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Straight to the point: targeted
mRNA-delivery to immune cells
for improved vaccine design

Bruna Clemente †, Maxime Denis †, Camila Pedroso Silveira †,
Francesca Schiavetti †, Michela Brazzoli and Daniela Stranges*

GSK, Siena, Italy
With the deepening of our understanding of adaptive immunity at the cellular and

molecular level, targeting antigens directly to immune cells has proven to be a

successful strategy to develop innovative and potent vaccines. Indeed, it offers

the potential to increase vaccine potency and/or modulate immune response

quality while reducing off-target effects. With mRNA-vaccines establishing

themselves as a versatile technology for future applications, in the last years

several approaches have been explored to target nanoparticles-enabled mRNA-

delivery systems to immune cells, with a focus on dendritic cells. Dendritic cells

(DCs) are the most potent antigen presenting cells and key mediators of B- and

T-cell immunity, and therefore considered as an ideal target for cell-specific

antigen delivery. Indeed, improved potency of DC-targeted vaccines has been

proved in vitro and in vivo. This review discusses the potential specific targets for

immune system-directed mRNA delivery, as well as the different targeting ligand

classes and delivery systems used for this purpose.
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1 Immune cell targeting, why?

Vaccines represent a potent strategy in the prevention of infectious diseases and play a

significant role in reducing or eradicating the prevalence of severe illnesses globally (1, 2).

Currently most vaccines primarily consist of pathogen-derived antigens, including purified

proteins or inactivated pathogens. To enhance their efficacy, they are often formulated with

adjuvants, which play a critical role in stimulating innate immunity immediately after

immunization (3). These vaccines also induce the development of antigen-specific memory

B and T cells, providing long-lasting protection to vaccinated individuals (4). It is estimated

that traditional vaccines (e.g., live-attenuated, inactivated, and subunit types) save

approximately 3 million lives every year (2). Nonetheless, vaccine development against

emerging and re-emerging diseases is particularly challenging, as for Antimicrobial

Resistant (AMR) bacteria and challenging-to-treat viruses (2). Moreover, the

development and deployment of conventional vaccines are considerably long - it takes 5

to 10 years to develop a vaccine for an infectious agent. Therefore, scientists continue to
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explore new vaccine platforms to shorten the development cycle. It

is however crucial that those platforms maintain the ability to also

induce cell-mediated immune response to generate a strong and

long-lasting protective immunity against pathogens.

Recently, mRNA-based vaccines have transformed the vaccine

landscape, providing attractive breakthroughs in vaccine design and

efficacy. Indeed, mRNA-based vaccine strategies stand out for

several reasons linked to their usage. The first regards safety, as

there is no potential risk of infection or insertional mutagenesis due

to mRNA’s non-infectious and non-integrating nature (5, 6). In

addition, in vivo delivery can be achieved through nanocarriers (for

instance, lipid nanoparticles, LNPs) that enable RNA protection

from degradation, fast uptake and cytoplasmic delivery, while anti-

vector immunity is avoided (7). More, mRNA vaccines have the

potential for rapid, cost-effective and scalable manufacturing

mainly due to the high yields of in vitro transcription reactions.

Furthermore, mRNA sequence can be quickly modified for

personalized treatments or to urgently adapt to emerging

pathogens e.g. during a pandemic or epidemic outbreak (5, 6).

Engineering of the mRNAmolecule and of effective mRNA delivery

systems has enabled this technology to grow exponentially, and the

platform still offers room for improvement, as it can be easily

modified to modulate its half-life as well as its immunogenicity

profile (8, 9). Indeed, some immunological elements still need to be

improved to enhance mRNA vaccination outcome. For example, in

the context of SARS-CoV-2, the efficacy of mRNA vaccines was

demonstrated to be > 90% (10, 11), but the durability of the

antibody response against spike protein seems to be considerably

short and requires the administration of sequential booster doses to

maintain protection against the infection. It is predicted that

individuals lose more than 99% of humoral immunity relative to

peak immunity after 8 months of the second dose of both

BNT162b2 (Pfizer-BioNTech) and mRNA-1273 (Moderna) (12).

Another aspect that is highly relevant for patient compliance is the

emergence of side effects, such as injection site pain, fever, fatigue,

headache and diarrhea following mRNA vaccination (13).

To overcome these issues, mRNA targeted delivery comes up as

a promising improvement. Briefly, the purpose of an mRNA

vaccine is to make cells process delivered mRNA and release the

translated antigen or present the epitopes on the surface of the cells

(Figure 1). Indeed, after intramuscular administration, a transient

local inflammation drives the recruitment of immune cells that can

uptake the mRNA-LNPs and migrate to local lymph nodes where T

cell priming occurs (14). In particular, administration of mRNA-

LNPs induce rapid and local infiltration of neutrophils, monocytes,

and dendritic cells (DCs) to the site of administration and the

draining lymph nodes (LNs) (15). While these cells efficiently

internalize mRNA-LNPs, mainly monocytes and DCs translate

the mRNA and upregulate key co-stimulatory receptors (CD80

and CD86), and cytokine production (16). However, the fate of

mRNA-LNPs is not restricted to immune cells. Biodistribution

studies show that most of them are taken up by local muscle

cells, while a residual part reaches the blood stream to end up

mainly in the liver and spleen, contributing to the emergence of off-

target effects (17). In this sense, the selective targeting of mRNA into

immune cells could enhance the efficacy of the immune response
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while reducing the off-target biodistribution. Recently, evidence

arose that migration to secondary lymphoid organs was the main

driver for immune response compared to mRNA expression in the

muscle (18). As a result, targeting mRNA delivery to immune cells

and eventually to the lymph nodes could increase the magnitude

and lifespan of protection and eventually allow a reduction in the

required mRNA-LNP dose, minimizing side effects.

In this context, antigen presenting cells (APCs), in particular

dendritic cells (DCs), stand out as the most promising candidates

for targeted mRNA delivery due to their unique ability to initiate

adaptive immunity by priming of naïve T cells (19). Both

prophylactic and therapeutic vaccines require robust CD4+ and

CD8+ T cell responses and the concept of directed DC targeting

enhances antigen presentation to these specific cells. Moreover, it

has been shown that DC targeting also enhances and accelerates

specific antibody responses even at low antigen doses (20).

DCs fulfill the three essential signals required for T cell priming

and differentiation. Signal 1 involves the presentation of antigenic

peptides with MHC class I and class II molecules, which enables

them to prime both CD4+ and CD8+ T cell responses. Signal 2 is

provided by the upregulation of costimulatory molecules, such as

CD80 and CD86, on activated DCs, which interact with CD28 on

naïve T cells (21). Signal 3 encompasses the secretion of cytokines

like IL-12 and type I IFNs, as well as the expression of surface

molecules like CD70 and OX40L that regulate the proliferation,

differentiation, and survival of primed T cells (22, 23). In addition, a

key feature for DCs to exert their immunological function (either of

immunity or tolerance) is their ability to migrate from the site of

antigen uptake to the sites where immune responses are initiated,

such as the T-cell zones of lymph nodes (24, 25).

Targeting can be achieved using ligands that specifically interact

with cellular receptors on the surface of specific cells (26). The

engagement of different receptors influences the type of induced

immune response and can be exploited to obtain a specific desired

outcome. In this frame, DCs exhibit plasticity and can be

manipulated to elicit specific immune responses since they

express several receptors that could be targeted for vaccine

delivery (27). These receptors include pathogen recognition

receptors (PRR) like C-type lectin receptors (CLRs), a superfamily

of proteins that interact with several types of sugars on the surface

of pathogens and have a crucial role in the capture and presentation

of the antigen, and Toll-like receptors (from TLR1 to TLR10), both

primarily involved in the recognition of pathogen-associated

molecular patterns (PAMPs) (28). DCs also express Scavenger

receptors like CD36 (29, 30) involved in the uptake of a variety of

ligands, including lipids, apoptotic cells, and microbial components

as well as several other receptors such as chemokines receptors,

complement receptors and Fc receptors, all regulating antigen

presentation functions (31). In the sections that follow, we

provide a more detailed description of such receptors and their

respective ligands.

Overall, the targeting of such receptors on DCs can enhance

antigen uptake, presentation, and immune response activation. This

opens the possibility to develop vaccines that can elicit stronger

humoral (antibody-mediated) responses, cellular immune

responses, or a combination of both, according to the pathogen’s
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nature and the desired immunological outcome. Indeed, this

strategy has already been applied successfully to subunit vaccines

(32–34). Altogether, DC targeting could potentially not only

improve mRNA vaccine efficacy, but also expand the range of

pathogens for which they do effectively work, including those that

have developed mechanisms to bypass the immune system, which

are some of the most challenging to address (35).

It is also noteworthy that not only DC subsets, but also other

cell types involved in the immune response, such as macrophages,

could be interesting targets for this approach. These immune

subpopulations may express some common receptors, along with

specific receptors unique to each. In the following paragraphs we

review more in detail target cells and their receptors of interest, as

well as formulation strategies to achieve selective mRNA targeting.
2 Target cells

DCs can be classified into several sub-populations based on

their distinct functionalities and expressed receptors. These sub-
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populations have important roles in triggering and modulating

immune responses. The complexity and versatility of the human

DCs’ phenotype and functionality pose challenges in their precise

classification, which is continuously being revised (35). The main

subsets of dendritic cells are conventional DCs (cDC1 and cDC2),

plasmacytoid DCs (pDC) and follicular DCs (FDCs).
2.1 Conventional dendritic cells (cDCs)

cDCs originate in the bone marrow from hematopoietic stem

cells that give rise to intermediate progenitors called common DC

progenitors – restricted to the DC lineage. The differentiation of

common DC progenitors into pre-cDCs depends on the binding of

the growth factor FMS-like tyrosine kinase 3 (Flt3) to its ligand.

Pre-cDCs leave the bone marrow, travel through the bloodstream,

and undergo maturation into cDCs within lymphoid and peripheral

organs such as the spleen, lymph nodes, intestines, and lungs (36).

Differentiated cDCs in both lymphoid and peripheral organs highly

express MHC molecules for antigen presentation and CD11c. cDCs
FIGURE 1

Possible mechanism of action of APC-targeted LNP-mRNA. Targeted mRNA-LNP-cell interaction is mediated by specific ligands that bind to APC
cell surface receptor. Receptor activation might lead to IFNs and other cytokine/chemokine production (1). Following endocytosis (2), mRNA in the
endosome can interact with membrane-bound Toll-like receptors (3). Triggering of TLR activates signal transduction pathways that selectively lead
to production of Type I IFNs and/or pro-inflammatory cytokines. (4) Entrapped mRNA then undergoes endosomal escape and is released into the
cytosol where it is translated by ribosomes (5). Upon translation, the protein can be secreted out of the host cell or processed into smaller peptides
by proteasome. Proteins secreted extracellularly (7a) can be taken up by other antigen presenting cells (APCs) (8a) and then degraded into peptides
subsequently presented on the cell surface by MHC class II molecules (9) for recognition by CD4+ T lymphocytes (10). Alternatively, translated
proteins are degraded by the proteasome into peptides in the same cell (6). The generated antigenic peptides are then transported into the
endoplasmic reticulum and loaded onto major histocompatibility complex (MHC) class I and/or Class II molecules, as less common pathway (7b).
The loaded MHC - peptide epitope complexes are then presented on the surface of the APC and may bind the T cell receptor (TCR) of CD8+ and/or
CD4+ T lymphocytes (8b).
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can be further classified into two subgroups: cDC1 and cDC2. These

subgroups express different markers and rely on distinct

transcriptional factors for their development (37).

2.1.1 Conventional dendritic cells 1 (cDC1)
cDC1 cells are found in peripheral tissues as well as lymphoid

organs. Mouse and human cDC1s express the chemokine receptor

XCR1 (X-C Motif Chemokine Receptor 1) and the CLRs DNGR-1.

Moreover, cDC1s in lymphoid organs express CD8a, while those in
peripheral tissues express CD103 (38). The differentiation of cDC1s

is regulated by transcription factors such as Irf8, Batf3, Id2, and

Nfil3 (39). cDC1s are specialized in efficiently presenting exogenous

antigens to CD8+ T cells, thereby promoting cytotoxic T cell

immunity. This process, known as cross-presentation, requires

MHC-I molecules for antigen loading (21, 40). Studies in mouse

models have demonstrated that cDC1 play a role in the early

priming of CD4+ T cells in the context of tumor-derived antigens

(41). This cell subset produces IL-12 to control microbial infections,

are specialized in producing type III IFN (42) and promote T helper

(Th) 1 cell differentiation (38). However, studies ex vivo have

demonstrated how cDC1s from blood, lymphoid organs, and

lungs stimulate the polarization of naïve CD4+ T cells into both

Th1 and Th2 cells (43).

2.1.2 Conventional dendritic cells 2 (cDC2)
Mouse and human cDC2 cells are present in peripheral tissues

and lymphoid organs, particularly concentrated at the boundary of

T-B cell zones (44). The majority of cDC2s express a high level of

CD11b. Additionally, cDC2s that are present in lymphoid organs

like lymph nodes and spleen express CD4 (45), while those in

peripheral organs such as the lung and intestine express CD24 and

CD103 respectively (46). The differentiation of cDC2s relies on the

presence of IRF4, Klf4, Zeb2, IRF2, RelB, Ikaros, or Notch and it

results in the preferential activation of CD4+ helper T cell (Th)

responses (47). Recently, single-cell RNA sequencing on murine

DCs has identified two additional subsets of cDC2s: Tbx21 (T-

BET)+ cDC2a and Rorc (RORgT)+ cDC2b. Moreover, these findings

were extended to human splenic DCs by demonstrating a parallel

sub-division among human CD1c+ cDC2s (48). cDC2a and cDC2b

have a high level of functional specialization. Indeed, cDC2a cells

have a regulatory anti-inflammatory function, while cDC2b cells

possess proinflammatory potential (49).

Additionally, a recent investigation proposed another

distinction between cDC2 subpopulations. This heterogeneity is

characterized by the presence of two distinct subpopulations in

human, now known as DC2 and DC3 (50). Single-cell RNA-seq

analysis has revealed that both subpopulations exhibit similar gene

expression patterns related to inflammasome signaling under

steady-state conditions (51). However, they differ significantly in

their production of IL-1b in response to TLR stimulation (52). DC2

subpopulation releases lower levels of inflammasome-dependent

IL-1b but has a stronger capacity to elicit CD4+ T cell responses

compared to DC3. The T cell responses induced by DC2 are

predominantly skewed toward a Th1/Th17 phenotype. Thus, it

appears that DC2 subpopulation has the ability to enter a state of
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hyperactivation, resulting in enhanced T cell stimulatory

capabilities (50). Last, this distinction between DC2 and DC3 in

human has also been conversely observed in mice (53).

The major role played by the cDC2s, both in human and mice,

consist in the recognition and presentation of foreign antigens to

CD4+ T cells, supporting their differentiation into Th2 and Th17

cells, and facilitating T helper cell-mediated immune responses

(54). The differentiation of CD4+ T cells into Th17 relies mainly on

the ability of blood and lung cDC2s to secrete IL-23 (55, 56).

Moreover, it has been shown that, like cDC1s, human cDC2s in the

blood, lymphoid organs, skin, and lung have the ability to induce

the polarization of naïve CD4+ T cells into Th1 and Th2 cells ex vivo

(57). Moreover, human cDC2s in the blood, lymphoid organs, lung,

and skin are characterized by their elevated expression of activin A

and OX40-ligand and are considered highly effective inducers of T-

follicular helper (Tfh) cells (58–60). In terms of antigen

presentation, cDC2s in the blood, lymphoid organs, lung, and

skin are equally efficient as cDC1s in cross-presenting soluble

protein antigens ex vivo (61). They also play a role in stimulating

the differentiation of cytotoxic CD8+ T cells (62).
2.2 Plasmacytoid dendritic cells (pDCs)

pDCs are a small subset of DCs that are also essential players in

the field of vaccination, contributing to immune cell activation and

polarization, in the context of antiviral immunity. Human pDCs

naturally overexpress high levels of endosomal nucleic acid-

sensitive Toll-like receptors (TLRs), such as TLR7 and TLR9,

which detect single-stranded RNA and unmethylated DNA

carrying CpG motifs, respectively (63). pDCs answer to nucleic

acids with extensive secretion of type I IFN, involving IFN-b and

different subsets of IFN-a. Moreover, pDCs also secrete type III

interferons (IFN-l) and additional cytokines (e.g., TNF-a) and

chemokines (64–66). Further investigations and clinical studies are

needed to comprehend the capabilities of pDC targeted vaccines

and their implementation in fighting infectious diseases and cancer.

It is worth mentioning that pDCs are exceptional producers of type

I IFN, which play a crucial role in initiating antiviral immune

responses. By targeting pDCs, vaccines can prime rapid and robust

production of these interferons, enhancing the organism’s ability to

fight viral infections early. Therefore, the specific role of pDCs and

their adjuvant capacity and immune modulation abilities could

provide a valuable reason for optimizing pDC- targeted vaccine

formulations in the future. Nevertheless, conventional DCs are

generally considered more efficient in antigen presentation and T

cell activation as compared to pDCs and for that reason they remain

the principal target for vaccine delivery.
2.3 Follicular dendritic cells (FDCs)

FDCs are a specialized subset of DCs that have a crucial role in

the immunological response, especially in lymph nodes and other

lymphoid tissues and are considered pivotal in generating a strong
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and long-lasting immune response (67). Their major function is to

facilitate B-cell activation through the presentation of antigen-

antibody immune complexes, following clonal expansion of

specific B-cell clones. Another key role of FDCs is the

establishment of specialized microenvironments in lymph nodes

known as germinal centers, where B cells experience somatic

hypermutation and affinity maturation (68).

It is worth noting that FDCs present some differences from

cDCs not only at the functional but also at the cellular lineage level.

Indeed, FDCs origin is distinct from cDCs, as they do not arise from

hematopoietic cells but from mesenchymal lineage. FDCs are not

conventionally recognized as antigen-presenting cells. They express

unique surface markers like CR2/CD21 and CR1/CD35

(complement receptors). CR1-associated proteins are involved in

signaling and contribute to their unique functions within the

germinal centers. Another difference is that FDCs do not express

some of cDCs markers such as MHC class-II. On the other hand,

they also express CLRs (e.g., CD209 and CD206) that facilitate the

uptake of glycosylated antigens (69).

Targeting FDCs appears as a valuable strategy due to the

expression of distinctive markers that make it accessible for

specific, focused immunomodulation, as well as the opportunity

for a synergistic targeting by leveraging shared markers. Within this

framework, targeting specifically FDCs could lead particularly to a

great optimization of humoral response to induce a more potent

and targeted antibody response. Indeed, as FDC contribute to the

generation of plasma cells and B cell memory, this approach could

be valuable for pathogens that primarily elicit immune response

through antibodies.
2.4 Langerhans cells (LCs)

Langerhans cells (LCs) are classified as member of DC cells/

macrophages family. In particular, LCs were first considered a

subset of DCs due to their capacity to migrate to skin-draining

lymph nodes (70). However, recent studies in mice have shown that

LCs are a subset of tissue-resident macrophages that acquire a DC-

like phenotype and function upon further differentiation in the skin

(71, 72). These cells are localized in the epidermidis, where they

reside in close association with keratinocytes and form a complex

network that is intended to induce the first reactions against

pathogens encountered in the skin (73). Indeed, human and mice

LCs are specialized at sensing the environment and at sampling the

outermost layers of the skin (stratum corneum) thanks to the ability

to extend their dendritic processor through tight junctions (74).

These peculiar features suggest the strategic importance of LCs as

immune sentinels and as a first line of defense. Indeed, following

antigen recognition and processing, LCs elicit an immune response

in the skin-draining lymph nodes where they promote efficient T

cell response, humoral immunity by B cell activation and expansion

of Tfh cells (75–78). Moreover, the skin is considered a promising

vaccination access point for the administration of targeted delivery

vaccines due to the high density of LCs. Indeed the skin displays

higher immune cell density compared to the muscle or the

subcutaneous layer, what offers several advantages: 1) lower
Frontiers in Immunology 05
vaccine doses; 2) minimally invasive administration and 3)

increase in patient compliance (79).

Mouse and human LCs express an exclusive surface marker to

consider as target for delivery: the Langerin receptor (CD207).

Langerin is a C-type lectin that recognizes mannose, N-acetyl-

glucosamine and fucose structures on viruses, bacteria and fungi

as well as self-antigens (80, 81). Following uptake, antigens are

transported into the endosomal compartment of LC cells where the

acidic environment causes a release of the antigen and the

subsequent recycle of the receptor on the cell surface (82).

Altogether, these findings underly the potential of targeting LCs

in skin immunization.
2.5 Macrophages

In addition to DCs, macrophages play a critical part in

modeling the adaptive immune response (83–85). Their primary

role is to phagocyte and destroy foreign substances, such as

pathogens or dead cells. After the early immune response,

macrophages play a role in tissue remodeling and repair. They

clear away debris and promote healing by delivering growth factors

and extracellular matrix components. This process is essential for

rebuilding tissue integrity and function. Nevertheless, their

functions go beyond this initial response and impact the

development of the adaptive immune response, since they can

also present antigens to T cells and secrete cytokines to tune

immune responses.

Macrophages express several receptors that that could be

targeted for vaccine delivery such as TLRs (28), mannose

receptors (86), scavenger receptors (29) and Fc receptors (31).

Targeting this cell population is particularly interesting for

respiratory infections, since alveolar macrophages are the first

cells to present pathogens to pulmonary draining lymph nodes

(87). In fact, mannosylated nanoparticles present higher

accumulation on alveolar macrophages through the interaction

with mannose receptor (MR) and result in upregulation of

costimulatory molecules and enhanced production of

proinflammatory cytokines IL-1b and TNF-a (88). However, it is

worth pointing out that in general DCs have a stronger ability to

elicit antigen-specific immune responses compared to macrophages

as they have superior antigen presentation ability, whereas

macrophages act primarily as phagocytes. Moreover, differently

from DCs, most macrophage populations present very restricted

ability to migrate from peripheral tissues to lymph nodes. This

migration is critical for effective immune activation and the

establishment of adaptive immune responses. Therefore,

macrophages are generally considered less favorable than DCs for

targeted delivery. Yet, it is worth noting that macrophages can

interact with different immune cells, including T cells, B cells, and

natural killer (NK) cells. In this sense, targeting macrophages could

facilitate the crosstalk between these cell types, which in turn, could

result in a more integrated and comprehensive immune response.

Moreover, macrophages reside in several tissues and organs

throughout the body and by specifically directing the vaccine to

engage with tissue-resident macrophages, it could be possible to
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initiate localized immune responses in specific regions. This

approach could be particularly advantageous for infections that

predominantly affect specific tissues or organs (83, 84, 89).

Overall, it is important to note that every APC has both benefits

and limitations, and the ultimate choice of which APC to target

would depend also on the objectives of the specific vaccine and the

features of the pathogen or antigen to be targeted. In addition, a

combination of multiple APCs, such as DCs and macrophages,

could be used to elicit synergistic effects and generate a more robust

and versatile immune response.
3 Target receptors

The type and extent of the immune response depend on the

context in which the antigen is captured, which includes which

receptor is used for internalization. Therefore, the success of a

targeted delivery platform depends on choosing the right pair of

ligand-receptor. The receptor should be selected according to the

expression pattern of the target cell, its endocytic capacity and its

ability to facilitate intracellular antigen delivery to compartments

specialized in processing and loading on MHC (90). Each receptor

determines the antigen intracellular pathway and, more specifically,

even the binding site on the receptor can influence which route will

get activated.
3.1 C-Type lectins as targets for
targeted mRNA-delivery

3.1.1 Generalities on C-type lectins
CLRs are a superfamily of more than 1,000 proteins classified

into 17 subgroups (I–XVII), according to their homology and

phylogeny (91). CLRs are proteins primarily expressed on

myeloid cells where they perform various roles but effectively

function as recognition receptors for self and non-self antigens

(91–93). CLRs are abundantly expressed on the surface of various

immune cells, including DCs, macrophages, and neutrophils. They

are involved in recognizing pathogens, initiating immune

responses, and modulat ing immune cel l interactions.

Predominantly transmembrane proteins (93), they act as PRR

recognizing PAMPs, but also damage-associated molecular

patterns (DAMPs) (92, 94, 95). From a structural point of view,

CLRs possess a conserved structural motif arranged as two protein

loops stabilized by two disulfide bridges at the base of each loop

(91). Those domains all have similar folds and are named

Carbohydrate Recognition Domain (CRD). They canonically

recognize carbohydrates through interactions with conserved

Calcium-chelating binding sites, although they may also interact

with non-sugar ligands (96–99).

CLRs are key actors of viral, bacterial, and fungal immunity, as

they are involved in the recognition of carbohydrate-containing

structures associated with these pathogens, thereby facilitating their

identification and phagocytosis (100). After binding of pathogens

by CLRs, the intracellular routing of antigens has various outcomes

depending on the CLR and the immune cell (101). For example,
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while MR-mediated endocytosis leads the antigen to lysosomes,

MGL-1 (macrophage galactose-type C-type lectin 1, Clec10a)-

facilitated internalization in murine Bone Marrow-derived

Dendrtici Cells (BMDCs) drives antigens to late endosomes (102,

103). Once PAMPs are presented in sufficient amount, multiple

CLRs initiate signaling responses. CLRs signaling is a complex

process that can itself interfere with other PRR signaling

pathways. Broadly speaking, CLRs signaling can be divided in two

groups: the first group transduces intracellular signals through the

integral immunoreceptor tyrosine-based activation (ITAM)-like

motif (Clec-2, Dectin-1), or via association with ITAM-bearing

FcRg adaptor molecules (Dectin-2, Mincle, BDCA-2) (104). Upon

phosphorylation, the ITAM motif recruits and activates Syk, what

induces transcription of pro-inflammatory cytokines by activating

subunits of the transcription factor NF-kB complex (105). Details of

CLR signaling and their immunological outcomes have been

brilliantly reviewed elsewhere (100, 105). Interestingly, although

many CLRs share this signaling pathway, they all lead to specific

responses; recently, fascinating reports were published revealing

how kinetics and information transfer of similar lectins allow for

their different biochemical outcomes (31, 106). The second group of

CLRs, on the other hand, bear on their cytoplasmic end an

Immunoreceptor Tyrosine-based inhibition (ITIM) motif (e.g.

MICL) (100). This review focuses on the first group of

signaling CLRs.

In addition to signaling, CLR-ligand interactions on the surface

of immune cells can result in improved phagocytosis (92, 107).

Interestingly, some CLRs like Dectin-2 (Clec6a) are shown to

improve phagocytosis although they do not directly participate in

the phenomenon, but likely trigger signaling which in turn catalyzes

the engulfment process (108). In summary, CLRs are considered

attractive targets for targeted antigen and mRNA-delivery (34) due

to their broad expression on antigen presenting cells, their

selectivity and their role in internalization, antigen processing and

immune activation.
3.1.2 The mannose receptor as a case-study
for targeting strategies

A CLR that has received much attention for targeting purposes

is the MR (CD206, MR). CD206 is an endocytic receptor expressed

on macrophages and DCs. It favors the cross-presentation of

soluble ligands (109, 110) that display mannosides (from simple

mannose to higher mannan structures) as well as fucose and

sulfated LacdiNAc (109, 111). Since MR can interact even with

simple monomeric mannosides, several strategies have been put in

place to incorporate MR-targeting ligands and render mannose-

based targeting one of the most common strategies for CLR-

targeting. As early as in 2006, White et al. used mannosylated

liposomes to increase OVA uptake by monocyte-derived DCs

(moDCs) in vitro model (112). Likewise, mannosylated liposomes

showed 4-fold higher eGFP expression levels in splenic DCs than

non-mannosylated controls in mice (113). The authors confirmed

the receptor-mediated nature of the internalization by injecting

LucDNA mannosylated liposomes prior to eGFP mRNA

mannosylated liposomes and seeing that the eGFP expression was
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almost completely reduced (113). Indeed, a myriad of reports show

that mannose-based strategies increase internalization (114) and

transfection (113) of mRNA vaccines in immune cells through a

receptor-mediated mechanism. Last, a first clinical trial with a MR-

targeted cancer vaccine was reported in 2011 (115), but so far we are

not aware of any clinical activities for MR-targeted mRNA vaccines.

Though, it is worth noting that most studies confirm the

receptor-mediated nature of the internalization process through

competitive binding assays using mannan and, therefore, cannot

individualize which exactly receptor is being used. Although the

strategies described in the previous paragraph may result in

targeting CD206, there are other receptors that can recognize

mannosylated ligands (116). The simplicity of the ligands used,

and the variety of C-type Lectins and their recognition patterns

indicate that using simple oligomannosides will not make for a

selective MR-targeting at subtype level. Many cell types display

receptors that are able to recognize simple mannose (116) and this

might render simple mannosylation an inefficient targeting strategy,

and advocates for the development of more specific ligands, or the

targeting of CLRs with restricted expression profile. For instance,

vaccines that target MR may also bind DC-SIGN due to similar

ligand binding profiles, as DC-SIGN is a CLR that also recognizes

terminal mannosides (117). As detailed next, this receptor has been

broadly considered for targeted antigen delivery (118, 119), but the

synergy might not be cooperative, and the expression patterns differ

(Figure 2), thus highlighting the need for specific ligands when

designing targeting strategies.

3.1.3 Other C-type lectins
DC-SIGN is a calcium-dependent lectin found on DCs and

macrophages subpopulations in human (120, 121) that binds high

mannosylated glycoconjugates and fucose-containing antigens

(122). It plays a central role in the recognition of pathogens and

mediates DC-T Cell interaction by facilitating T Cell adhesion to

scan the DC surface for the presence of peptide antigens (123). It is

believed that DC-SIGN induces intracellular signaling that

modulates signaling of other PRRs such as TLRs (124). This

feature could be particularly beneficial for vaccine strategies in
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terms of adjuvanticity. Indeed, DC-SIGN has been used as target for

antigen delivery through glycan modified liposomes, which resulted

in higher antigen accumulation on DCs and increased T Cell

activation compared to non-mannosylated control (125, 126). It is

worth noting that DC-SIGN ligand design is an active field of

research, both with glycomimetics and drug-like small molecules

(119, 127, 128).

Another CLR attracting attention is DEC-205 (CD205).

Expressed on a range of DC subsets, monocytes and LCs (129),

but also on B cells, T cells and NK cells at lower levels (130), DEC-

205 is involved in endocytosis and increases MHC II presentation

(131). Although its immunological functions have been investigated

already in 1995 (129), DEC-205’s structure has been solved only

recently (132), and its set of ligands still hasn’t been fully resolved.

CD205 has been shown to recognize apoptotic and necrotic signals

(133), although the molecular mechanism and selectivity with

which it recognizes its ligands remain poorly elucidated (134).

Indeed, most of DC205-targeting attempts rely on the use of

antibodies or antibody-fragments, yielding efficient DC-targeting

and enhanced antigen cross-presentation (135, 136). Although

these examples consist in antibody-antigen fusion proteins, two

examples of relevance for this review are: an anti-DEC-205-targeted

PLGA particle showed enhanced cross presentation of a melanoma-

associated antigen (137) and a DNA vaccine encoding for an anti-

DEC-205 Ab fused to the antigen showed improved response

compared to non-targeted antigen (135). Of note, in 2011 a

clinical trial was conducted for an anti-HIV DEC-205-targeted

vaccine (138).

Dectin-1 is a CLR that identifies ligands independently of Ca2+

and promotes particle uptake through actin-dependent

phagocytosis (139). It specifically recognizes soluble and

particulate b(1-3) and/or b(1-6)-linked glucans with different

affinities that depend on the degree of side chain branching and

polymer chain length (140). Dectin-1 is involved in cellular

activation through an ITAM-like motif in its cytoplasmic tail. In

this sense, its optimal activity is reached in collaboration with other

PRRs (141). This receptor is thought to be a costimulatory molecule

as it can bind to both CD4+ and CD8+ T cells and increase their
FIGURE 2

Overview on APC cells and surface receptors for targeting approaches.
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proliferation (142). It is expressed by DCs, macrophages,

monocytes, neutrophils and a subset of T cells, and very highly

expressed on portals of entry like intestine and lungs (139). The

conjugation of a small interfering RNA (siRNA) with b-glucan
polysaccharide resulted in Dectin-1-mediated accumulation in

Dectin-1-positive cells in PBMCs (143).

As described previously, Langerin (CD207) is an attractive

target for receptor-mediated antigen delivery as it is highly

expressed by LCs (144), dermal DCs (145, 146) and other DC

subtypes (147). Several attempts have successfully resulted in LC

targeting in vitro using antibodies (148) or small sugars (149, 150)

as targeting ligands. Interestingly, Wamhoff et al. reported the

discovery of a glycomimetic Langerin ligand and demonstrated its

selectivity for Langerin+ cells using functionalized liposomes (149).

Schulze et al. used this small Langerin ligand to selectively target

nanoparticles (liposomes) to human LCs in vitro (151), and

Rentzsch et al. proteins to LCs ex vivo (152). Such ligands can be

used to functionalize nanoparticles which encapsulate drugs,

antigens or toxins to be delivered into LCs (151).

Two other examples of CLR attracting attention for cell-specific

targeted delivery are DNGR-1 (Clec9a) and MGL (Clec10a) (33)

(Figure 2). DNGR-1/Clec9a was shown to be selectively expressed on

cDC1 in humans (153). Clec9a is an appealing target as it has been

shown that specific interaction with this receptor promoted humoral

immunity in non-human primate (154). Although, to the best of our

knowledge, DNGR-1 targeting has never been applied to mRNA-

vaccines, a recent example showed that a DNGR-1-specific peptide

could target nanoparticles to Clec9a+ DC (155, 156). MGL, on the

other was shown to be specifically expressed on cDC2 (CD1c+ DCs)

in humans (157). It binds selectively to terminal GalNAc (158) and

mucin-1 peptides with various glycosylation profiles (159). Heger

et al. showed that using a Clec10a-binding glycopeptide, it was

possible to selectively targeted CD1c+ cells (cDC2s) in PBMCs

(157). Last, the authors did not observe that ligands for Clec10a

alone induced activation or cytokine secretion by CD1c+ DCs

(although it did lead to targeting), what is an interesting feature for

the development of targeted immunotherapeutics.

Last, hDCIR (Clec4a) is a broadly expressed CLR, being found

on all CD14+ monocytes, CD15+ granulocytes, all DC subsets

(including pDCs) and B cells in peripheral blood, but not T Cells

(104, 160–162). It is, to the best of our knowledge, not very clear

what Clec4a binds to, but it is involved in HIV glycoprotein

recognition (163). Targeting of antigens to DCIR using antibodies

resulted in increased cross-presentation by LCs, blood mDCs and

pDCs, and enhanced CD8+ T cell priming in human cells in vitro

(164). The fact that Clec4a has a broader cell expression pattern

makes it interesting, and its targeting could be used for different

strategies as compared to the receptors with restricted expression

pattern that we have mentioned before.

In conclusion, CLRs are attractive and versatile targets for

targeted antigen delivery. With increasing knowledge in their

structural and molecular biology, an ever-growing range of

ligands and targets are becoming available. Of particular interest

are those CLRs for which we can find selective ligands. When

selective ligands are lacking, many examples rely on the use of

antibodies although their generally high affinities may prove
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deleterious for endosomal escape (165). Last, the targeting of

CLRs with restricted expression profiles (Langerin, XCR-1,

Clec9a, Clec10a) allows for specific targeting to defined

cell subtypes.
3.2 Other receptors for
targeted mRNA-delivery

Although CLRs represent most of the targets presently

described in the literature, there are other receptors that hold

potential for targeted mRNA delivery to immune cells. Toll-like

receptors (TLRs) play crucial roles in the innate immune system by

recognizing PAMPs. TLRs are proteins expressed in particular by

innate immune system cells, such as macrophages and DCs but they

can also be expressed by some subsets of adaptive immune cells

(28). TLRs signaling recruits specific adaptor molecules, which leads

to the activation of the transcription factors NF-kB and IRFs, thus

dictating the response’s outcome (166, 167). Many commercial

adjuvants contain TLR-agonists (168). Recently, a nanoparticle was

targeted to DCs using Pam3CSK4 (a TLR-2 agonist) as targeting

ligand (169). The use of TLR agonists as targeting ligand represents

an efficient way to target DCs, but the activation of these receptors

also poses the risk of modulating the immune response to

potentially increase inflammation. If harnessed, this could also

improve the response to targeted vaccines.

X-C Motif Chemokine Receptor 1 (XCR1) is a chemokine

receptor known to recognize XCR1 ligand (XCL1). It is selectively

expressed on cDC1 (170). Being a specific ligand, vaccines using

XCL1 as targeting ligands fused to antigens (rather than

monoclonal antibodies) have been developed and showed

improved efficacy (171, 172). An important communication from

Fossum et al. compared Clec9a, DEC-205 and XCR-1 as targets in a

single study, using DNA vaccines encoding for single chain variable

fragments (scVf) fused to an antigen and injecting them into mice

(173). Interestingly, they found that targeting to XCR-1 resulted in

augmented IFN-g+CD8+ T cell responses in both spleen and lung

and stronger cytotoxicity, while targeting to Clec9A induced

antibody responses with higher avidity and more neutralizing

effect compared to XCR1 and DEC-205. This shows that although

Clec9a and XCR1 are both cDC1 specific, targeting them results in

different outcomes, thus showing that not only the cell subtype but

also the receptor itself dictates the targeting’s outcome and efficacy.

Other immune cells have also been targeted for mRNA delivery.

To deliver interleukin 10-encoding mRNA specifically to Ly6c+

leukocytes in vivo, Veiga et al. used mRNA-LNPs modified with

anti-Ly6c (174). The authors saw a 20-fold increase of antigen

expression in the target organ and a 10-fold decrease in the liver

compared to the unmodified LNP. Likewise, CD4+ T-Cells that

were targeted by mRNA-LNPs decorated with anti-CD4 antibody

resulted in a 33-fold increase in antigen expression compared to the

non-targeted mRNA-LNP (175).

In conclusion, potential targets for DC-targeted delivery are

numerous, and offer the possibility to target DC subsets and to

direct the LNP’s fate toward different routes and with different

outcomes (Table 1). Targeting receptors expressed on multiple
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subsets may also magnify the desired immune response by

multiplying the number of targeted cells. Last, it is worth noting

that although most targeting strategies target a specific receptor,

designating a specific target is not strictly necessary. Indeed, Jung

et al. reported the discovery of peptide-targeted chitosan particles,

where the targeting peptide was chosen for its ability to interact with

BMDCs without knowing the peptides’mode of action and binding

partner (182). Targeting was confirmed in vitro, as uptake increased

in DCs but not in control cells (myoblasts).
4 Nanoparticles as targetable mRNA
delivery vehicles

4.1 Vehicles and delivery systems

One of the main challenges in the development of mRNA

vaccines is its intracellular delivery. The mRNA inevitably needs

to arrive in the cytosol to meet ribosomes and finally get translated

into the antigen. However, naked mRNA is not able to cross the

plasma membrane and is susceptible to degradation by

endonucleases, which are widespread in physiological fluids and

tissues (183). For instance, the lifetime of naked DNA plasmid in

blood is only a few minutes (184). To overcome this issue, mRNA

can be associated to carriers that protect it from degradation and

enable intracellular delivery.

To this end, many delivery systems have been used. They have

been conveniently divided into viral (185) and non-viral vectors.

The use of viruses takes advantage of their naturally-evolved ability

to efficiently transfer genetic material into cells, which renders high

translation efficiency (186). Nevertheless, viruses have their own

tropism and not always meet the therapeutic needs. Naturally, they

induce potent immune responses that can translate into

reactogenicity and harm the therapeutic efficacy. More, this could

have an impact on transfection efficiency in repeated immunization

schedule. This may eliminate both vector and transfected cells,

decreasing the intensity and duration of antigen expression (185).

To overcome the antivector immunity-dependent decrease of

response related to viral vectors, alternative technologies have

been used, such as RNA-peptide conjugates (187, 188), polymers

(189) and lipid nanoparticles (7). Nanoparticles, in particular lipid-

based, have emerged as the currently preferred non-viral vector and

represent a safer and more versatile alternative.

An ideal non-viral vector should efficiently bind to the mRNA to

enable good encapsulation, protect it from enzymatic degradation,

facilitate cellular uptake at the target cell and promote endosomal

escape so the genetic material reaches the cytosol. In this sense,

nanoparticles offer the possibility to tailor their properties to optimize

their performance as transfection agents. Lipid nanoparticles (LNPs),

for instance, have evolved from liposomes and lipoplexes to become

more efficient mRNA vectors (190). The main advance in the LNP

composition in relation to other lipid-based systems is the advent of

ionizable lipids in their composition, as opposed to cationic lipids.

Ionizable lipids are positively charged at acidic pH but neutral at

physiological pH. This feature greatly improved the drawbacks

inherent to permanently cationic lipids, like rapid elimination, poor
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tolerability and cellular toxicity associated to the positive charge

(190). Ionizable lipids play a decisive role on the mRNA intracellular

delivery by facilitating endosomal escape as well as on the mRNA

encapsulation during manufacturing. Upon acidification in the

endosomes, the amine groups in ionizable lipids get protonated

and facilitate the transport of chloride ions to equilibrate the

membrane charge and osmotic pressure until the membrane is

disrupted and the genetic material is delivered into the cytosol

(191). By increasing the degree of unsaturation of the ionizable

lipid hydrophobic tail (192) as well as by tuning its pKa (193, 194),

it is possible to increase endosomal escape and therefore vaccine

potency. Ionizable lipids allow high rates of mRNA encapsulation.

Due to the low pH of the aqueous phase during manufacturing,

ionizable lipids become positively charged, which promotes the

interaction with the negatively charged mRNA backbone. This

facilitates the mRNA incorporation into the forming LNP. After

LNP formation, a buffer exchange step ensures the buffer goes back to

physiological pH. Another component of currently used LNPs is the

PEGylated lipid, composed of a hydrophilic PEG polymer conjugated

to a hydrophobic lipid anchor. The PEG polymer is situated toward

the environment, while the lipid anchor is buried toward the LNP

core. The PEGylated lipid increases the LNP circulation time as it

prevents opsonin binding and determines particle size during

manufacturing, preventing particle fusion. By changing the PEG

lipid anchor length, it is possible to tune its shedding rate from the

LNP surface, which is essential to promote cellular uptake and

endosomal escape. Phospholipids and cholesterol are also employed

as contributors to the LNP structural integrity and phase transition

behavior. They assist on the mRNA encapsulation and ensure LNP

stability over time (190). The versatility of the LNP platform allows

for a multitude of modifications in the lipid components and/or

proportions to achieve specific characteristics that make them

preferentially accumulate in specific organs (195). Moreover, the

LNP itself can possess immunogenic properties, which may be

reduced to decrease inflammation and deleterious interactions

(196–198). As addressed in this review, LNPs can also be

functionalized with molecules that specifically interact with cellular

receptors to increase their uptake by target cells. This is the concept

behind the design of active targeting nanoparticles, which we believe

represents the basis for the future of mRNA vaccines.

As seen above, antibodies are bullets of choice to target LNPs

toward a specific receptor (Table 1). Antibodies are generally

conjugated to LNPs after their formulation using PEGylated lipids

with functional terminal groups, such as maleimide (199). This

process is rather straightforward, but it is difficult to characterize the

obtained functionalized particles and to quantify the conjugated

antibodies (200). Moreover, chemically conjugating an antibody on

the LNP surface does not offer full control of its orientation, and

may result in antibodies unable to properly interact with their

targets [although this field is making considerable progresses (201)].

Regarding LNP small molecule-functionalization, so far two main

strategies have been described: through PEG or through cholesterol

(Figure 3). Mannosylated PEG has been one of the first examples of

sugar-based targeting to deliver GFP DNA to Kupfer cells in vitro

and in vivo (86). PEG has been seen as the ideal candidate to ensure

maximum ligand exposure as compared to cholesterol, since its
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hydrophilic tail is exposed toward the environment, as opposed to

cholesterol, which is in the LNP inner structure. With reports

demonstrating that PEG gradually sheds from the LNP upon

injection (202, 203), PEG might not be the best candidate to

ensure LNP targeting after injection. Therefore, other strategies

were put in place, with mannosides conjugated to cholesterol

instead (204). Indeed, Goswami et al. showed that mannosylated

cholesterol improved the internalization and potency of an anti-

RSV Self-Amplifying mRNA vaccine (SAM) (176). Recently, some

examples of MR-targeted siRNA have also been published, with
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ligand directly attached to the siRNA or to a siRNA-encapsulating

particle (205, 206).
4.2 Targeting ligand affinity, the higher
the better?

A common approach for targeting (be it of antigens or

therapeutic small molecules) relies on the use of antibodies as

targeting agents. The resulting construct generally follows a 1:1
TABLE 1 Examples of immune cell targeting, their targeting strategy and outcome.

Target Targeting Ligand Model Outcome Ref

MR anti-MR mAb Human Induced significant cellular and humoral response in Phase I clinical trial (115)

MR Oligo-mannosylated cholesterol Mice Improved in vivo humoral response (176)

MR Tri-mannose Mice Induced activation of splenic DCs and antitumor T cell response (114)

DEC205 anti-DEC-205 mAb Mature moDCs Increased DC-uptake and increased presentation to CD8+ T Cells (137)

Langerin Glycomimetic Langerin ligand Ex vivo human skin Fast and specific LC-specific uptake (132)

Clec9a anti-Clec9a mAb
Mice, non-human

primates
Increased humoral response, without adjuvant (154)

Clec10a Glycosylated peptide hPMCs Specific cDC2 uptake (157)

Dectin-1 b-glucan Mice Induced potent Th1 and Th2-type responses (177)

Dectin-2 Anti-Dectin-2 mAb Mice Increased CD8+ T Cell Response (178)

DC-
SIGN

anti-DC-SIGN mAb Pigs Production of antigen-specific CD4 T cell response, with Th1 polarization (179)

DC-
SIGN

Fucose-containing Lewis-type
glycans

Human
100-fold increase presentation to CD4 and CD8 T cells compared to non-targeted

control
(180)

DC-
SIGN

Mannosides moDCs Induced Th1-type immune response (181)

Clec4a Anti-Clec4a mAb hPBMCs CD8+ T Cell cross-priming (164)

XCR-1 DNA-encoded scFv-Ag fusion Mice augmented IFN-g+CD8+ T cell responses (173)

TLR-2 Pam3Cys Mice Reduced Mycobacterium Tuberculosis burden in the lung (169)

Ly6c Anti-Ly6c mAb Mice Targeted expression of IL-10 in Ly6c+ inflammatory leukocytes (174)
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FIGURE 3

LNP structure, composition, and targeting ligand incorporation strategies.
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stoichiometry in which the antibody is fused to one protein or

conjugated to one small molecule. For nucleic acids, the necessity of

an encapsulation platform (e.g. an LNP) allows for antibody-guided

targeting, but also for the use of smaller targeting ligands like sugars

or peptides, multivalently displayed on the particle’s surface. The

use of small molecules present advantages over antibodies regarding

cost-effectiveness and scalability (Figure 3). The use of small

molecules comes with the trade-off that the ligand affinity for its

target is lower compared to antibodies. This is compensated by the

multivalent display of the ligands, that will result in improved

avidity (207–209). In the case of sugars, the weak affinities typically

observed for monosaccharides can be improved by ligand

elongation (210, 211). For example, DC-SIGN binds 130-fold

more tightly to an N-acetyl-glucosamine-mannose oligosaccharide

than to mannose (212). In the case of peptides as targeting ligands,

affinities can be improved by optimizing the sequences and/or the

peptide’s 3D configuration (213).

CLRs usually display weak affinities toward their carbohydrate

ligands, but weakness of the interaction can be overcome by their

multimeric nature, i.e. their ability to cluster and/or display

multiple binding sites in close proximity to enhance avidity (214,

215). For many receptors, avidity is maximized by multivalent

structures (e.g. DC-SIGN is a tetramer, Langerin a trimer, and the

MR linearly contains 8 CRDs). Therefore, high-affinity binding to

the receptor can be achieved through the interaction of multiple

saccharides with multiple CRDs at the same time (216). Avidity is

the product of three factors: affinity, valency, and spatial

arrangement. To this end, ligand distancing plays a crucial role

on multivalent receptor engagement, and can be optimized with

physical parameters such as ligand density, linker and ligand length

(30, 217–219). Of note, progresses in characterization techniques

now allow for the precise quantification of targeting ligand display

on a particle surface (220). Interestingly, particle size also

influences its receptor-mediated cellular uptake: indeed, Fehres

et al. reported that a Lewis Y (LeY)-functionalized liposome lead in

DC-SIGN-dependent antigen presentation, while a LeY-bearing

peptide was exclusively taken up and presented through Langerin.

This exemplifies how the delivery vehicle design and target

receptor choice are intertwined.

In conclusion, the multivalent display of smaller ligands can

compensate for their weaker affinities in comparison to antibodies.

In the specific case of mRNA-vaccine targeting, a strong targeting

ligand-receptor interaction as with an antibody can be deleterious

for endosomal escape (165) and result in poor antigen translation.

This represents a strong drawback to the use of antibodies to target

recycling endocytic receptors like Langerin (221). On the other

hand, in the case of CLRs, the acidification of the endosome results

in a Calcium-dependent affinity drop which disrupts the interaction

between the receptor and the targeting ligand and facilitates its

escape and/or prevents its recycling (99).
5 Discussion

Immune cell-targeted mRNA delivery holds promises to

improve vaccine quality and potency. The growing expertise in
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targeted antigen delivery and the increasing understanding of

mRNA formulation need to merge to enable the development of

potent DC-targeted mRNA vaccine with improved potency and

distribution profile. This may happen only if our knowledge in

immunology drives us toward the definition of appropriate targets,

and if chemistry and biomolecular technologies enable their

specific targeting.

Overall, targeting specific receptors on innate immunity-

associated cells could create a stronger and longer-lasting

immune response tailored for vaccines applications. Moreover, a

combined targeting strategy involving different innate immune cell

subsets might be attractive, given their distinct and central role in

the immune response. For instance, macrophages drive

inflammatory responses, whereas dendritic cells assume a key role

in antigen presentation to T cells. Therefore, the simultaneous

targeting of both cell types could contribute to the initiation of an

improved antigen-specific immune response. In this context,

further research will be needed to identify potential common key

receptors among different cell types, or to formulate LNPs with a

combination of several targeting ligands.

RNA delivery vehicles must be carefully developed, considering

the requirements imposed by the complex process of selectively

delivering mRNA to a single cell-type. Nanoplatform design should

encompass the components’ compatibility in the formulation step,

as well as the necessity of maintaining an efficient endosomal escape

and an adequate multivalent ligand display. Although the design of

such vehicles is complex, and further research is still needed, we are

confident about the impact that this technology could have on the

deployment of new vaccines worldwide, for both prevalent and

emerging diseases.
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