory molecules regulation in gastric precancerous

lesions progression.

• Traditional Chinese Medicine (TCM) and natural

ant ioxidants , known as ant ioxidant and ant i-

inflammatory properties, exhibit promising effects in

suppressing or reversing the progression of GPL.
1 Introduction

Gastric cancer(GC) ranks as the fifth most common tumor

globally and stands as the third leading cause of cancer-related

mortality across the world (1, 2) Its incidence is most pronounced

in East Asia (3). Notably, GC is twice as likely to afflict men

compared to women (1). The prognosis for advanced GC, with a

5-year survival rate of under 20%, is grim, while early gastric cancer

(EGC) enjoys a favorable outlook, boasting a 5-year survival rate

ranging from 90% to 95% (4).

Several prominent risk factors for GC encompass H. pylori

infection, age, and dietary patterns. The progression of gastric

lesions, from superficial gastritis (SG) to chronic atrophic gastritis

(CAG), spasmolytic polypeptide-expressing metaplasia (SPEM),

intestinal metaplasia (IM), and low-grade intraepithelial gastritis

neoplasia (LGIN), can eventually lead to high-grade intraepithelial

neoplasia (HGIN) and aggressive GC (5). These precancerous states

(CAG, SPEM, and IM) and precancerous lesions (LGIN and HGIN)

are associated with an elevated risk of GC. Chronic infection of the

gastric mucosa lays the foundation for the progression of CAG and

IM to gastric mucosal cancer. Approximately 5% of dysplasia (Dys)

patients develop GC within two decades (6). Evidence suggests that

IM arises from SPEM in humans, indicating that SPEM is the key

initial pretumor metaplasia in gastric adenocarcinoma. Biopsies

obtained before cancer diagnosis have shown that SPEM was

detected in more than 4 out of 5 tumor patients, compared to

only 1 out of 3 gastritis patients (7).

The clinical presentation of GPL is marked by nonspecific

manifestations, including upper abdominal discomfort, acid

reflux, and nausea, among others. It should be noted that there is

no clear correlation between the severity of the pathology and the

symptoms. The development of precancerous lesions is closely

related to inflammatory processes and immune responses.

Assessing the immune molecule expression in GPL is pivotal in

evaluating the inflammatory status. Nevertheless, inflammatory
tiers in Immunology 02
response and immune response in GPL still poorly elucidated. On

the other hand, treatment options for GPL encompass surgical

intervention, H. pylori eradication, cyclooxygenase-2(COX-2)

inhibitor and other symptomatic treatment, without specific

therapy. However, traditional Chinese medicine and its active

ingredients are effective in the treatment of GPL and more and

more related studies, but there is a lack of systematic summary. This

review aims to provide a concise overview of our current

comprehension of diverse inflammatory immune response, and

the treatment of traditional Chinese medicine and its active

ingredients, unveiling the most recent research findings regarding

their potential mechanisms of GPL.
2 Inflammation participates
in the gastric precancerous
lesion progression

Substantial epidemiological evidence has demonstrated that

chronic inflammation of the gastric epithelium is important in

GC development. This connection between inflammation and GC

in humans has been meticulously documented through lifelong

studies by Correa, which documents a clear association between

inflammation and GC. Inflammatory microenvironments are

common pathological characteristics and drive the development

of multiple GPL (8). The cells and mediators responsible for

inflammation constitute a substantial portion of the epithelial

inflammatory microenvironment. In GPL-to-GC, inflammatory

conditions often precede the onset of malignancy. Moreover,

oncogenic changes create a tumor-promoting inflammatory

milieu (9).

In 1994, H. pylori was unequivocally designated as a Class I

carcinogen with a proven link to GC (10). The infection statistics

reveal that 1%-3% of individuals harboring H. pylori will ultimately

develop GC (11). This persistent infection takes root by inciting

chronic and active inflammation within the gastric mucosa, setting

the stage for a cascade of pathological events. The stepwise

progression from H. pylori-induced GPL-to-GC has been

meticulously defined in various animal models, including mice

and Mongolian gerbils (12). The stomach ’s enduring

inflammation often triggers metaplastic alterations in the mucosa,

characterized by the atrophy of mature oxyntic cells and the

emergence of novel metaplastic lineages. Consequently, the

degenerating mucosa can adopt a more proliferative phenotype,

substantially elevating the risk of GPL transitioning to GC (13).

H. pylori, which harbors the cag pathogenicity island, triggers

immune cell infiltration. Paradoxically, this robust immune and

inflammatory response fails to eradicate the infection, leaving the

host gastric mucosa ensnared in the enduring throes of inflammation.

H. pylori infection stimulates inflammation and altered immune cell

function promoting malignant transformation of GPL, according to

growing evidence. Inflammatory response on gastric from H. pylori

infection shows “sui generis” characteristics that are scarcely observed

in other organs (14). Furthermore, research has unveiled that an

immune response induced by Helicobacter pylori can promote
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genetic changes. The alterations encompass changes in transcription

factors (CDX2, RUNX3, TLR1), interleukins (IL1b, IL8), and the

generation of oxidative stress-induced DNA damage. These genetic

modifications activate genes that drive tumor development while

concurrently suppressing tumor suppressor genes (15), essentially

placing GPL patients in a chronic inflammatory state (16). It’s

important to note that while cell proliferation alone does not

inevitably lead to cancer, within the context of an inflammatory

microenvironment teeming with inflammatory cells and growth

factors, heightened cell proliferation undeniably amplifies the risk

of tumorigenesis (17). Oxidative damage and DNA damage

accumulate gradually along GPL-GC (18). With inflammation,

parietal cells undergo apoptosis, paving the way for the emergence

of CAG and metaplastic cells (19). The gastric environment

accumulates a mass of immune cells, which in turn, produce a

multitude of inflammatory cytokines. Immune molecules triggered

by antigen stimulation, including antibodies, complement, and

lymphokines, assume pivotal roles. Dysregulation of immune cell

activity or imbalances in immune-related factors can yield profound

consequences in this intricate interplay of factors.
3 Immune cells mediated gastric
precancerous lesions progression

Malignant tumor cells thrive within a multifaceted cellular

microenvironment, comprising a dynamic interplay of endothelial

cells, fibroblasts, and an array of immune cells. This diverse cast of

immune cell types encompasses innate immune cells, adaptive

immune cells, and immunosuppressive cells. The insidious

influence of H. pylori infection amplifies the production of

cytokines, thereby instigating a cascade of events that recruit and

activate immune cells within this intricate milieu (20). Neutrophils

and sometimes eosinophils represent the initial responders in the

acute inflammatory reaction. Following neutrophils infiltrate,

immune cells are summoned to the site of injury or infection.

Inflammation is critical to orchestrating the migration and function

of macrophages and T cells. As the inflammatory response

concludes, both macrophages and T cells must adopt a pro-
Frontiers in Immunology 03
resolving phenotype to gradually terminate the inflammatory

process. But under specific conditions, immune responses and

inflammation persist, leading to the progression of chronic

inflammatory diseases (Figure 1).
3.1 Neutrophil immune regulation in
gastric precancerous lesions progression

Neutrophil infiltration is a typical occurrence in cases of acute

gastritis induced by H. pylori (21). In the realm of tissue pathology,

the extent of neutral granulocyte infiltration serves as a key

indicator of gastritis inflammation severity (22). Typically, neutral

granulocytes predominantly infiltrate the proliferation zone in

normal conditions. However, in specific situations, they can

extend into the surface region, potentially leading to the

development of depressed abscesses (23). Throughout this

process, neutral granulocytes may undergo apoptosis and be

phagocytosed by foveolar cells (24).

The neutrophil recruitment is often attributed to the signaling

of endogenous and bacterial chemoattractants (25). Furthermore,

immune and epithelial cells participate in the immune response

which triggered by H. pylori infection. Some types of inflammatory

factors (such as IL-8, IL-1b and tumor necrosis factor-a(TNF-a))
are the major participants of the reaction. These factors can

stimulate IL-8, causing neutrophil infiltration and the

exacerbation of inflammation (26). Research has established that

neutrophils activated by the water-soluble surface proteins of H.

pylori (27). Furthermore, nicotinamide adenine dinucleotide

phosphate (NADPH) oxidase subunits in H. pylori’s fatty

polysaccharides within neutrophils can lead to an overwhelming

generation of reactive oxygen species (ROS), thereby promoting

inflammatory damage (28). In this process, the protein domain 3 of

ARRDC3 facilitates the accumulation and migration of neutrophils

in the gastric mucosa (29). Scientific investigations have found that

neutrophil extracellular traps (NETs) can enhance more aggressive

mesenchymal phenotypes, thereby contributing to GC progression

both in vitro and in vivo. Targeting NETs holds promise as a

potential therapeutic approach (30). Moreover, the neutrophil-to-
FIGURE 1

Immune cells contribute to the advancement of gastric precancerous lesions.
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lymphocyte ratio has emerged as a potential prognostic indicator

for cancer, owing to its ease of acquisition in clinical settings (31).

Preoperative NLR serves as an independent prognostic factor for

GC patients, providing stratified prognostic value, especially in

cases classified as AJCC stage III (32).
3.2 T Lymphocyte immune regulation in
gastric precancerous lesions progression

The immune response of the human body to H. pylori is a

multifaceted and constantly evolving process. During childhood,

notable features include a significant increase in FoxP3+ Treg cells

within the gastric mucosa, along with substantial elevations in the

levels of Treg, Transforming growth factor beta 1 (TGF-b1), and IL-
10. This pattern stands in stark contrast to the immune response

observed in infected adults (33). In the case of adults, diverse

scenarios unfold. The gastric mucosa exhibits a TH1 reaction and

TH17 reaction, characterized by a reduction in TGF-b1
concentration and an upsurge in IFN-g, IL-12P70, IL-17A, IL-23,
and other cytokines. Of particular interest is the synergy between

TGF-b1 and IL-6, which collaboratively promote the expression of

IL-23, thereby enhancing the TH17 response. This unique immune

reaction is intricately linked to the damage observed in gastric

mucosal cells. Consequently, adults are more predisposed to the

progression of GPL (34–36).

In patients with GC, specific subgroups of immune cells within

tumor tissues are associated with prognosis. Tumors characterized

by high expression of CD8 (+) cytotoxic T lymphocytes often

correlate with a favorable prognosis. Conversely, the risen of

Foxp3 (+)/CD8 (+) and Foxp3 (+)/CD4 (+) ratios may serve as

indicators for a poorer prognosis (37).
3.3 Macrophages immune regulation in
gastric precancerous lesions progression

Monocytes and macrophages initiate from bone marrow

progenitor cells before entering the bloodstream. In response to

inflammation, circulating monocytes respond to local growth

factors by migrating into tissues, where they can differentiate into

macrophages. Guided by chemotactic factors, tissue-resident

macrophages then migrate to the site of tissue damage (38). In

1908, Elie Metchnikoff and Paul Ehrlich made pioneering

observations concerning macrophages and their phagocytic activity.

Macrophages play a pivotal role as the immune system’s first line of

defense, contributing to the defense against infection by generating

pro-inflammatory factors, including IL-1b (39). Activated

macrophages serve as the primary source of growth factors and

cytokines, exerting profound effects on local mucosal tissues and thus

shaping the chronic inflammatory microenvironment (40). In cases

of mild gastritis, macrophages infiltrate the stomach after parietal cell

loss, promoting metaplasia progression (41). However, macrophages

also exhibit specialization in response to local environmental cues,

resulting in distinct gene expression profiles and functions across

various organ systems (42). M2 macrophages, driven by Th2
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cytokines, are characterized as anti-inflammatory tumor-associated

inflammatory cells, which can detrimentally influence gastric tumors

in GPL mice (43). Inflammatory process in gastric is associated with

an increase of secretory activity of macrophages. This heightened M1

macrophage activation can exacerbate gastric inflammation and

result in a reduced bacterial load (44). Studies have demonstrated

that in mouse model tissues, M2 macrophages can promote cellular

SPEM by inflammatory stimulation (41). Moreover, macrophages

possess the capability to release cytokines and chemokines into the

bloodstream, including IL-1b, TNF-a, IL-6, IFN-g, and PGE2 (45),

contributing to systemic chronic inflammation. It is widely believed

that inflammation underlies gastric dysfunction. In GC, macrophage

polarization transitions from the anti-inflammatory M1 state to the

pro-inflammatory M2 state. Pathogens such as H. pylori can impede

the M1 macrophage response, induce macrophage polarization into

the M2 state, and increase ROS-induced macrophage apoptosis,

thereby advancing the progression of GPL (44).

However, in a persistent inflammatory state, immune functions

can become detrimental, leading to the production of mutagenic

agents like peroxynitrite, which can react with DNA, promoting

uncontrolled division of epithelial and stromal cells. Macrophage

infiltration can release TNF-a, exacerbating DNA damage,

potentially linked to IL-33 (43). Notably, H. pylori induces

apoptosis in macrophages and is a strategy to escape the immune

response. Phagocytosis of H. pylori triggers apoptosis in

macrophages, releasing bacteria to infect the next cell (46, 47).
3.4 Fibroblasts immune regulation in
gastric precancerous lesions progression

Stromal fibroblasts are pivotal contributors to the intricate web

of chronic cancer-related inflammation and the initiation and

progression of malignant diseases (48). Fibroblasts can produce

IL-6, thereby inducing TNF, IL-17, IL-1b, LPS and IFNs (49). In

addition, H. pylori increases caspases and sST2, causing deleterious

effects on gastric barrier cells. Gastric epithelial cells and fibroblasts

can upregulate type I collagen and repair early cell damage caused

by H. pylori (50). Various immune cells circulate in the blood in

response to specific environmental signals. When the gastric

mucosa is damaged, these immune cells will be recruited to the

damaged tissue, promote the formation of new blood vessels, and

create an immunosuppressive environment. Studies have found that

cancer-associated fibroblasts (CAFs) participate in ECM

remodeling and promote angiogenesis, leading to the progression

of GPL (51). CAFs are also capable of secreting miR-522 to suppress

ferroptosis and bolster angiogenesis (52). Furthermore, CAFs-

derived IL-8 amplifies the inflammatory response by activating

signaling pathways such as nuclear factor kappa-B (NF-kB) (53).
Additionally, H. pylori infection has been shown to induce the

transformation offibroblasts into myofibroblasts, elevating the early

oncogenic marker HIF-1a (54). H. pylori-activated gastric

fibroblasts are central to promoting the transition of normal

gastric epithelial cells into a precancerous state, driving EMT

through the regulation of TGFb R1/R2-dependent signaling. In

summary, H. pylori infection intensifies CAFs differentiation,
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1297101
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhang et al. 10.3389/fimmu.2023.1297101
subsequently promoting EMT through pathways involving NF-kB,
STAT3, and TGF-b. Given the pivotal role of CAFs in the

microenvironment of gastric, targeting CAFs emerges as a

potential strategy for enhancing patient prognosis (53, 55).

The mechanism of GPL is correlated with neutrophils, T cells,

macrophages and fibroblasts. As a key inflammatory factor, IL-8

interacts with different immune cells, triggering the release of more

inflammatory factors and aggravating the cascade reaction of GPL.
4 Inflammatory molecules and
microorganisms regulation in gastric
precancerous lesions progression

In the progression of gastric precancerous lesions, the

regulation of inflammatory molecules and microorganisms plays a

crucial role. Several types of inflammatory molecules have been

implicated in this process, including the gut microbiome, bile acid,

and cytokines (Table 1). Understanding the intricate interplay

between these components is crucial for comprehending the

mechanisms underlying GPL and may pave the way for novel

therapeutic interventions.
4.1 Gut microbiome implicated in gastric
precancerous lesions progression

The equilibrium of the intestinal microbiota is intricately

intertwined with the host’s well-being. The presence of H. pylori

can disrupt the balance of the intestinal flora, thereby fostering the

advancement of GPL. This phenomenon is intricately linked to the

persistent activation of the host’s immune system by the intestinal

microbiota, which, in turn, results in localized chronic

inflammation. On one hand, the intestinal flora is central to

regulating anti-tumor immune responses, while, on the other

hand, it can facilitate the generation of carcinogenic metabolites.

An abnormal immune response can precipitate an imbalance in the

intestinal flora, ultimately leading to an abnormal release of
Frontiers in Immunology 05
inflammatory factors (56). Therefore, elimination of H. pylori can

correct intestinal flora disorder and have a healthy impact on the

gastrointestinal tract (57). GPL progression is related to the

abundance of H. pylori and other gastrointestinal flora. This

suggests that intestinal dysbiosis has the potential to serve as a

biomarker to differentiate between gastritis and GC (58, 59). This

has been confirmed both in rat models and in human tissues, where

the changes observed are very similar (60). One thing needs

attention, although the infection abundance of H. pylori gradually

increases in different stages of GPL, GC has less H. pylori, and the

bacterial flora is dominated by oral and intestinal pathogenic

microbial strains (61). Furthermore, IM patients are colonized

with abundant oral bacterial genera, including Peptostreptococcus

oralis, Neisseria elongatus, Johnsonella martensi, and Neisseria

flavus (62). In addition, Acinetobacter may promote the

development of intraepithelial neoplasia. Certain bacterial genera

show a higher degree of centrality in the progression of GPL, such as

gastric mucosal genera (including Gemini, Streptococcus, etc) (59).

The gut microbiota and its metabolites may be central to the

progression of GPL. Studies have shown that H. pylori can

regulate gut microbiota. This regulate may include species

changes in the microbiota, metabolites of the microbiota. And

intestinal microbiota in turn can regulate the inflammatory

immunity of gastric mucosa, resulting in the progression of GPL.

This interaction between Helicobacter pylori and the gut microbiota

can be referred to as the Helicobacter pylori-Gut microbiota

Metabolism (HGM) axis (60, 63, 64).
4.2 Bile acid in gastric precancerous
lesions progression

Bile acid reflux is a critical factor in the occurrence of

gastrointestinal metaplasia (GIM), and this pathogenesis does not

require the involvement of H. pylori (65, 66). The underlying

mechanism involves deoxycholic acid stimulating macrophages to

release exosomes encapsulating inflammatory factors (67). These

exosomes, in turn, promote the overexpression of hsa-miR-30a-5p
TABLE 1 Summary of inflammatory molecules and microorganisms implicated in gastric precancerous lesions.

Name Type Function description Implicated in GPL PMID

Gut
microbiome

Microorganism Digestion, development, fecundity, and lifespan Impact immune responses and
inflammatory cytokines release

30510004

Bile acid Endogenous
metabolites

Dissolve lipid, modulate hepatic and intestinal functions and
improve insulin sensitivity

Stimulate macrophages, release exosomes 32033746

IL-8 Chemokine Mediate the inflammatory response lead to DNA and tissue damage 14760971

IL-1b pro-inflammatory
cytokine

Stimulate the synthesis of prostaglandins,
activate neutrophils,
T-cell and B-cell

Recruit and activate immune cells 17676045

IL-33 Cytokine Initiate the release of T-helper type 2-associated cytokines Upregulate cells apoptosis, increase caspase-
3, decrease Bcl-xL

32151084

iNOS messenger molecule Produce nitric oxide and involve in inflammation Modulate the inflammation 10348815

COX-2 enzyme An enzyme that is phosphorylated by oxidation Modulate the inflammation 10348815
fron
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in gastric mucosal epithelial cells. Overexpression of this miRNA

targets Forkhead Box D1 (FOXD1) and leads to the increased

expression of CDX2, thereby promoting the development of

intestinal metaplasia and GIM (68). The possible mechanisms of

bile acid-induced gastritis have been documented, but the final

substrates are all related to changes in miRNA and CDX2

substrates, which activate the expression of KLF4, cadherin 17,

and HNF4a, leading to the progression of IM to GC (69–71).
4.3 Cytokines and inflammatory factors

The inflammatory microenvironment is central to the

progression of GPL to GC. Cytokines and inflammatory factors

are central to immune response and are associated with a multitude

of pathological changes associated with GPL (Figure 2).

4.3.1 Interleukin-8 in gastric precancerous
lesions progression

Interleukin-8 (IL-8), an important member of the CXC

chemokine family, is a potent chemoattractant for neutrophils

and lymphocytes and is critical to promoting gastric mucosal
Frontiers in Immunology 06
inflammation. IL-8 expression is significantly elevated in H.

pylori-associated gastritis. IL-8 causes sustained overproduction of

nitric oxide, which may induce DNA and tissue damage, thereby

increasing the risk of neoplastic transformation (72). In

histomorphology, IL-8 complements established predictors such

as gastrin and pepsinogen A/C ratio (73). Highly expressed IL-8 can

continuously infiltrate tissues and increase VEGF levels, leading to

GPL (74).

4.3.2 IL-1b in gastric precancerous
lesions progression

Gastric IL-1b is closely linked to high grade mucosal

inflammation (75), and is critical to the progression of CAG to GC

(76, 77). The IL-1b exhibits polymorphic characteristics that are

significantly linked to gastric acid secretion and GPL (78). IL-1bmay

collaborate with other inflammatory cytokines, such as promoting

the upregulation of IL-17A, recruiting and activating immune cells

within the gastric mucosa, collectively inciting inflammation (79, 80).

Furthermore, IL-1b has been demonstrated to establish a positive

feedback loop, inducing the expression of IL-8. It is noteworthy that

while gastritis occurrence is associated with IL-1b and IL-18,

exhibiting a declining trend from chronic gastritis to GC (81).
FIGURE 2

Cytokines and inflammatory factors in gastric precancerous lesions progression. GPL includes different pathological stages: AG, IM, and Dys. The
pathological morphology is related to the inflammatory microenvironment. H.Pylori and T cells can promote the polarization of macrophages and
induce the release of IL-33. Fibroblasts promote the release of IL-6 and ROS promotes the release of hormones. The inflammatory
microenvironment promotes the infiltration of neutrophils into epithelial cells.
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4.3.3 Interleukin -33 in gastric precancerous
lesions progression

Interleukin-33 (IL-33) is a recently characterized alarmin with

high expression levels in the gastric mucosa, capable of potently

activating Th2 immunity. after exposure to H. pylori, silencing IL-

33 in GES-1 cells has been shown to lead to decrease cell metabolic

activity, migration, adhesion and proliferation. Additionally, it

resulted in an upregulation of cell apoptosis, marked by an

increase in caspase-3 activity and a decrease in Bcl-xL expression.

The findings suggest a proregenerative role of IL-33 (82). H. pylori

infection can activate IL-33 pro-regenerative activity in apoptotic

gastric tissue cells (83).

4.3.4 Inducible nitric oxide synthase and
cyclooxygenase-2 in gastric precancerous
lesions progression

In patients with gastritis, especially those infected withH. pylori,

nitric oxide produced by inducible nitric oxide synthase(iNOS) and

COX-2 is induced to regulate epithelial cell growth and

inflammatory changes (84). Studies have underscored the

significance of iNOS as an inflammation-inducing enzyme and a

key contributing factor to gastritis (85). Furthermore, iNOS can

bind to H. pylori and induce apoptosis in gastric mucosal. Study

shown that iNOS-KO mice exhibited persistent inflammation but

not apoptosis after H. pylori infection (86).

There are many other cellular inflammatory molecules involved

in the progression of GPL, and their mechanisms of action still need

to be further explored. The involvement of inflammatory molecules

may be closely related to the mechanism of action of immune cells.
5 Inflammatory pathways and TCM
intervention in the prevention and
treatment of GPL

In the process of inflammatory stimulation of gastric mucosa

leading to GPL, it is closely related to some inflammatory pathways,

including classic pathways: MAPK, Wnt/b-catenin, JAK/STAT3
and PI3K/AKT/mTOR signaling pathway (87), and non-classic

inflammatory pathways: the Hippo and Hedgehog signaling

pathway (Figure 3). Traditional Chinese medicine (TCM) and

TCM-derived natural products, known as antioxidant and anti-

inflammatory properties, can interfere with the outcome of GPL by

affecting the above pathways (Table 2).
5.1 MAPK signaling pathway

The activation of MAPK signaling pathways involves three main

components: MAP3K, MAP2K, and MAPK. MAPK contains P38,

JNK, ERK. Once MAPKs are activated, they go on to stimulate

various substrate proteins, thereby regulating a wide range of cellular

activities (88). The p38 signal regulates the activation of ROS and

EMT. ROS, in turn, can activate EGFR, thereby initiating the Ras/

MAPK pathway and participating in activating NF-kB and COX-2.
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Ultimately, this intricate signaling cascade promotes the progression

of GPL cell canceration (89). Curcumin, a phenolic compound

renowned for its robust antioxidant properties, effectively mitigates

cisplatin-induced inflammation and apoptosis in the gastric mucosa

by modulating the NF-kB and MAPKs signaling pathways (90).

Rhein exerts anti-inflammatory and antioxidant effects in CAG. It

can improve the mouse model of CAG infected with H.pylori by

inhibiting inflammation and oxidative stress. The repair of gastric

mucosal damage is achieved through the activation of Nrf2 and

MAPK signaling (91). Panax Notoginseng Saponins have the ability

to stimulate the JNK signaling pathway, trigger apoptosis, suppress

inflammatory responses, slow down the malignant progression of

gastric mucosa, and provide protective benefits for the gastric

mucosa (92).
5.2 JAK/STATs signaling pathway

In the JAK/STATs pathway, H.pylori elevates levels of

inflammatory factors such as IL-6, stimulate the excessive activation

of JAK/STATs signaling, leading to the progression of GPL. Once

activated, JAKs proceed to phosphorylate the primary substrate Signal

Transducers and Activator of Transcription (STATs). Subsequently,

STATsmolecules form dimers, which are subsequently transported to

the nucleus. Within the nucleus, these dimers bind to specific

regulatory sequences, thereby regulating the transcription of target

genes. One such example of target genes is the Suppressor of Cytokine

Signaling (SOCS) family, which can be activated or suppressed by this

intricate signaling pathway, leading to the progression of GPL (93,

94). Normally, interferon gamma activates JAK/STATs to participate

in the immune response. In the early stages of H. pylori infection,

cholesterol in the gastric epithelial cells can be consumed, preventing

interferon gamma signaling from activating the JAK/STAT signaling

pathway and thus evading the immune response (95). However, in the

progression of GPL to gastric cancer, STATs increased with the

cascade of GPL to gastric cancer, which possible mechanism is the

activation of PD-L1, which led to the progression of gastric cancer

(93). Calycosin is a flavonoid derived from the root of Astragalus

membranaceus, known for its antioxidant and anti-inflammatory

properties. It prevents gastric mucosal damage in MNNG-induced

GPL rats by inhibiting STAT3 expression in GPL (96). Danggui

Shaoyao Powder has been found to up-regulate SOCS3 protein levels,

down-regulate TLR4, p-JAK2, p-STAT3 and NF-kB protein levels,

and reduce gastric mucosal atrophy in rats (97).
5.3 PI3K/AKT/mTOR signaling pathway

The PI3K/AKT/mTOR signaling pathway is closely linked to

apoptosis and autophagy (98). H.pylori and inflammatory factors

trigger RAS, subsequently stimulating downstream PI3K, in turn,

facilitates the activation of AKT through phosphorylation and is

drawn to the cell membrane by AKT. This activates mTOR complex

1 (mTORC1). The effectors of mTORC1, including proteins like

HIF1a and PGC-1a, play a pivotal role in regulating various cellular

functions associated with oncogenic phenotypes (99). Several
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natural antioxidants have been reported to be effective for GPL via

regulation of this signaling pathway. For example, berberine has

been shown to down-regulate TGF-b1, PI3K/AKT/mTOR

signaling, and P70S6K, while promoting PTEN, LC3-II, and

Beclin-1, ultimately leading to an improvement in CAG (100).

Epigallocatechin Gallate (EGCG), a natural antioxidant abundant in

tea, has been found to improve GPL (101). Moreover, Ginsenoside

Rg3, a natural compound found in Ginseng, has gained attention for

anti-inflammatory, antioxidant, and anticancer properties.

Ginsenoside Rg3 has been demonstrated to regulate PI3K/AKT/

mTOR and HIF-1a. Ginsenoside Rg3 can be used to induce

apoptosis and treat GPL (102). Xiaojianzhong decoction has been

shown to reduce gastric mucosal hypoxia, regulate the PI3K/AKT/

mTOR pathway to improve GPL (103).
5.4 The Hippo pathway

In the signal cascade of the Hippo pathway, there exist two

states known as “Hippo on” and “Hippo off.” In the “Hippo on”

state, the transcription factors, YAP/TAZ can associate with the 14-

3-3 protein complex and become sequestered in the cytoplasm,

ultimately undergoing degradation via ubiquitination. However, in
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the “Hippo off” state, YAP/TAZ cannot bind to the 14-3-3 complex,

enabling their entry into the nucleus where they participate in

complex formation, regulate the downstream target (104). The

Hippo is link to inflammatory endothelial injury. Study has found

Red Ginseng extract has also been found to inhibit IL-1b and iNOS

associated with H.pylori infection, suppress the phosphorylation of

IkBa, and reduce the increase of gastric mucosal LPO level and

MPO activity, thereby delaying the evolution of GPL (105).

Additionally, radix curcumae extract has been shown inhibit

VEGF, COX-2, offering a potential treatment for GPL (106).

Huazhuo Jiedu formula has been shown to down-regulate the

expression of Hippo/TAZ signaling pathway and its related

protein transcriptional coactivators PDZ-binding motif (TAZ),

tumor suppressor kinase (LATS2), and mammalian sterile line

20-like kinase (MST1) levels in gastric mucosa tissue, thereby

improving chronic atrophic gastritis (107).
5.5 Hedgehog signaling pathway

Hedgehog signaling starts with by various Hedgehog ligands,

such as Shh, Ihh, and Dhh, which bind to membrane-bound

receptor known as Patched. Interestingly, Patched receptors have
FIGURE 3

The inflammatory pathways related to the occurrence and development of GPL. They include MAPK, JAK/STAT3, PI3K/AKT/mTOR, the Hippo,
Hedgehog and Wnt/b-catenin signaling pathway. The signaling pathways can promote gastric epithelial cells to undergo malignant proliferative
transformation and carcinogenesis. (Shh, Sonic hedgehog, PTCH, Patched, SMO, Smoothened, PKA, Protein Kinase A, GLI1, glioma-associated
oncogene homolog 1, MST, Mammalian Sterile 20-like kinase 1/2, LATS 1/2:large tumor suppressor kinase 1/2, YAP/TAZ, Yes-associated protein/
transcriptional co-activator with PDZ-binding motif, Sd, Scalloped, Wnt, Wingless and INT-1, Axin1, Axis inhibition protein 1, APC, Adenomatous
polyposis coli, CK1a:casein kinase 1a, GSK-3b:Glycogen synthase kinase 3b, JAK, Janus Kinase, STAT, Signal transducer and activator of transcription,
RAS, Reliability, Availability and Serviceability, MAPK, Mitogen-activated protein kinase, JNK, c-Jun N-terminal kinase, p38:Peroxidase 38, ERK,
Extracellular regulated protein kinases, PI3K:Phosphatidylinositol-3-kinase, PIP2:Phosphatidylinositol(4,5)bisphosphate, PTEN, Phosphatase and tensin
homolog, AKT, Protein kinase B, TSC1/2:Tuberous sclerosis 1/2, mTOR, mammalian target of rapamycin, HIF1a:Hypoxia-inducible factor-1a, PGC1a,
Peroxisome proliferator-activated receptor-g coactivator 1a).
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shown to promote the progression of GC (108). Inflammation can

accelerate the expression of the Hedgehog signaling pathway and

induce IFNa, which regulates the level of SLFN4 and leads to

atrophic gastritis in infected gastric mucosa (109). Modified Gualou

Xiebai Banxia Decoction, a traditional Chinese medicine

prescription, promotes the Hedgehog pathway to improve the

inflammatory activity in rats with CAG (110). The Chinese patent

medicine Weiweikang can regulate the levels of Smo, Shh, and SuFu

proteins in the gastric mucosa of rats, which improves the

inflammatory changes in the gastric mucosa and treats GPL

(111). Spleen-fortifying, fire-clearing and collateral-unblocking

medicinals affects the up-regulation of Shh, Ptch1, Smo, and Gli1
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protein expression, the down-regulation of Gli2, Gli3, and Sufu

protein expression, reduces serum IL-1b levels, and improves the

pathological changes in CAG rats (112).
5.6 Wnt/b-catenin pathway

In the Wnt/b-catenin pathway, H.pylori infection activates the

levels of Wnt pathway-related proteins as gastric disease progresses

(113). Under the action of Wnt ligands, CK1a, Axin, GSKb and

LRP5/6 are recruited to form a complex. This results in an increase

in large amounts of free beta-catenin, which increases the
TABLE 2 Summary of mechanism of traditional Chinese medicine targeting inflammatory pathways in the Prevention and Treatment of GPL.

Signnaling
Pathway

Interventions Experimental Model Mechanism PMID

MAPK

Curcumin cisplatin (DDP)-induced mice
Suppress JNK1/2, ASK1, P38, JUN
Enhance ERK1/2 and C-Myc

36178099

Rhein H. pylori-induced mice
Regulate TNF-a,COX-2,IL-6,IL-1b and
Nrf2

36789982

Panax Notoginseng Saponins MMNG-induced rats
Regulate TLR2, TLR4/MAPK/NF-kB/
iNOS

/

JAK/STAT3

Calycosin H. pylori-induced rats
Regulate the integrin b1/NF-kB/
DARPP-32
Inhibit STAT3

32606591

Danggui Shaoyao Powder H. pylori-induced rats
Up-regulate SOCS3
Down-regulate TLR4, p-JAK2, p-STAT3,
NF-kB, MyD88, NLRP3, Bax, Bad

36046903

PI3K/AKT/
mTOR

Berberine MMNG-induced rats
Down-regulate TGF-b1, PI3K, p-Akt/
Akt, p-mTOR/mTOR P70S6K
Promote PTEN, LC3-II Beclin-1

33841162

Epigallocatechin MNNG and sodium salicylate-induced rats
Upregulate caspase-3, PTEN
Reduce PI3K, Akt, mTOR

33628319

Rg3 Atp4a-induced mice
Regulate PI3K, AKT, mTOR, HIF-1b,
LDHA, HK-II

32076440

Xiaojianzhong decoction
MNNG compound(MNNG, hot ranitidine-salt
solution and 20% ethanol) induced rats

Decrease PI3K/AKT/mTOR
Inhibit the p53/AMPK, ULK1 Ser-317,
Ser-555

37009319

Hippo

Radix curcumae extract MMNG-induced rats Down-regulate VEGF, COX-2, PCNA 20210736

Red Ginseng extract H. pylori-induced Mongolian gerbils Suppress KC, IL-1b iNOS 24558304

Huazhuo Jiedu formula MMNG-induced rats
Down-regulate TAZ
Up-regulate LATS2 and MST1

/

Hedgehog

Modified Gualou Xiebai Banxia
Decoction,

MMNG-induced rats
Suppress JAK2/STAT3
Promote Hedgehog

/

Weiweikang Sodium-salicylate-induced rats Suppress Smo、Shh and SuFu /

Spleen-fortifying, fire-clearing and
collateral-unblocking medicinals

MNNG compound(MNNG, hot ranitidine-salt
solution and 20% ethanol) induced rats

Improve IL-1b, GAS
Reactivate Hedgehog signal pathway

/

Wnt/b-catenin

Dendrobium officinale polysaccharide MMNG-induced rats
Downregulate Wnt2b, Gsk3b, PCNA,
CyclinD1, b-catenin

31340453

Liquiritigenin MMNG-induced rats
Decrease Wnt1, b-catenin, cyclin D1
Increased GSK-3b

34194556
fron
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progression of gastric disease (114). Traditional Chinese medicine

can intervene GPL by regulating the Wnt/b-catenin pathway.

Dendrobium officinale polysaccharide can reduce Wnt2b and b-
catenin to inhibit the progression of GPL (115). Liquiritigenin and

hesperidin in Jianpiyiqi formula can improve mucosal atrophy and

inflammation and help treat GC by down-regulating Wnt1, b-
catenin and up-regulating GSK-3b (116).
6 Challenges and future perspectives

The inflammatory microenvironment in GPL has shed light on

the crucial part of inflammation in the progression of GC. However,

several challenges need to be addressed to achieve a comprehensive

understanding of this complex process and develop effective

prevention and treatment strategies. Here we discuss some of the

key challenges and propose future perspectives in this field.

One major challenge in studying the inflammatory

microenvironment in GPL is the heterogeneity of these lesions.

Though GPL provides a critical stage for clinical intervention of GC,

GPL can vary in terms of histopathological features, molecular

alterations, and inflammatory cell infiltration patterns. It is central

to uncover the underlying mechanisms driving this heterogeneity

and identifying specific biomarkers for GPL. Nowadays, application

of single-cell sequencing and imaging methods to explore the

cellular heterogeneity within GPL, will shed light on unraveling

distinct subpopulations of inflammatory cells, and understanding

their functional diversity and interaction patterns (117).

Another big challenge lies in deciphering the intricate interplay

between immune cells and inflammation in GPL progression. Immune

cells and cytokines play an important role in the transformation of

GPL. Their interactions and communication, along with their specific

contributions to GPL development, remain unclear. It is also necessary

to delineate the dynamic interactions between immune cells and the

inflammatory microenvironment, which may provide novel targets for

immunotherapeutic approaches (118).

The inflammatory microenvironments are common

pathological features that drive the development of multiple

chronic diseases such as cancer. In GPL, abnormal activation of

inflammatory microenvironment has been shown to be link to the

progression of the disease. However, it is important to recognize

that the inflammatory microenvironment consists of a complex

network of cells, molecules, and signaling pathways. Targeting

inflammatory microenvironment by chemical interventions may

disrupt the delicate balance necessary for normal physiological

functions, leading to potential side effects and toxicity. Thus, the

proper target should be rigorously validation in vivo before

implementing any intervention strategies (119).

Traditional Chinese medicine and its active components have

demonstrated distinct advantages in influencing the release of

inflammatory factors and treating GPL (120). However, the

underlying mechanisms how they affect the inflammatory

microenvironment to prevent GPL, along with their true effect in

GPL clinical trials, remain unclear. In the future, investigating the

molecular mechanisms how TCM interventions modulate

inflammatory microenvironment and exploring their synergistic
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effects via drug combinations, will pave the way for the integration

of TCM into clinical practice.

Collectively, the challenges presented necessitate further

research efforts. By addressing these challenges and exploring the

proposed future perspectives, we can advance our understanding of

the inflammatory microenvironment in GPL and develop effective

strategies for the prevention and treatment of GPL.
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