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Background: Immune control of Mycobacterium tuberculosis (Mtb) infection is

largely influenced by the extensive disease heterogeneity that is typical for

tuberculosis (TB). In this study, the peripheral inflammatory immune profile of

different sub-groups of pulmonary TB patients was explored based on clinical

disease severity, anemia of chronic disease, or the radiological extent of

lung disease.

Methods: Plasma samples were obtained from n=107 patients with active

pulmonary TB at the time of diagnosis and after start of standard

chemotherapy. A composite clinical TB symptoms score, blood hemoglobin

status and chest X-ray imaging were used to sub-group TB patients into 1.) mild

and moderate-severe clinical TB, 2.) anemic and non-anemic TB, or 3.) limited

and extensive lung involvement. Plasma levels of biomarkers associated with

inflammation pathways were assessed using a Bio-Plex Magpix 37-multiplex

assay. In parallel, Th1/Th2 cytokines were quantified with a 27-multiplex in

matched plasma and cell culture supernatants from whole blood stimulated

with M. tuberculosis-antigens using the QuantiFERON-TB Gold assay.

Results: Clinical TB disease severity correlated with low blood hemoglobin levels

and anemia but not with radiological findings in this study cohort. Multiplex

protein analyses revealed that distinct clusters of inflammation markers and

cytokines separated the different TB disease sub-groups with variable efficacy.

Several top-ranked markers overlapped, while other markers were unique with

regards to their importance to differentiate the TB disease severity groups. A

distinct immune response profile defined by elevated levels of BAFF, LIGHT,

sTNF-R1 and 2, IP-10, osteopontin, chitinase-3-like protein 1, and IFNa2 and IL-

8, were most effective in separating TB patients with different clinical disease

severity and were also promising candidates for treatment monitoring. TB
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patients withmild disease displayed immune polarization towardsmixed Th1/Th2

responses, while pro-inflammatory and B cell stimulating cytokines as well as

immunomodulatory mediators predominated in moderate-severe TB disease

and anemia of TB.

Conclusions: Our data demonstrated that clinical disease severity in TB is

associated with anemia and distinct inflammatory immune profiles. These

results contribute to the understanding of immunopathology in pulmonary TB

and define top-ranked inflammatory mediators as biomarkers of disease severity

and treatment prognosis.
KEYWORDS

tuberculosis, inflammation, cytokines, chemokines, disease severity, clinical symptoms,
anemia, lung involvement
1 Introduction

Infection with Mycobacterium tuberculosis (Mtb) results in a

broad spectrum of clinical presentations and tuberculosis (TB)

disease outcomes (1). It is well known that Mtb infection initiates

a cascade of both pro-inflammatory and anti-inflammatory

mediators in the human host that can both promote and limit

bacterial dissemination (2, 3). Consequently, immune control in TB

is dictated by a range of soluble factors including cytokines,

chemokines, and other inflammatory molecules that can influence

disease progression (4). Clinical heterogeneity and disease severity

of pulmonary TB are multifactorial but have been described to

depend on the extent of clinical TB symptoms including anemia

and the level of lung involvement such as fibrosis and cavitation (5).

This complexity of TB complicates diagnosis, disease prognosis and

treatment decision-making and follow up.

It is well-established that cell-mediated Th1 immunity

coordinated by IFN-g and TNF-a, is required to kill Mtb inside

macrophages at the site of infection in the lung (6, 7). Instead, the

role of Th2 responses including humoral B cell immunity is more

controversial (8) but may be less effective to achieve immune

control of TB disease. Th1 cytokines typically activate

macrophages and cytolytic T cells to kill intracellular Mtb via

induction of reactive oxygen and nitrogen species, antimicrobial

peptides, and autophagy (6, 9). Conversely, Th2 cytokines including

IL-4, IL-13 and IL-10 promote anti-inflammatory responses that

are necessary to prevent pathological inflammation but also reduce

the capacity of macrophages and T cells to effectively clear Mtb (10).

Instead, Th2 cytokines promote the development of B cells into

antibody-producing plasma cells (11) that may inactivate bacteria

that are released in the extracellular microenvironment but are

likely less operative in Mtb infection control (12). Besides pro-

inflammatory cytokines such as IL-6, IL-1b, IL-8, and the classical

Th1/Th2 polarization of immune cells, there are many different

inflammatory mediators and immunomodulatory proteins that

could contribute to immunopathogenic responses in TB. Less
02
explored are for example the IL-20 subfamily of cytokines

including IL-19, IL-20, IL-22, and IL-24, that have been shown to

contribute to tissue healing processes upon chronic infections and

inflammation in the lung by mainly targeting the epithelial barrier

at mucosal sites (13). But the IL-20 sub-family have also been shown

to down-modulate antigen-specific Th1 and Th17 responses in TB

(14). Likewise, IL-11 (15), type I and III interferons (IFN) (16, 17),

and acute phase proteins including pentraxin, diverse

chemoattractants such as RANTES and MIP-1a and b, or eotaxin
(3), as well as proteins that are involved in Mtb-driven tissue

remodeling and lung matrix destruction, primarily matrix

metalloproteinases (MMPs) (18) or ostepontin (19), have been

linked to both protective as well as dysfunctional responses in the

regulation of inflammation and development of lung pathology in

TB and other diseases.

Recently, we described that anemia of chronic TB disease was

associated with more severe clinical disease and elevated levels of

pro-inflammatory IL-6 but a suppressed IFN-g response (20). While

it is clear that anemia of chronic diseases such as TB is characterized

by systemic inflammation (21, 22), it has not been well described

what type of signaling pathways or mediators are involved and how

these contribute to immunopathology of Mtb. Now, we extend

these findings by assessment of inflammatory mediators and

cytokines in different sub-groups of pulmonary TB patients

based on clinical disease severity, anemia or radiological findings.

Plasma levels of biomarkers associated with inflammation pathways

including pro-inflammatory and the IL-10 family of cytokines,

type I/II/III IFN, TNF ligands and receptors as well as Th1/

Th2 and immunomodulatory cytokines and proteins involved

in tissue-remodeling and wound-healing were assessed using 37-

and 27-multiplex assays, respectively. While these results add

to the pipeline of studies using a proteomics approach to

improve TB diagnosis and prognosis, we anticipate that these

data will also contribute to the understanding of pathophysiology

in TB by assessing the inflammatory profile in different TB

patient subgroups.
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2 Materials and methods

2.1 Study cohort

HIV-negative patients >18 years, with newly diagnosed active

pulmonary TB (n=107) and healthy controls (n=19) were recruited

at the Chest Unit, Department of Internal Medicine, Tikur Anbessa

Specialized University Hospital in Addis Ababa, Ethiopia after

written and signed informed consent. The study subjects were

enrolled in a previously conducted clinical trial (23) that was

approved by the ethical review boards in Ethiopia and Sweden,

and registered at www.clinicaltrials.gov, NCT01698476, prior to

inclusion of the first patient. Secondary endpoint measures

including multiplex protein assays were conducted on one third

(107/345; 31%) of the enrolled TB patients in the intervention

(n=53) and placebo (n=54) treatment groups, respectively. A

confirmed TB diagnosis was based on a positive sputum

microscopy or Mtb-culture, and/or clinical symptoms and chest

X-ray findings consistent with TB, i.e., clinical TB defined according

to WHO criteria. HIV-infection, multidrug-resistant TB (MDR-

TB) or extrapulmonary TB, anti-TB treatment in the past 2 years,

pregnant women, patients with kidney or liver disease, cancer or

autoimmune diseases were excluded from the study. Healthy

controls (n=19) were also included to assess baseline levels of

inflammatory mediators.
2.2 Clinical measurements

A previously validated clinical TB score (23–25) was used to

assess clinical disease severity. This is a numerical composite TB

score (2-point scale: symptom absent (0p) or present (1p), max 13p)

that included self-reported clinical symptoms (cough, night sweats,

and chest pain), as well as different variables documented upon

clinical examination including conjunctival pallor, hemoptysis,

dyspnea, tachycardia, positive findings at lung auscultation, fever,

low BMI (<18 and/or <16), and low mid-upper arm circumference

(MUAC) (<22 and/or <20 cm). Weight and height were measured

to determine BMI (weight/(height2)) while a measuring tape was

used to assess MUAC. BMI was defined as underweight ≤ 18.5 Kg/

m2 or normal weight > 18.5 Kg/m2), while MUAC was defined as

underweight ≤ 21cm or normal weight > 21cm. Patients were sub-

grouped into mild (TB score 0-6) or moderate-severe (TB score 7-

13) clinical TB disease based on the average TB score obtained

among n=107 included TB patients (Table 1). In addition to the TB

score, patients were sub-grouped in anemic and non-anemic TB

disease based on the normal reference blood Hb values for males

(<13.5 g/dl) and females (<12 g/dl) (26).

An experienced radiologist examined standard full-size

posteroanterior chest X-rays and graded pathological lung

involvement at the time of diagnosis using the diagnostic standards

and classifications of TB described by the American Thoracic Society

and as previously reported (23, 27). Pulmonary pathologies included

infiltrates, consolidations or opacifications, lesions such as nodules and

granulomas, fibrosis, and cavitation. Radiological findings were graded

as normal (grade 0): no lung involvement; mild/minimal (grade 1):
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non-confluent uni- or bilateral lung involvement confined to the apical

segment with no visible cavitation; moderately advanced (grade 2):

disseminated uni- or bilateral lung involvement in the absence or

presence of cavitation (cavity size < 4 cm); or far advanced (grade 3):

disseminated uni- or bilateral lung involvement with cavitation (cavity

size > 4 cm). For mild TB, the extent of lung involvement did not

exceed the volume of the lung on one side above the second

costochondral junction or the 4th or 5th vertebrae. For moderately

and far advanced TB, the extent of lung involvement comprised

disseminated lesions of slight to moderate density that covered the

total volume of one lung or equivalent volumes in both lungs, or dense

and confluent lesion(s) that were limited to one third of the volume of

one lung lobe. The study cohort of n=100 subjects (no available chest

X-ray data from n=7) was sub-grouped into patients with more limited

(grade 0-2) or extensive (grade 3) lung involvement.
2.3 Laboratory measurements

Peripheral blood was obtained at the time of inclusion and at

week 4, 8 and 16 after start of standard chemotherapy from a sub-

group of subjects including equal numbers of patients with mild

(n=36), moderate (n=36), or severe (n=35) TB disease, determined

using a composite clinical TB score described above (24). Blood

analyses and chest X-ray were used to further sub-group TB

patients into anemic and non-anemic patients or extensive and

limited lung involvement using Hb values and imaging

data, respectively. Whole blood samples were used for blood

chemistry analyses and for Mtb-specific restimulation of

blood cells in vitro using QuantiFERON-TB Gold in-Tube

(Cellestis; Statens Serum Institut, Denmark), according to the

manufacturer´s instructions. Plasma samples were isolated from

Lymphoprep (Alere technologies, Norway) centrifugation (2000

rpm, 20-30 min at room temperature) of blood in Leucosep tubes

(Greiner Bio-One, Austria). Plasma aliquots were stored at -80°C

until multiplex analyses. Blood hemoglobin, white blood cell count

(WBC) (Abbott, Il, USA), erythrocyte sedimentation rate (ESR),

CD4 and CD8 T cell counts (BD Biosciences, NJ, USA) were

assessed at the International Clinical Laboratory (ICL) in Addis

Ababa, Ethiopia.
2.4 Multiplex assays

Plasma levels of inflammation-associated mediators were

assessed using a Bio-Plex Pro Human Inflammation 37-Plex

Panel 1, in 96-well plate format for the detection of 37

inflammation biomarkers (171AL001M; Bio-Rad, Hercules, CA).

In parallel, secreted proteins in plasma and matched cell culture

supernatants (n=79) obtained from whole blood stimulated with

Mtb-antigens using the QuantiFERON-TB test, were quantified

using a Bio-Plex Pro Human Cytokine 27-Plex Panel, in 96-well

plate format for the detection of 27 Th1/Th2 cytokines and

chemokines (M500KCAF0Y, Bio-Rad, Hercules, CA). Samples

were analyzed using a Bio-Plex® MAGPIX™ Multiplex Reader

and the Bio-Plex Manager software (Bio-Rad, Hercules, CA).
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Blood samples can be used to assess both cells and soluble

factors that leak into the peripheral circulation from the site of

infection. Inflammatory mediators are produced by diverse cell

types including both innate and adaptive immune cells as well as

epithelial cells, while specific Th1/Th2 cytokines are mostly

produced by activated T cells. In a small pilot experiment, the

inflammatory markers in the 37-plex were readily detectable in ex

vivo collected plasma samples, while cytokines and chemokines in

the 27-plex were expressed at very low levels. To enhance the

detection levels of the 27-plex markers, the QuantiFERON-TB assay

was used to re-stimulate Mtb-specific T cells in whole blood

samples to promote accumulation of cytokines in cell

culture supernatants.
2.5 Statistical analysis

Unsupervised analyses of acquired 37-plex and 27-plex data

were performed in R programming language (R) version 4.2.2 (R

Core Team, 2022) within the RStudio integrated development
Frontiers in Immunology 04
environment version 2023.03.1 + 446. These methods included

random forest (RF) for classification and ranking of the most

important mediators and principal component analysis (PCA) for

dimensionality reduction and clusters analyses. Principal

component 1 (PC1) and 2 (PC2), were presented in box plot

graphs showing interquartile range and median. The normality of

the data was tested using Shapiro–Wilk normality test. A non-

parametric Mann-Whitney test or Kruskal-Wallis and Dunn’s post-

test as well as Holm’s multiple correction test was used for

comparison of two or multiple unpaired groups. A p-value < 0.05

was considered significant. Statistical analysis and box plot graphs

were generated via the package ‘ggstatsplot’ (28).

Manual analyses of data were performed in GraphPad Prism

9.0, using an unpaired t-test for normally distributed data, while

data that did not pass a normality test was analyzed using the

Mann–Whitney test. Box and whiskers plots show data as median

and 10-90 percentile, while violin plots shown median and

range. Bar graphs show mean and 95% confidence interval (CI)

or standard error (SE). Correlation was determined using

Spearman´s correlation test. A repeated measurements ANOVA
TABLE 1 Baseline characteristics of study subjects.

Human inflammation 37-plex Human cytokine 27-plex

Variablesa Pulmonary TB
(n=107)

Controls (n=12) Pulmonary TB
(n=60)

Controls (n=19)

Age in years (range) 25 (18-63) 30 (18-57) 24.5 (18-70) 29 (18-57)

Gender (M/F) 58/49 4/8 30/30 5/14

Sputum-smear pos/neg (no) 94/13 nd 54/6 nd

TB score (0-13p) 6 nd 6 nd

Mild/Mod-sev TB (no)b 58/49 nd 28/32 nd

Hemoglobin (g/dL) (M/F) 12.7 (13/12.4) nd 13 (13/12.6) nd

Non-anemic/Anemic TB (no)c 50/57 nd 28/32 nd

Chest X-ray grade (0-3p)d 3 nd 3 nd

Limited/extensive involvement (no)e 41/59 nd 25/29 nd

BMI (kg/m2) 17.75 21.7**** 17.8 22.6****

Underweight ≤18.5/Normal weight >18.5 76/31 0/11 42/18 2/16

MUAC (cm) 21.5 25.75**** 21.5 27****

ESR (mm/hour) 50 nd 50 nd

WBC counts (109 cells/L) 7.8 nd 7.6 nd

CD4 T cell counts (cells/mm3) 419.5 665.5*** 397.5 631***

CD8 T cell counts (cells/mm3) 327.5 403 300 407*

QuantiFERON (IU/ml)f 2.71 1.29 2.79* 0.71
aData are presented as numbers (no) or median.
bAccording to numerical TB score (0–6 p = mild TB, >6 = moderate-severe TB).
cAccording to normal blood Hb reference value for males (<13.5 g/dL) and females (<12 g/dL). Blood Hb was not determined for the healthy controls.
dAccording to radiological chest X-ray grading (0-2 = limited lung involvement, 3 = extensive lung involvement).
en=7 patients did not have chest X-ray data.
fDetermined using the QuantiFERON TB Gold In-Tube (QFTG) assay.
Statistical difference between TB patients and healthy controls was determined using a Mann-Whitney U test, except for blood Hb comparing the difference between males and females. *p≤0.05,
***p≤0.001, and ****p≤0.0001.
mod-sev TB, moderate-severe TB; BMI, body mass index; MUAC, mid-upper arm circumference; WBC, white blood cell count; ESR, erythrocyte sedimentation rate; nd, not determined.
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and Sidak post-test was used for comparison of longitudinal data

presented in bar graphs as mean and standard error at week 0, 4, 8

and 16. A p-value < 0.05 was considered significant.
3 Results

3.1 Clinical and laboratory characteristics
of TB patient sub-groups

Baseline data from TB patients and controls is presented in

Table 1. Enrolled TB patients were young, median 25 years, and

around 70% of the TB subjects were underweight and accordingly

both BMI and MUAC were significantly lower (p<0.0001) in the TB

patients compared to healthy controls. Peripheral CD4 T cell counts

have been shown to be associated with disease severity in HIV-

negative TB patients (29) and were also significantly reduced

(p<0.001) in the TB patients compared to the controls. In the

subjects used in the 27-plex assay, CD8 T cell counts were higher

(p<0.05) in the controls while IFN-g levels detected by the

QuantiFERON test were significantly higher (p<0.05) in the

TB patients.

Chronic inflammation was mapped in four sub-groups of study

subjects including 1.) pulmonary TB patients (n=107) vs healthy

controls (HC) (n=12/19), 2.) patients with mild (n=58) vs

moderate-severe (mod-sev) (n=49) clinical TB, 3.) anemic (n=57)

vs non-anemic (n=50) patients and 4.) patients with limited (n=41)

vs extensive (n=59) lung involvement. The proportion of cavitary

TB in the cohort was high, around 84% (data not shown). As

expected, the composite clinical TB score was significantly higher in

patients with moderate/severe TB (p<0.0001) and in patients with

anemia (p=0.0003) (Figures 1A, B). There was no difference in the

TB score comparing extensive versus limited TB disease

(Figure 1C), despite a higher radiological score in TB patients

with extensive lung involvement (Figure 1F). Contrary, chest X-

ray grading was similar in mild versus mod-sev TB and anemic

versus non-anemic TB (Figures 1D, E). Blood Hb was naturally

lower in anemic TB patients (p<0.0001) but also in patients with

mod-sev TB (p=0.0001) (Figures 1G, H). As an indicator of

inflammation severity (30), serum albumin levels were found to

be significantly lower in mod-sev TB (p=0.0007) and anemic TB

patients (p=0.001) (Figures 1J, K), and there was a positive

correlation (r=0.38; p<0.0001) between blood Hb and serum

albumin levels in all TB patients (Figure 1M). Serum albumin was

similar in TB patients with extensive and limited chest X-ray

findings (Figure 1L).
3.2 Longitudinal changes of soluble
mediators demonstrate a normalization of
inflammation in response to anti-
TB treatment

The protein concentrations in plasma for the 37-plex and in

plasma and QuantiFERON supernatants for the 27-plex are

summarized in Supplementary Tables 1, 2A, B, 3, respectively. All
Frontiers in Immunology 05
marker abbreviations are listed in a footnote (Table S1, S2A, B).

First, unsupervised analysis was exploited to provide an unbiased

view of the inflammatory immune profile in the different study sub-

groups. Random forest (RF) analyses ranked the importance of the

markers in each multiplex assay to better discriminate between the

different study sub-groups. Principal component analyses (PCA)

were used to reduce data dimensionality when comparing different

TB disease groups and to enable clusters generation. It was apparent

that the magnitude of the detected 27-plex cytokine responses was

clearly lower in plasma with many data points below the detection

levels. Therefore, data obtained with restimulated whole blood

samples were used for the unsupervised analyses.

In the first part of the analyses, baseline (week 0) and

longitudinal treatment responses (week 4, 8 and 16) detected in

the TB patients were plotted together with the control group

(Figures 2A-H). For the 37-plex and 27-plex, 9 inflammation

markers and 7 cytokines were ranked according to the order of

importance based on a minimum of 50% variance in the PCA

analyses (Figures 2A, B, E, F, Supplementary Figure 1). For the 37-

plex, these included the TNF superfamily members (TNFSF)

LIGHT/TNFSF14 and B cell activating factor (BAFF)/TNFSF13B,

MMP-1 and 2, Osteocalcin, soluble TNF receptor (sTNF-R) 1 as

well as sIL-6R-b (gp130), pentraxin-3, and the IL-6 family member

IL-11 (Figures 2A, B). While these top-ranked 9 inflammation

markers created diverse clusters at week 0, 4, and 8, the week 16

clusters overlapped to a great extent with the healthy controls

(Figure 2B), which confirmed that the majority of the

inflammatory markers (PC1: 38.64%) were normalized upon

successful anti-TB treatment (week 0 vs week 16: p<0.0001)

(Figure 2C). In addition, some markers (PC2: 15.86%) differed

significantly comparing baseline data to week 4, 8 and 16 (p<0.01 –

<0.0001), but this variability was gradually reduced from week 0 to

week 16 (p<0.0001) (Figure 2D).

The 7 top-ranked markers in the corresponding 27-plex

analyses were mostly chemokines including monocyte

chemoattractant protein (MCP-1), IP-10 (CXCL10), RANTES

(CCL5), IL-1 receptor antagonist (RA), TNF-a, eotaxin and IL-4

(Figures 2E, F). However, these markers did not discriminate the

baseline and different follow up time-points to the same extent as

the 37-plex data (Figure 2F). The PC1 (38.86%) analyses showed

that the cluster of ranked cytokines did not differ from baseline to

week 16 or compared to the control group (Figure 2G), while the

PC2 (17.62%) variance between week 0, 4 or 8 and the controls was

significant (week 0 vs HC: p=0.002, week 4 vs HC: p=0.007; week 8

vs HC: p=0.01) (Figure 2H).
3.3 Distinct sets of inflammation markers
separate different TB disease
severity groups

Next, the inflammatory response at baseline in TB patients with

mild or mod-sev disease was analyzed together with (Figures 3A-D)

and without (Figures 3E-H) the healthy control group. When the

control group was included, the markers with highest

discriminatory importance included BAFF, sTNF-R1 and 2,
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MMP-2, sCD30, Osteopontin (or ETA-1, early T lymphocyte

activation), Chitinase-3-like protein 1 (CHI3L1), sCD163 and

MMP-3 (Figures 3A, B). Compared to the longitudinal treatment

analyses for all TB patients (Figures 2A, B), only three markers

overlapped with baseline analyses of clinical TB disease severity,

including BAFF, sTNF-R1 and MMP2 (Figures 3A, B) that were all

ranked to be of high importance in the respective RF analyses. For

clinical TB disease severity, PC1 (44.97%) analyses demonstrated a

significant difference between mod-sev TB versus mild TB

(p=0.0003) and compared to the healthy control (mod-sev TB vs

HC, p<0.0001; mild TB vs HC, p=0.0009) (Figure 3C). There was

also a difference in PC2 (14.22%) comparing the clinical disease
Frontiers in Immunology 06
groups to controls (mod-sev TB or mild TB vs HC, p=0.000008),

but no difference comparing mod-sev and mild TB (Figure 3D). Six

of the top-ranked 9 markers remained listed in the RF plot when

mild TB was compared to mod-sev TB in the absence of the controls

(Figure 3E). Instead of MMP-2, 3, and CHI3L1, the acute phase

protein, pentraxin-3, was ranked together with IL-19 and IL-8

(Figures 3E, F). PC1 (43.96%) analysis confirmed significant

differences in mod-sev compared to mild TB (p=0.00005), while

no difference in PC2 (12.02%) was detected (Figures 3G, H).

Thereafter, we continued to explore the inflammatory baseline

profile comparing anemic to non-anemic TB patients (Figures 3I-L)

as well as patients with extensive compared to limited lung
A B

D E F

G IH

J K L M

C

FIGURE 1

Baseline variables in clinical TB disease (mod-sev vs mild TB), anemia of TB (anemic vs non-anemic TB) and TB lung involvement (extensive vs limited TB).
(A-C) Clinical TB score, (D-F) chest X-ray grade, (G-I) blood Hb, (J-L) serum albumin levels. (M) Correlation analysis between blood Hb and serum albumin
including all TB patients was determined using Spearman´s correlation test. Data is presented in box and whiskers plots (median and 10-90 percentile) or
bar graphs (mean and 95% CI) and was analyzed using a Mann-Whitney U test or an unpaired t-test. **p≤0.01, ***p≤0.001, and ****p≤0.0001.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1296501
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Ashenafi et al. 10.3389/fimmu.2023.1296501
involvement (Figures 3M-P). Five of the top-ranked 9 markers

comparing mod-sev to mild TB (Figures 3E, F) were also listed

comparing anemic to non-anemic TB patients, while 4 markers

were unique, a proliferation-inducing ligand (APRIL/TNFSF13),

IL-11, thymic stromal lymphopoietin (TSLP) and MMP-1, in

discrimination of anemic and non-anemic TB patients

(Figures 3I, J). Like clinical TB disease severity, PC1 (56.84%)

analysis demonstrated significant differences comparing anemic to

non-anemic TB patients (p=0.0002), with no difference in PC2

(11.40%) variance (Figures 3K, L). Contrary, three (sCD163,

pentraxin-3 and IL-8) of the top-ranked 9 markers for clinical

disease severity (Figures 3E, F) overlapped with the RF analyses

comparing extensive with limited lung disease (Figures 3M, N),

suggesting that there may be differences in inflammatory mediators

involved in clinical and radiological disease severity. The variance in

both PC1 (36.54%) and PC2 (12.95%), were significantly different in

patients with extensive compared to limited lung disease (p=0.002

and p=0.005, respectively) (Figures 3O, P).
3.4 Diverse cytokine and chemokines
profile separate different TB disease
severity groups

The baseline inflammatory response was further explored using

the Th1/Th2 cytokine 27-plex in patients with mod-sev and mild
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clinical TB in the presence (Figures 4A-D) or absence (Figures 4E-

H) of the healthy control group. Four out of 7 markers overlapped

among the top-ranked cytokines used to discriminate mod-sev TB

from mild TB in the presence or absence of the controls

(Figures 4A–H). While macrophage inflammatory protein (MIP-

1b or CCL4), IL-17A and IL-1b were classified to be of high

importance to separate the different groups, IFN-g-induced
protein 10 (IP-10 or CXCL10) and eotaxin were more related to

separation of TB patients and controls (Figures 4A, B), whereas IL-7

was ranked of high importance to discriminate between mod-sev

and mild TB (Figures 4E, F). PCA showed a low discriminatory

power of PC1 (32.59%), while PC2 (19.04%) analysis showed

that mod-sev TB was significantly different compared to

both mild TB (p=0.04) and the healthy control (p=0.0003)

(Figures 4C, D). Exclusion of the controls did not alter the

relationship notably, but there was no difference between the

disease severity groups detected for PC1 (46.96%) but significant

differences (p=0.002) comparing these groups in PC2 (19.30%)

(Figures 4G, H).

Comparison of anemic to non-anemic TB patients (Figures 4I-

L) disclosed only one overlapping cytokine, IL-7, that was ranked as

a top-classifier to separate both mod-sev from mild TB and

anemic from non-anemic TB disease. Other markers ranked to

separate anemia from non-anemia included IL-2, IL-1 receptor

antagonist (RA), IL-13, IFN-g, RANTES (CCL5) and IP-10

(Figures 4I, J). Based on these cytokines and chemokines, the PC1
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FIGURE 2

Importance ranking and dimensionality reduction facilitate cluster generation of multiplex data from longitudinal samples obtained from TB patients and
healthy controls. (A) Random forest (RF) analyses of acquired 37-plex inflammation panel obtained at week 0, 4, 8 and 16 from TB patients and healthy
controls. (B) Principal component analysis (PCA) showing the longitudinal response in all TB patients and controls including top-9 inflammation markers
ranked by RF analyses. Scatter box plots of (C) PC1 and (D) PC2. (E) RF of acquired 27-plex cytokine panel obtained at week 0, 4, 8 and 16 from TB
patients and healthy controls. (F) PCA showing the longitudinal response all TB patients and controls including top-7 cytokines ranked by RF analyses.
Scatter box plots of PC1 (G) and PC2 (H). Multiplex data in (A-D) were obtained from plasma samples, while multiplex data in (E-H) were obtained from
QuantiFERON supernatants from whole blood samples. Data is presented as mean and standard error and all principal components were assessed using
Kruskal-Wallis and Dunn´s post-test with multiple comparisons corrected by Holm–Bonferroni method. **p≤0.01, ***p≤0.001, and ****p≤0.0001.
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FIGURE 3

Importance ranking and dimensionality reduction facilitate clusters generation of multiplex inflammation data from different sub-groups of TB
patients and healthy controls. (A) Random forest (RF) analyses of acquired 37-plex inflammation panel from patients with mild and mod-sev TB
disease and healthy controls. (B) Principal component analysis (PCA) showing the baseline response in patients with mod-sev and mild TB as well as
controls including top-9 inflammation markers ranked by RF analyses. Scatter box plots of (C) PC1 and (D) PC2. (E) RF analyses of acquired 37-plex
inflammation panel from patients with mild and mod-sev TB disease. (F) PCA showing the baseline response in patients with mod-sev and mild TB
including top-9 inflammation markers ranked by RF analyses. Scatter box plots of (G) PC1 and (H) PC2. (I) RF analyses of acquired 37-plex
inflammation panel from patients with and without anemic TB disease. (J) PCA showing the baseline response in patients with mod-sev and mild TB
including top-9 inflammation markers ranked by RF analyses. Scatter box plots of (K) PC1 and (L) PC2. (M) RF analyses of acquired 37-plex
inflammation panel from TB patients with limited or extensive lung involvement. (N) PCA showing the baseline response in patients with extensive
and limited lung involvement including top-9 inflammation markers ranked by RF analyses. Scatter box plots of (O) PC1 and (P) PC2. All multiplex
data were obtained from plasma samples. Data is presented as mean and standard error and all principal components were assessed using Kruskal-
Wallis and Dunn´s post-test with multiple comparisons corrected by Holm–Bonferroni method or Mann-Whitney U test. **p≤0.01, ***p≤0.001,
and ****p≤0.0001.
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(37.4%) and PC2 (26.3%) analyses revealed significant discrepancies

between the anemic and non-anemic TB groups (p=0.008

and p=0.02, respectively) (Figures 4K, L). Finally, the top-7

ranked markers to separate extensive from limited lung
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involvement partly overlapped with the set of cytokines

determined to separate mod-sev and mild TB (IL-17A, eotaxin)

as well as anemic and non-anemic TB patients (IL-2, IL-13, IFNg),
while unique cytokines included MIP-1a (CCL3) and IL-12
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FIGURE 4

Importance ranking and dimensionality reduction facilitate clusters generation of multiplex cytokine data from different sub-groups of TB patients and
healthy controls. (A) Random forest (RF) analyses of acquired 27-plex cytokine panel from patients with mild and mod-sev TB disease and healthy controls.
(B) Principal component analysis (PCA) showing the baseline response in patients with mod-sev and mild TB as well as controls including top-7 cytokines
ranked by RF analyses. Scatter box plots of (C) PC1 and (D) PC2. (E) RF analyses of acquired 27-plex cytokine panel from patients with mild and mod-sev TB
disease. (F) PCA showing the baseline response in patients with mod-sev and mild TB including top-7 cytokines ranked by RF analyses. Scatter box plots of
(G) PC1 and (H) PC2. (I) RF analyses of acquired 27-plex cytokine panel from patients with and without anemic TB disease. (J) PCA showing the baseline
response in patients with mod-sev and mild TB including top-7 cytokines ranked by RF analyses. Scatter box plots of (K) PC1 and (L) PC2. (M) RF analyses of
acquired 27-plex cytokine panel from TB patients with limited or extensive lung involvement. (N) PCA showing the baseline response in patients with
extensive and limited lung involvement including top-7 cytokines ranked by RF analyses. Scatter box plots of (O) PC1 and (P) PC2. All multiplex data were
obtained from QuantiFERON supernatants from whole blood samples. Data is presented as mean and standard error and all principal components were
assessed using Kruskal-Wallis and Dunn´s post-test with multiple comparisons corrected by Holm–Bonferroni method or Mann-Whitney U test. *p≤0.05,
**p≤0.01, and ***p≤0.001.
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(Figures 4M, N). However, this cytokine module did not separate

extensive from limited lung disease in either PC1 (45.97%) or PC2

(20.73%) (Figures 4O, P).
3.5 Inflammation profiles that associate
with TB disease severity or immune control

To explore possible findings that were not uncovered by the

unsupervised methods, manual analysis of the multiplex data was

performed in more detail. About 25% of the inflammation markers

and cytokines in the multiplex assays tested were significantly

higher in TB disease compared to the healthy controls, while only

five mediators, the type IV collagenases, MMP2 and 3, the bone

matrix protein, osteocalcin, and the chemokines, eotaxin and MCP-

1, were higher in the controls (Table S1, S2A, B). Most, but not all

markers upregulated in TB patients were also related to disease

severity. Overall, 8 out of 17 inflammation markers that were up-

regulated in TB patients were also significantly (p<0.03 - <0.0001)

elevated in mod-sev TB as well as anemic TB patients, generating an

inflammation response module consisting of BAFF, LIGHT, sTNF-

R1 and 2, IP-10, osteopontin, CHI3L1 and IFNa2 (Figures 5A-F;

Table S1). APRIL demonstrated a very similar expression profile

compared to BAFF (Table S1). Majority of these markers were

significantly down-regulated upon successful chemotherapy

(Figures 5A-E, right panel). Eotaxin levels were not restored

during the first months of treatment (Figure 5F), but other

markers that were down-modulated in the TB patients such as

osteocalcin and MMP-2 were significantly up-regulated after 16

weeks chemotherapy (data not shown). Another 5 markers were

only related to clinical disease severity and anemia including

sCD30, IL-8, IL-20, IL-29/IFNd1 and TNF-a (Table S1, S2A, B).

Notably, CHI3L1 and IL-8 were the only markers significantly up-

regulated in mod-sev TB, anemic TB as well as patients with

extensive lung involvement (data not shown). BAFF and APRIL

were also relatively higher in extensive compared to limited lung

disease (data not shown).

Finally, to obtain an overview of markers related with potential

protective or harmful effects, we mapped the immune markers

associated with clinical TB disease severity and anemia (Figures 6A-

T). While pro-inflammatory IL-6 (p<0.009) was elevated in the

mod-sev TB group, Th1 cytokines such as IFN-g (p<0.002) and

TNF-a (p<0.009) but also IL-7 (p<0.05), IL-17A (p<0.05) and

RANTES (p<0.009), were all significantly higher in mild TB

disease (Figures 6A-F). Interestingly, both IP-10 (p<0.02), sTNF-

R1 (p<0.03) and sTNF-R2 (p<0.0001) (Figures 5C, D, G, H), were

inversely expressed as compared to IFN-g and TNF-a (Figures 6B,

C). Likewise, sCD30 (p<0.0005), IL-8 (p<0.005), CHI3L1 (p<0.04)

and IL-20 (p<0.03) were significantly higher in mod-sev TB disease,

while anti-inflammatory cytokines G-CSF (p<0.007), IL-4

(p<0.003) and IL-10 (p<0.005) were clearly higher in mild TB

disease (Figures 6I-O). In support of the results in mod-sev TB,

findings comparing anemic to non-anemic TB patients suggested

that the immunomodulatory cytokines IL-11 (p<0.03) and IL-19

(p<0.04) were higher in TB patients with anemia, and IL-2
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(p<0.006), MCP-1 (p<0.03) as well as IL-13 (p<0.009) were

elevated in non-anemic disease (Figures 6P-T). Overall, these

results implicate a mixed Th1/Th2 response in TB patients with

mild disease, whereas inflammatory mediators and cytokines that

are involved in pathological inflammation were more prevalent in

mod-sev TB disease.
4 Discussion

4.1 Summary of current findings

This study intended to explore the peripheral inflammation

profile in sub-groups of TB patients based on clinical disease

severity, presence of anemia, or the radiological extent of lung

disease. Multiplex protein analyses in plasma samples and

QuantiFERON cell culture supernatants from TB patients and

healthy controls demonstrated that distinct clusters of

inflammation markers and cytokines separated the different TB

disease sub-groups with variable efficacy. The sets of top-ranked

markers changed to a variable degree depending on the inclusion of

the healthy controls. Accordingly, a distinct set of markers may be

effective to discriminate between TB patients and controls, while

other markers may be effective to separate different disease severity

groups or to follow treatment response over time. While several

markers overlapped upon comparison of different TB patient sub-

groups, other markers were unique with regards to their importance

to differentiate the TB disease severity groups. The clinical disease

and anemia sub-groups were generally more coherent compared to

TB patients grouped based on the extent of lung involvement.

Clearly, an immune response profile defined by up-regulated levels

of BAFF, LIGHT, sTNF-R1 and 2, IP-10, osteopontin, CHI3L1 and

IFNa2 and IL-8, were effective in separating TB patients with

different disease clinical severity and were also rapidly down-

regulated after start of anti-TB treatment. In addition, TB patients

with mild disease displayed immune polarization towards mixed

Th1/Th2 responses, while IL-6, IL-8, and the IL-20 subfamily of

cytokines were more predominant in mod-sev TB disease and

anemia of TB. Altogether, these results contribute to the

understanding of the pathophysiology in TB and how to define

peripheral immune response profiles to assess disease severity and

to follow treatment prognosis and outcome of TB disease.
4.2 Discrepancy between clinical TB scores
and radiological findings

A strength of this study is the sub-group comparisons that

allowed us to view immunomodulation and the extent of

inflammation in TB disease more carefully. For this purpose, we

used a well-characterized patient cohort where clinical disease

severity was determined using numerical scoring of typical TB

symptoms according to a previously validated method (23–25).

Many patients were malnourished and anemic and had low

peripheral CD4 T cells counts and low albumin levels, consistent
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with progressive TB disease. However, clinical TB disease and

anemia did not correlate with the extent of pulmonary

involvement as determined with chest X-ray. Radiological

manifestations in TB are heterogeneous, and it is not clear how
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clinical symptoms are associated to the extent of lung involvement

at the time of diagnosis. Although, it is evident that cavitary TB is

related to a poor prognosis including unfavorable treatment

outcomes, treatment relapse, higher transmission rates, and
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FIGURE 5

Baseline and longitudinal responses of selected top-ranked inflammation mediators and cytokines in different sub-groups of TB patients and healthy
controls. (A) BAFF/TNFSF13B, (B) LIGHT/TNFSF14, (C) sTNF-R-1, (D) IP-10, (E) Osteopontin, (F) Eotaxin. Biomarker levels (pg/ml) is shown in all TB
patients (TB patients vs controls), clinical TB disease (mod-sev vs mild TB), anemia of TB (anemic vs non-anemic TB) and treatment response (week
0, 4, 8 and 16). Data is presented in violin plots (median and range) or bar graphs (mean and SE) and was analyzed using a Mann-Whitney U test or a
repeated measurements ANOVA and Sidak post-test. *p≤0.05, **p≤0.01, ***p≤0.001, and ****p≤0.0001.
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development of drug resistance (31). The data from this study

demonstrated that chronic inflammation in anemic TB patients was

a highly associated to more severe clinical TB disease, which

support the notion that anemia is a better predictor of disease

severity compared to chest X-ray findings such as cavitation in TB.

A previous study comparing pulmonary TB patients with and

without diabetes (DM) demonstrated that a clinical score was not

different comparing TB to TBDM patients, while radiological data

revealed that cavitation was significantly more common in TBDM

patients (32). Therefore, clinical disease severity and the extent of
Frontiers in Immunology 12
lung involvement may not be entirely consistent. In addition, it was

found that TB and TBDM patient groups displayed similar cure

rates with anti-TB therapy, despite a higher presence of cavitary TB

among DM patients (32). Various methods and scoring systems to

assess and quantify radiological changes in the lung have been

reported that include different parameters such as cavitation,

numbers and types of lesions, location, size, and coverage (33–

35). PET-CT likely provides a more accurate image of the

pathological involvement, but is not available at all health care

facilities, especially not in developing countries.
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FIGURE 6

Baseline responses of selected inflammation mediators and cytokines in TB patients with different disease severity. (A) IL-6, (B) INF-g, (C) TNF-a, (D)
IL-7, (E) IL-17A, (F) RANTES, (G) IP-10, (H) sTNF-R2, (I) sCD30, (J) IL-8, (K) Chitinase 3-like 1, (L) IL-20, (M) G-CSF, (N) IL-4 (O) IL-10, (P) IL-11, (Q) IL-
19, (R) MCP-1, (S) IL-2, (T) IL-13. Biomarker levels (pg/ml) are shown in patients with mod-sev TB compared to mild TB disease (A-O), and in anemic
TB patients compared to non-anemic TB patients (P-T). Data is presented in violin plots (median and range) and was analyzed using a Mann-Whitney
U test or an unpaired t-test. *p≤0.05, **p≤0.01, ***p≤0.001, and ****p≤0.0001.
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4.3 Use of multiplex assays to explore
immune biomarkers in TB infection
and disease

To our knowledge, this is the first investigation to map a larger

number of inflammatory mediators and cytokines based on clinical

TB disease severity and anemia. Numerous studies have been

conducted to investigate the diagnostic and prognostic potential

of cytokines and chemokines in TB as compared to healthy controls

and/or individuals with latent TB (36–40) and as biomarkers of TB

disease severity and outcome (41, 42). A recent study compared a

14-plex cytokine assay in patients with drug-susceptible or

multidrug-resistant (MDR)-TB as well as individuals with latent

TB and uninfected controls and reported a mixed Th1/Th17/Th2

response in the MDR-TB patients with cytokine levels significantly

higher compared to the other groups (40). This was proposed as a

signature of hyperinflammation and disease severity that could

discriminate different stages of Mtb infection (40). However, no

significant differences in clinical symptoms were identified in the

enrolled MDR-TB patients compared to patients with drug-

susceptible TB (40), which suggests that clinical disease severity

was not different in these groups. A similar study proposed that

CXCL9 and IP-10 could be used as biomarkers to differentiate drug-

susceptible TB from MDR-TB (43). The regulation of chemokines

and chemokine receptor expression controls the recruitment of

imperative effector cells that participate in granuloma formation

and bacterial control, while other subsets of inflammatory cells

promote pathological processes (7). Several cytokines and

chemokines including IFNg, TNFa, IL-17A, IL-1b (44) and MIP-

1a and IP-10, have been described to be associated with bilateral

lung involvement and cavitary TB (41). Furthermore, combinations

of MIP-1a, IL-8, and IP-10, were proposed as novel biomarkers for

predicting adverse treatment outcomes in pulmonary TB patients

(41). Consistent with the results from our study, a clinical trial

previously described that the majority of 69 biomarkers tested

decreased with anti-TB treatment of pulmonary TB patients,

except for osteocalcin, MCP-1 and MCP-4, which were

significantly increased (42). While the role of osteocalcin in TB is

unknown, a cohort study demonstrated an increased risk of

osteoporosis in patients with active TB that is likely caused by

persistent inflammation (45). MCP-1 levels in plasma have

previously been reported to increase in pulmonary TB patients

upon successful chemotherapy, similar to eotaxin levels that were

shown to be lower in TB patients compared to the controls (36).
4.4 Diverse peripheral cytokine profiles
representative of different TB endotypes

It is a common notion that lost immune control in TB is

characterized by excess production of pro-inflammatory cytokines

together with Th1 and Th17 cytokines, which result in neutrophil

infiltration and bystander action of T cells that promote

pathological inflammation and tissue destruction at the site of

infection in the lung (46, 47). While this is true in many aspects,
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poor immune control in TB has also been shown to be dictated by

premature expansion of anti-inflammatory macrophages or

myeloid-derived suppressor cells (MDSC) as well as regulatory B

and T cells (Breg and Treg) that emerge as a result of chronic

inflammation (10, 48, 49). This is particularly evident in

granulomatous lesions at the site of Mtb infection, where

numerous recent reports from humans and non-human primates

demonstrate that dysfunctional Th1/Th17 CD4+ and cytolytic

CD8+ T cells responses correlate with bacterial growth and

disease progression, while type 2 immunity as well as FoxP3+

Tregs and MDSCs expressing inhibitory molecules and mediators

are associated with bacterial persistence (50–56). These data are all

supportive of an immunosuppressive environment in the TB lesions

that are driven by a hyperinflammatory response. Single-cell

sequencing of Mtb granulomas in zebra fish and non-human

primates, suggested that spatial organization of granulomas

involving a mix of robust Th1 (IFN-g, IL-12, IL1-b) but also

counteracting Th2 (Il-4 and IL-13) responses, were associated

with macrophage epithelialization and bacterial control (57). This

is in line with our findings that support a mixed Th1/Th17/Th2

response in non-anemic TB patients and patients with mild TB

disease. Perhaps some of the discrepancies among different reports

can be explained by the fact that heterogeneity in clinical TB disease

can be classified into different disease endotypes, characterized by

multiple distinct molecular traits and disease mechanisms such as

either immunodeficiency or pathologic excessive inflammation

(58, 59).
4.5 TNF superfamily members regulate T
cell and macrophage responses in TB

A large group of inflammatory mediators that were

differentially regulated in mild compared to mod-sev TB disease

belonged to the TNF superfamily. Here, LIGHT has been shown to

contribute to the activation of both CD4+ and CD8+ T cells, but not

to late control of Mtb infection (60), while CD30 is required for T

cell activation and organization in TB granulomas. Soluble CD30

was one of the markers that did not differ between TB patients and

controls but were strongly elevated in patients with mod-sev TB

disease and anemia. Interestingly, children with active TB, low

weight, and low blood Hb levels, had high sCD30 levels in plasma

that also correlated to disease severity (61). In vivo, blockade of

CD30-CD30L interactions on activated T cells has been shown to

promote abnormal inflammation in mycobacteria-infected mice

including decreased Th1 and Th17 responses (62). Thus, it is

likely that excess levels of sCD30 in the circulation could bind to

membrane-bound CD30L and prevent co-stimulatory interaction

with CD30, which may impair essential Th1 responses and promote

mycobacterial growth (63). Similarly, sTNFR-1 has been shown to

be up-regulated in active TB patient’s along with IL-8 and CXCL9

(64), while virulent Mtb can inactivate TNF-a and TNF-induced

apoptosis of infected cells by release of sTNF-R2 (65). The soluble

forms of TNFR are induced by TNF-a itself and act as a feed-back

mechanism to prevent the pathological effects of TNF-a. As an
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example, serum levels of sTNF-R1and 2 increased markedly after

intervention of myocardial infarction and primarily sTNF-R1

appeared as an independent predictor of clinical outcomes in

patients (66).
4.6 BAFF and APRIL signaling promote B
cell responses in TB and other diseases

Our multiplex analyses demonstrated that BAFF and the related

molecule APRIL, were among the top-ranked classifiers used to

separate mild from mod-sev TB or non-anemic patients from

anemia of TB. The BAFF/APRIL signaling pathways are known

to be of crucial importance for B cell development and have a

clinical relevance for development of autoimmune diseases but also

infections (67, 68). Interestingly, BAFF expression is increased by

IFN-a signaling (69, 70) and excess BAFF promotes inflammation

in autoimmune diseases by increasing B cell numbers and antibody

titers. Accordingly, neutrophils have been shown to produce BAFF

that highly accelerated plasma cell generation and antigen-specific

antibody production (71). It has also been reported that elevated

levels of BAFF may activate class switching of B cells to enhance

humoral immune responses in patients with TB pleuritis (72). A

role of BAFF/APRIL on T cell function and survival has also been

proposed (73) and increased levels of BAFF and APRIL mRNA

were previously found in peripheral CD4+ T cells isolated from

patients with active TB (74). These studies suggest that BAFF and

APRIL correlate with enhanced Th1 responses and elevated survival

of inflammatory CD4+ T cells (74, 75). Plasma levels of BAFF in our

study correlated strongly with IL-6 (r=0.52, p<0.0001) but not with

TNF-a or IFN-g (data not shown). Moreover, while most CD19+ B

cells express the BAFF-receptor, only a few percent of CD4+ and

<1% of CD8+ T cells express this receptor, and majority of the

BAFF-R expression was found on the surface of CD4+CD25+ Treg

cells (76). These studies emphasize that the importance of elevated

BAFF and APRIL levels in Mtb pathogenesis has not yet been

properly addressed, but the overall relevance of B cells and humoral

immunity in TB remains controversial. We have previous shown

that enhanced plasmablast responses in pulmonary TB patients

including antigen-specific IgG levels were associated with impaired

peripheral Th1 cell responses and progressive TB disease (77).

Likewise, bacterial persistence in granulomas has been shown to

be related to enrichment of plasma cells, coordinated via Th2

signaling pathways (52). Possibly, B cells and antibodies may

dictate Mtb-specific immune responses toward protection or

pathogenesis depending on the stage of infection as well as the

TB-specific endotype.
4.7 Immunoregulatory cytokines prevent
proper activation of CD4+ T cells in a
diverse spectrum of diseases including TB

Several cytokines in the multiplex assays tested exhibited anti-

inflammatory and/or immunomodulatory effects. Comparisons of

patients with mild TB and mod-sev disease or anemia,
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demonstrated that Th1 (IL-2, IFN-g, and TNF-a) as well as Th2
(IL-4, IL-13, and IL-10) and Th17 responses were higher in mild TB

disease. Instead, mod-sev TB disease presented higher levels of

Osteopontin, CHI3L1, IL-11, IL-19 and IL-20. It has previously

been shown that the profibrogenic molecule, Osteopontin, is

elevated in TB patients (78) and that this could be considered as

a potential biomarker for TB surveillance and severity assessment

(19). CHI3L1 is a another profibrogenic factor that has been

strongly associated with diseases including asthma, arthritis,

sepsis, diabetes, liver fibrosis, and is also involved in cancer cell

growth and proliferation including activation of tumor-associated

macrophages, and Th2 polarization of CD4+ T cells (79). Likewise,

G-CSF stimulation of PBMCs in vitro, alters the T cell function and

promotes a Th2 type with an increase of IL-4 and decrease of IFN-a
production (80). Accordingly, skewing towards a Th2 response in

patients with cystic fibrosis and P. aeruginosa infection, correlated

with elevated serum levels of G-CSF (81). In the human lung, IL-11

upregulation has been associated with a range of fibroinflammatory

diseases, and fibroblast-specific IL-11 signaling drives chronic

inflammation in fibrotic lung disease in mice (15). As such, a

pathogenic role of IL-11 in TB infection has been proposed to

involve early lung inflammation including pro-inflammatory

cytokines and neutrophilic infiltration (82). The IL-20 family of

cytokines are mainly expressed by lung epithelial cells that may

dampen inflammatory responses during chronic inflammation.

While the role of IL-20 cytokines in TB is poorly investigated,

one report demonstrated that IL-19 and IL-24 are elevated in

pulmonary TB patients and in vitro neutralization of these

cytokines resulted in an enhanced CD4+ Th1/Th17 responses

(14). Moreover, it has been found that IL-19, IL-20 and IL-24

promoted cutaneous infection with S. aureus in mice by down-

regulation of IL-1b and IL-17A-dependent pathways (83).

Inhibition of these IL-20 cytokines also improved bacterial

clearance of S. pneumoniae and decreased pro-inflammatory

cytokines and recruitment of neutrophils and dendritic cells in

the lung (84). Perhaps these different immunomodulatory

mediators contribute to inappropriate activation and poor

recruitment of imperative immune cell subsets to the site of

infection in the TB granuloma.
4.8 Soluble immune biomarkers as
prognostic tools of TB disease
and outcome

Even though the main aim with this study was to obtain new

knowledge that could increase the understanding of the host

immune response to Mtb, these results also add to the current

literature related to discovery of biomarkers or immune response

modules that could function as correlates of immune protection or

progressive TB disease (85). TB disease severity is often assessed on

the basis of chest X-ray or bacteriological results including sputum-

positivity or numbers of acid-fast bacilli in sputum (86). In clinical

trials, time to sputum conversion at 2 months is a common hard

endpoint but is practically demanding to coordinate in an effective

manner (87). Therefore, suitable surrogate markers in peripheral
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blood could improve and facilitate qualitative and large-scale

assessment of TB disease status and treatment outcome (88). A

recent meta-analysis on biomarkers in active TB, identified a total of

81 markers with the potential to be used in treatment monitoring

(89). This review highlighted the barriers created by heterogeneity

in study design patient cohorts and data reporting (89), which are

difficult to overcome comparing many small sized studies. Even so,

multi-omics studies on proteins in circulation also enables a

comprehensive understanding of the interaction of the immune

system and the bacteria and facilitates identification of immune

pathways that contribute to disease development. Importantly,

immune biomarkers may not only benefit routine clinical

management but also assessment of randomized trials, especially

in a time when research on host-directed therapies comprise great

future potential as adjunct treatment options for diverse groups of

TB patients (90, 91).
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