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Takanori Teshima* and Daigo Hashimoto

Department of Hematology, Hokkaido University Faculty of Medicine, Sapporo, Japan
Allogeneic hematopoietic cell transplantation (HCT) is a curative therapy for

various hematologic malignancies. However, alloimmune response is a double-

edged sword that mediates both beneficial graft-versus-leukemia (GVL) effects

and harmful graft-versus-host disease (GVHD). Separation of GVL effects from

GVHD has been a topic of intense research to improve transplant outcomes, but

reliable clinical strategies have not yet been established. Target tissues of acute

GVHD are the skin, liver, and intestine, while leukemic stem cells reside in the

bone marrow. Tissue specific effector T-cell migration is determined by a

combination of inflammatory and chemotactic signals that interact with

specific receptors on T cells. Specific inhibition of donor T cell migration to

GVHD target tissues while preserving migration to the bone marrow may

represent a novel strategy to separate GVL from GVHD. Furthermore, tissue

specific GVHD therapy, promoting tissue tolerance, and targeting of the tumor

immune microenvironment may also help to separate GVHD and GVL.

KEYWORDS
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Introduction

Allogeneic hematopoietic cell transplantation (HCT) is a curative treatment for

leukemia and other various hematologic malignancies. Its antileukemic effect is mediated

by donor immune cells and refers as graft-versus-leukemia (GVL) effects. This

phenomenon was recognized already in 1956; Barnes et al. reported that leukemia-

bearing mice receiving allogeneic cells eventually died of GVHD without evidence of

leukemia (1). Weiden et al. documented its clinical effects on preventing relapse in 1979 (2).

Since then, the goal for HCT remains the enhancement of GVL effect while limiting

GVHD. However, GVL activity is clearly associated with GVHD; patients with acute

GVHD or chronic GVHD have a significantly lower risk of relapse after HCT compared to

those without GVHD (2, 3).

Separation of GVL effects from GVHD has been a topic of intense research to improve

transplant outcomes. Over the past several decades, clinical attempts to identify and

separate specific immune effector mechanisms that can dissect GVHD and GVL have been
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unsuccessful. Current therapies for GVHD target T cells and

cytokines, often antagonizing GVL effects. Acute GVHD targets

specific tissues, such as the skin, gut, and liver. Recruitment of

donor T cell into these tissues plays a major role in GVHD (4). On

the other hand, bone marrow niche is commonly observed in

various hematologic malignancies (5). Leukemia stem cells (LSCs)

are resistant to chemotherapy, making them the drivers of leukemia

relapse, and they reside in the bone marrow niche (6, 7). Tissue-

specific effector T cell emigration is determined by a complex milieu

of inflammatory and chemotactic signals that interact with specific

receptors on T cell (8). Modulation of donor T cell migration may

pave a new avenue to separate GVHD and GVL (Figure 1).

Similar to T cells, natural killer (NK) cells have potent anti-

leukemia effector capacity, but unlike T cells, NK cells have less

ability to mediate GVHD. Because of their lack of HLA-restricted

specificity, allogeneic NK cells can be administered across HLA

barriers without GVHD (9). Recent studies have shown that donor

NK cell infusion after haploidentical bone marrow transplantation

using posttransplant cyclophosphamide (PTCy-haplo) reduced

relapse compared to historical controls, with an excellent safety

profile (10). Donor selection according to killer immunoglobulin-

like receptor (KIR) alloreactivity is associated with superior survival

in PTCy-haplo (11). Maximizing donor NK alloreactivity thus

holds the exciting possibility to induce GVL effect without

engendering GVHD. In this review, we will discuss current

attempts to separate GVHD and GVL as well as novel concepts

of GVHD and GVL separation by considering the location of

GVHD and GVL.

Donor T-cell and antigen-presenting
cell interactions mediating GVHD
and GVL

The risk of leukemia relapse was significantly higher in patients

who did not develop GVHD or who received a T cell-depleted graft

or a graft from patient’s identical twin (12, 13). Thus, donor T cells

play a major role in mediating GVL effects. Shlomchik et al.
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demonstrated that naïve T cells rather than memory T cells

played the major role in inducing GVHD in mice (14, 15).

Clinical trial data of naïve T cell-depleted HCT demonstrated low

incidences of severe acute GVHD and chronic GVHD without

apparent excess risks of leukemia relapse (16, 17), but effect of naïve

T cell depletion on leukemia relapse remains to be evaluated in

larger studies. Unlike the memory T cells developed in donor, donor

memory cells developed in the recipients after allo-SCT are involved

in GVHD. It has been shown that donor stem cell-like memory cells

(Tscm) persist in the recipient and maintain alloreactivity against

host alloantigens in mice. Adoptive transfer of Tscm into the

secondary recipients induced GVHD (18). Tscm population has

been identified in human (19). A recent study showed that

administration of PTCy spared Tscm that can improve GVL (20).

Donor T cells mediating both GVHD and GVL are activated

primarily by recipient antigen presenting cells (APCs) in mice (21–

23). Reconstituting donor hematopoietic APCs cross-present host

antigens to invoke the full spectrum of GVHD and GVL (22, 24–

26). Thus, separation of GVL from GVHD could not be easily

achieved by the modulation of donor T cell and APC interactions.

After allogeneic HCT, host-derived alloantigen persists lifelong,

which could induce T cell exhaustion. A series of experimental

studies showed that T cell exhaustion is one of the chief

mechanisms of tolerance induction without chronic GVHD after

allogeneic HCT (27–29). T cell exhaustion is a multistep process,

involving precursors of exhausted T cells (Tpex) with stem cell-like

properties, transitory exhausted T cells (transitory-Tex) with potent

effector-like functions and terminally differentiated exhausted T

cells (terminal-Tex) with severely impaired functions (30–33).

Calcineurin inhibitors inhibit T-cell exhaustion by inhibiting

expression of a master regulator of T cell exhaustion, TOX (34).

In experimental HCT, GVHD prophylaxis with calcineurin

inhibitors suppresses differentiation of transitory-Tex to terminal-

Tex, resulting in persistent alloreactivity and induction of chronic

GVHD (35). T cell dysfunction of terminal-Tex is irreversible and

non-responsive to immune checkpoint inhibitors (ICI), while ICI

enhance proliferation and effector functions of Tpex and transitory-

Tex (36). Therefore, calcineurin-induced transitory-Tex could be a
FIGURE 1

Separation of GVL from GVHD by regulating T cell trafficking to tissues. Donor derived alloreactive T cells are activated in the gut and secondary
lymphoid organs, and migrate into the skin, liver, and gut. Tissue-specific effector T cell migration is determined by a combination of inflammatory
and chemotactic signals that interact with specific receptors on T cells. Inhibition of donor T cell migration to GVHD target tissues without impeding
T cell trafficking to the bone marrow represents a novel strategy to separate GVL from GVHD. Late-phase GVHD is maintained within affected
tissues locally by tissue-resident TCF1+ pTex-like cells. Local inhibition of these cells may not impede GVL.
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promising therapeutic target to restore GVL effects by ICI but with a

risk of GVHD exacerbation (35).
Target antigens mediating GVHD
and GVL

GVHD and GVL are mediated by donor T cells recognizing

non-self-antigens expressed on host- and donor-derived APCs. In

HLA-identical HCT, GVHD is induced by minor histocompatibility

antigens (miHA), which are HLA-bound peptides that differ

between the donor and recipient due to genetic polymorphisms

(37). Although it remains unclear how many immunodominant

miHA could evoke significant GVHD and GVL in humans, most

miHA are ubiquitously expressed including epithelial tissues,

thereby potentially inducing GVHD.

miHA with expression limited to hematopoietic cells represent

attractive candidate targets for selective induction of GVL effects

without causing GVHD in patients with hematologic malignancies.

For example, adoptive transfer of H7a (B6dom1) specific T cells

eradicates H7a-expressing leukemia efficiently in H7a-deficient mice

without GVHD (38). Transfer of H60-specific CD8+ memory T

cells eradiates chronic myeloid leukemia cells (39). Several studies

have suggested that GVL activity is greater against hematopoietic

restricted miHA by eliciting less exhaustion and activation-induced

cell death of alloreactive T cells than that against ubiquitously

expressed miHA (28, 39). In humans, cytotoxic T lymphocytes

(CTLs) specific for male tissue specific miHA H-Y induce skin

injury when co-cultured with male skin biopsy specimen, while

hematopoietic system-specific miHA HA-1 and HA-2 induce little

tissue injury (40). However, an inflammatory environment can

render nonhematopoietic cells susceptible to T cell recognition to

induce GVHD (41). It is also challenging to identify candidate

miHA that can be widely applied to heterogenous patient-donor

combinations. Well characterized hematopoietic miHA in humans

include HA-1, HA-2, ACC-1, ACC-2, and LRH1 (40, 42–45). It

remains to be elucidated whether mismatch of these miHA could

reduce leukemia relapse without inducing GVHD in the presence of

the other multiple miHA mismatches between the donor and

recipient. Immunotherapy using specific miHA-directed

T cells generated by genetic modification or vaccination is

promising strategy but remains to be evaluated in prospective

comparative studies.
Donor T cell migration

Acute GVHD is organ-specific and principally affecting

the skin, liver, and gut. Development of GVHD requires donor

T cells to migrate into these tissues (4). Several tissue-specific T cell

homing receptors have been identified. The a4b7 integrin is critical

for T cell homing to the gastrointestinal tract and gut-associated

lymphoid tissues (46). T cell migration to the skin is directed by

cutaneous lymphocyte antigen, a specialized form of P-selectin

glycoprotein ligand-1 (47). Regulation of effector T cell migration
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into target tissues occurs in a complex milieu of chemotactic signals

where several receptors may be triggered simultaneously

or successively (48). Inflammatory chemokines expressed in

inflamed tissues upon stimulation by proinflammatory cytokines

are specialized for the recruitment of donor T cells and other

effector cells (8, 49). Chemokine receptors are differentially

expressed on subsets of activated/effector T cells. Upon

stimulation, T cells rapidly switch chemokine receptor expression

and acquire new migratory capacity (50, 51). Requirement of donor

T cell homing to specific tissues has profound clinical implications

to modulate GVHD and GVL.

Pharmaceutical agents used for prophylaxis and treatment of

GVHD such as calcineurin inhibitors, antimetabolites, and

corticosteroids have considerable effects on T cell trafficking

generally, thus likely suppressing GVHD and GVL at the same

time (52). Corticosteroids are the first line treatment for both acute

and chronic GVHD. However, higher dose and longer duration of

corticosteroid therapy is associated with poor outcomes (53–55).

Recently, ruxolitinib has been approved for steroid-refractory acute

and chronic GVHD, ibrutinib and belumosudil for steroid-

refractory chronic GVHD (56). However, it is not clear for how

long they should be administered with a fear of losing GVL effects.
Separation of GVL and GVHD by
modulating donor T cell migration

Although host alloantigen is essentially expressed in all tissues,

target tissues of acute GVHD are the skin, gut, and liver, suggesting

that donor T cells are polarized to traffic to these tissues.

Accumulating evidence suggest that intestine is a critical site for

alloreactive T cell activation by APCs (23, 57–59). The a4b7
integrin-MAdCAM (mucosal addressin cell adhesion molecule)-1

interactions are essential for donor T cell homing to the gut, and the

subsequent development of lethal GVHD (57, 59, 60). A phase III

randomized, double-blind, placebo-controlled study (GRAPHITE

study) evaluated the efficacy and safety of vedolizumab, a

humanized monoclonal antibody directed against a4b7 integrin,

which is expressed on T cells and is essential for gastrointestinal

(GI) trafficking (61). This study met its primary endpoint by

demonstrating a higher lower GI-GvHD-free survival with a

comparable safety profile (presented at 2023 Transplantation &

Cellular Therapy Meetings; Abstract# LBA2). The impacts on skin

and liver GVHD, as well as leukemia relapse, remain to

be investigated.

The C–C chemokine receptor 5 (CCR5) interacts with multiple

chemokine ligands that mediate the migration and function of T

cells and other immune cells to the inflamed tissues (62). CCR5 is

critical for donor T cell recruitment to tissues involved in visceral

acute GVHD (57, 63–65). In a clinical study of CCR5 antagonist

maraviroc involving 38 patients, none of the patients developed

acute liver or gut GVHD (66). However, maraviroc failed to reduce

GVHD in a randomized phase 2 trial (67).

The CT10 regulator of kinase (Crk) is a crucial adaptor protein

for T cell migration (68). Crk deficient T cells failed to traffic GVHD
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target tissues but efficiently eliminate lymphoma cells in the

circulation (69). However, Crk deficient T cells failed to clear the

same tumor growing in the skin (69). These results suggest that Crk

could be a potential target in controlling GVHD and GVL effects

against circulating hematopoietic tumors.

Sphingosine-1-phosphate (S1P) is a metabolite of sphingolipid,

a component of bio membrane. S1P interacts with S1P receptor

types 1 to 5 (S1PR1-5) (70). S1P modulates cellular proliferation,

survival, and migration. Fingolimod (FTY720), a multi-S1PR

inhibitor of S1PR1 and S1PR3–5, sequestrates T cells within the

secondary lymphoid organs (SLOs) (71, 72). Preclinical studies

showed that administration of fingolimod ameliorated GVHD by

inhibiting donor T cell infiltration to GVHD target organs and

facilitating activation-induced cell death of alloreactive T cells (73,

74). Unfortunately, fingolimod exerts cardiovascular adverse effects

that are accelerated in inflammatory milieu in GVHD through its

affinity to S1PR3 (75). T cells primarily express S1PR1 (70).

Mocravimod (KRP203), a selective agonist of S1PR1, induced

apoptosis of donor T cells in the SLOs, suppressed donor T cell

migration into the intestine and skin, and ameliorated GVHD (76).

Importantly, mocravimod significantly preserved GVL effects

compared to cyclosporine (76). In a phase 1 trial, mocravimod

reduced circulating lymphocyte numbers, while increased T cell

accumulation in the bone marrow (77, 78). These preliminary

results suggest that selective inhibition of S1P and S1PR1

interactions inhibits donor T cell migration to the GVHD target

tissues, while preserving its migration to the bone marrow. A global

phase 3 study evaluating mocravimod in patients with acute

myelogenous leukemias (AML) is ongoing.

Ruxolitinib, a JAK1/2 inhibitor, has been approved for the

treatment of corticosteroid-refractory acute and chronic GVHD

(79, 80). Ruxolitinib suppresses donor T-cell infiltration in the

GVHD target organs by reducing CXCR3 expression on donor T

cells (81, 82).

Such a strategy of modifying donor T cell migration may

eliminate the use of broad immunosuppression, thereby

minimizing infectious complications and preserving GVL

effect (Figure 1).
Separation of GVL and GVHD through
localized GVHD therapy

In mouse models, alloreactive donor T cells migrate into target

tissues early after allogeneic HCT. However, late-phase GVHD is

maintained within affected tissues locally by tissue-resident TCF1+

pTex-like cells without migrating between target organs (83). In

patients with multiple sites of GVHD, the dominant T cell receptor

repertoires are not consistently observed across tissues within the

same patient, raising the possibility that GVHD arose in each local

tissue independently (84). Furthermore, patient-derived resident

memory T cells persist for many years after HCT in association with

the development of skin GVHD (85). These results suggest that

tissue-resident memory T cells could be a therapeutic target for

tissue-specific GVHD (Figure 1). Strategies that prevent T-cell
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migration into GVHD target organs could also inhibit the

development of donor-derived tissue resident memory T cells. In

addition, the local therapies also suppress the activities of tissue

resident T cells.

While topical corticosteroids have been used for treating mild

GVHD in the skin and gastrointestinal tract without blunting GVL

effects, they are inadequate for treating severe GVHD. Enhancing

local GVHD therapy could be the straightforward approach to

dissect GVL and GVHD (Figure 2). We have recently discovered

that topical ruxolitinib effectively improved skin GVHD in mice,

while topical corticosteroids exhibited direct toxicity against skin

stem cells (86). Long-term use of corticosteroids induces adverse

effects on the skin, such as skin atrophy and delayed wound healing

(87). In contrast, ruxolitinib protects skin stem cells from GVHD

and facilitates wound healing (86). Ruxolitinib cream is now being

tested for chronic skin GVHD in a randomized clinical trial.

Fibrosis is an end-stage consequence of chronic inflammation

in chronic GVHD. Treatment of fibrotic chronic GVHD with anti-

fibrotic agents may not impede GVL (Figure 2) (88). A vitamin A-

coupled liposome containing siRNA against heat-shock protein 47

(VA-lip HSP47) delivers HSP47 siRNA to pathogenic

myofibroblasts in affected organs, such as the skin and salivary

glands, and ameliorates fibrosis in mouse chronic GVHD (89).

Macrophage-targeting therapy can also improve fibrosis by

inhibiting the production of a pro-fibrotic cytokine TGF-b in

mice (89, 90). Such approach likely has a minimal impact on

GVL effects; axatilimab, an anti-CSF1R monoclonal antibody, is

being tested in a clinical trial for chronic GVHD (91). Topical

therapy using anti-fibrotic agents is also a promising treatment

option. Fibrosis of the lacrimal glands leads to dry eye syndrome in

chronic GVHD (92). Ocular instillation of VA-lip HSP47

ameliorates dry eye syndrome in chronic GVHD by targeting

myofibroblasts in the lacrimal glands in mice (93).
Separation of GVL and GVHD by
promoting tissue tolerance

Recently, ‘tissue tolerance’ has been proposed as a concept to

comprehensively understand the mechanisms enhancing tissue

resilience and regeneration during immune reactions (94). The

sensitivity of target tissues to GVHD may be modulated by tissue-

intrinsic resilience and homeostasis (95, 96). Modulation of GVHD

by increasing tissue tolerance would be a promising adjunct therapy

without impeding GVL (Figure 2). We and others have

demonstrated that acute GVHD targets tissue epithelial stem cells

in the intestine and skin, leading to prolonged and refractory

GVHD (86, 95, 97, 98). Protection and stimulation of tissue stem

cells to improve tissue tolerance and repair may represent a novel

adjunct strategy for separating GVHD and GVL. For example, since

IFN-g damages tissue stem cells in the intestine and skin, ruxolitinib

has the potential to improve GVHD by both suppressing immune

reactions and protecting tissue stem cells (86, 99). R-Spondin3 is

produced by intestinal stromal cells and lymphatic endothelial cells

to maintain intestinal homeostasis by stimulating proliferation and
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differentiation of LGR5+ intestinal stem cells (100–104). Lymphatic

endothelial cell injury in GVHD impairs R-Spondin3 production

(102). Administration of recombinant R-Spondin1 stimulate

growth and differentiation of intestinal stem cells, thus

ameliorating experimental GVHD (97, 105). Similarly,

administration of glucagon-like peptide-2 (GLP-2), a growth

factor for intestinal stem cells produced by enteroendocrine cells

in the intestine, ameliorates experimental GVHD (106).

Teduglutide, a dipeptidyl peptidase inhibitor 4 (DPP4)-resistant

analog of GLP-2, protects intestinal stem cells and enhances the

barrier effects of the intestinal mucosa in experimental GVHD

(106). IL-22 is produced by type 3 innate lymphoid cells, and its
Frontiers in Immunology 05
levels are reduced in acute GVHD (98). F562, a fusion protein

containing two IL-22 molecules and IgG2-Fc, enhances epithelial

regeneration in experimental GVHD and is currently under

development in clinical studies (107, 108). Epithelial growth

factors could also have beneficial effects on tissue tolerance.

Administration of IL-25, a growth factor for goblet cells, mitigates

the disruption of mucus layer of the intestine, and ameliorates

experimental acute GVHD (109). Urinary-derived human

chorionic gonadotropin/epidermal growth factor (uhCG/EGF;

Pregnyl) contains abundant EGF, which protects the gut

epithelium. A phase 2 trial of Pegnyl showed promising results

(110). In conclusion, these therapies targeting tissue tolerance hold
FIGURE 2

Separation of GVL from GVHD by tissue specific GVHD therapy and modulation of TIME. (Upper panel) In GVHD target organs, donor T cells and
innate immune cells such as macrophages (Mf) cause tissue damage via production of proinflammatory cytokines and direct cytotoxicity. Mf
produce pro-fibrotic cytokines such as TGF-b and platelet-derived growth factor (PDGF), which activate fibroblasts and promote pathologic fibrosis
and remodeling. Topical immunosuppressants such as corticosteroids and ruxolitinib suppress GVHD locally without impeding GVL. Mf-targeting
agents such as CSF-1 receptor antibodies, and fibroblast-targeting agents such as VA-lip HSP47 may ameliorate chronic GVHD without affecting
GVL effects. Growth factors for tissue stem cells or epithelial cells promote tissue tolerance, thereby suppressing tissue damage and facilitating tissue
regeneration. (Lower panel) FLT3-ITD signaling produces immune-cold TIME in FLT3-ITD-expressing AML by inhibiting leukemia production of IL-
15. FLT3 inhibitors restore IL-15 production and activate neighboring T cells. Mutated IDH produces 2-HG, which inhibits glycolysis and reduces
cytotoxicity in neighboring T cells. IDH inhibitors activate T cells locally by reducing 2-HG and likely promote GVL effects. Red arrows indicate
positive regulation, while blue arrows indicate negative regulation.
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promise as treatment strategies for acute GVHD without inducing

general immunosuppression and impeding GVL.
Separation of GVL and GVHD by
targeting leukemia microenvironment

Internal tandem duplications (ITD) of the receptor-tyrosine

kinase FLT3 gene (FLT3-ITD) are found in 20–25% of AML,

providing a persistent growth stimulus. Tumor immune

microenvironment (TIME) impacts on the outcome of immune-

mediated treatment of various cancers. It has been shown that

FLT3-ITD expressing AML has “immune cold” TIME with

significantly less T and NK cell infiltration in the bone marrow

compared to other types of AML (111). This is possibly due to the

inhibition of IL-15 production by FLT3-ITD signaling in AML cells

(112). A multi-tyrosine kinase inhibitor sorafenib restores IL-15-

production in FLT3-ITD+ AML cells by inhibiting FLT3-ITD

signaling (Figure 2) (112). IL-15 is a homeostatic cytokine for

CD8+ T cells and plays a critical role in the survival and

activation of CD8+ T cells. The biologic activities of IL-15 are

uniquely mediated by the IL-15-IL15Ra complex produced by non-

T cells and “trans-presented” to neighboring CD8+ T cells (113).

Thus, IL-15 produced by FLT3-ITD+ AML cells can activate

neighboring CD8+ T cells in the bone marrow, thereby promoting

GVL effect without significant GVHD induction (112). A

subsequent study demonstrated that a selective FLT3 inhibitor

gilteritinib also promoted GVL effect without exacerbating

GVHD through the similar mechanisms (114). However, in

patients with liver involvement of FLT3-ITD+ AML, FLT3

inhibitor may exacerbate hepatic GVHD by stimulating

neighboring T cells. Another immunosuppressive TIME could be

produced by IDH mutation. IDH1-mutation in gliomas suppressed

local expansion and cytotoxicity of CD8+ T cells by producing

oncometabolite D-2-hydroxyglutarate (2-HG) (115). This localized

T-cell suppression can be promptly reversed by IDH-inhibition.

Although the role of IDH1 mutation on TIME is less clear in AML

(116), these results suggest that IDH inhibitors may induce localized

GVL effects around AML cells without affecting systemic GVHD.
Conclusions

Isolating GVL effects from GVHD has been a paramount issue

in transplant community. However, redirecting the donor T cell
Frontiers in Immunology 06
alloreactivity specifically towards leukemia cells, while avoiding

exacerbation of GVHD, remains challenging. In this context, the

prospect lies in enhancing localized immune suppressive therapies

and impeding T cell migration into GVHD target organs, while

maintaining T cell migration toward the bone marrow, where

niches for leukemic stem cells exist. In addition, improving our

understanding of the biology of tissue stem cells in GVHD target

tissues will facilitate the development of therapies aimed at

promoting tissue tolerance. Counteracting immune evasion of

leukemia cells stands as another avenue for enhancing GVL

effects. Particularly, specific inhibitors targeting mutated

molecules within leukemia may amplifying GVL effects by

modulating TIME. Better understanding of the mechanisms of

GVHD and GVL is essential to develop strategies for separating

GVHD and GVL.
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