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Background: Disulfidptosis, a newly defined type of programmed cell death, has

emerged as a significant regulatory process in the development and

advancement of malignant tumors, such as lower-grade glioma (LGG).

Nevertheless, the precise biological mechanisms behind disulfidptosis in LGG

are yet to be revealed, considering the limited research conducted in this field.

Methods: We obtained LGG data from the TCGA and CGGA databases and

performed comprehensive weighted co-expression network analysis, single-

sample gene set enrichment analysis, and transcriptome differential expression

analyses. We discovered nine genes associated with disulfidptosis by employing

machine learning methods like Cox regression, LASSO regression, and SVM-RFE.

These were later used to build a predictive model for patients with LGG. To

confirm the expression level, functional role, and impact on disulfidptosis of ABI3,

the pivotal gene of the model, validation experiments were carried out in vitro.

Results: The developed prognostic model successfully categorized LGG patients

into two distinct risk groups: high and low. There was a noticeable difference in

the time the groups survived, which was statistically significant. The model’s

predictive accuracy was substantiated through two independent external

validation cohorts. Additional evaluations of the immune microenvironment

and the potential for immunotherapy indicated that this risk classification

could function as a practical roadmap for LGG treatment using immune-based
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therapies. Cellular experiments demonstrated that suppressing the crucial ABI3

gene in the predictive model significantly reduced the migratory and invasive

abilities of both SHG44 and U251 cell lines while also triggering cytoskeletal

retraction and increased cell pseudopodia.

Conclusion: The research suggests that the prognostic pattern relying on genes

linked to disulfidptosis can provide valuable insights into the clinical outcomes,

tumor characteristics, and immune alterations in patients with LGG. This could

pave the way for early interventions and suggests that ABI3 might be a potential

therapeutic target for disulfidptosis.
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1 Introduction

Gliomas are identified as a cancerous condition that starts in the

central nervous system, known for their rapid growth and invasive

tendencies (1), leading to a decline in patients’ quality of life and

lower chances of survival (2). As per the World Health

Organization (WHO) classification, gliomas are categorized into

four grades. Among these, grade II and III gliomas are referred to as

lower-grade glioma (LGG) (3). Besides long-term exposure to

ionizing radiation, the factors contributing to the risk of LGG are

not fully understood (4). Based on a study (5), patients with grade 2

LGG experienced a median overall survival (OS) of 78.1 months,

whereas those with grade 3 had a median OS of 37.6 months.

Despite significant progress in the advancement of groundbreaking

cancer therapies, the outlook for individuals with LGG remains

grim. Immunotherapy is increasingly recognized as a promising

treatment modality across a diverse spectrum of tumors. Therefore,

the pressing need for the advancement and authentication of

innovative predictive indicators to better predict medical results

and guide immunotherapy approaches in individuals with

LGG remains.

Apoptosis acts as a natural process controlling biological

growth and preserving internal environmental balance. The

strategic targeting of cell death-associated pathways to eradicate

cancer cells constitutes a pivotal focus in oncological therapeutics

(6). Disulfidptosis, a novel form of cell death, was recently

discovered in a study at MD Anderson Cancer Center (7). This

novel form of cellular demise differs from the recognized methods

of demise. Once disulfidptosis occurs, it cannot be prevented by

using conventional cell death inhibitors or by knocking down

pivotal cell death-related regulatory genes, so it is completely

independent of several other known modes of cell death. It was

found that disulfidptosis is triggered by the rapid depletion of

NADPH in SLC7A11-overexpressing cells during glucose

deprivation, which leads to disulfide bond stress, amplifying the

quantity of disulfide bonds within the actin cytoskeleton.

Consequently, actin filaments contract, resulting in cytoskeletal

structural disruption and precipitous cellular death. SLC7A11 is a
02
member of the solute carrier family and is part of the cystine/

glutamate reverse transporter proteins. These proteins primarily

participate in the transportation of amino acids through the cell

membrane, serving as a crucial pathway that tumor cells rely on for

survival. Specifically, the conversion of cystine to cysteine by

SLC7A11 heavily relies on NADPH produced through the

glucose-pentose phosphate pathway (8). The disulfidptosis

mechanism stands out from other cellular death pathways

because of its distinct association with the actin cytoskeleton, an

essential cellular structure for maintaining cell shape and survival.

The actin cytoskeleton comprises actin filaments, pivotal in defining

the cell’s structural integrity and overall form (7, 9). Furthermore, it

was noted that the application of glucose transporter inhibitors

resulted in a significant decrease in cellular glucose uptake in cancer

cells that overexpress SLC7A11. This reduction subsequently

resulted in NADPH depletion, actin cytoskeleton cross-linking,

and the initiation of disulfidptosis.

Furthermore, it was noted that the application of glucose

transporter inhibitors resulted in a significant decrease in cellular

glucose uptake in cancer cells that overexpress SLC7A11. This

reduction subsequently resulted in NADPH depletion, actin

cytoskeleton cross-linking, and the initiation of disulfidptosis

(10). Likewise, disulfidptosis has been shown to have the ability to

impact the infiltration of immune cells (11). Due to the early phase

of investigation into disulfidptosis, its impact on the advancement

of illnesses in individuals with LGG is still uncertain. Although

ongoing studies have only identified a limited number of genes

associated with disulfidptosis (DAGs), the medical community has

shown considerable interest in the concept of disulfidptosis since its

beginning, especially in the field of tumor therapy (12). Therefore,

exploring the possible connection between DAGs and the cause of

LGG has significant value in the advancement of focused treatment

strategies for LGG (8).

In this inquiry, we obtained publicly accessible LGG

information from The Cancer Genome Atlas (TCGA) and

Chinese Glioma Genome Atlas (CGGA) repositories. By utilizing

various bioinformatics techniques, such as Weighted Gene Co-

expression Network Analysis (WGCNA), single-sample genome
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1294459
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhou et al. 10.3389/fimmu.2023.1294459
enrichment analysis (ssGSEA), and machine learning methods, we

effectively developed an innovative risk model using nine DAGs.

Additional evaluation was performed to assess the predictive

usefulness of this risk model and explore its connections with

immune response against tumors and the microenvironment of

the tumor. After extensive experimentation, we have definitively

determined that the ABI3 protein is intricately connected to vital

mechanisms in glioma cells, encompassing movement, infiltration,

and the initiation of epithelial-mesenchymal transition. Moreover,

our research indicates that ABI3 could be a potential target for

promoting disulfidptosis therapeutically.
2 Materials and methods

2.1 Data acquisition and processing
for transcriptomes

We extracted the RNA expression profiles, gene mutations, and

relevant clinical data for LGG from the databases of TCGA. The

TCGA datasets were used as the training set to construct the model.

To validate externally, RNA transcriptomics data from two glioma

cohorts were obtained from the CGGA databases (13, 14). The

training dataset aided in the creation of a predictive model, whereas

the external validation dataset evaluated the model’s strength and

accuracy in prediction. For analysis purposes, the data were

presented in FPKM format, which stands for Fragments Per

Kilobase of transcript per Million mapped reads, and then

transformed using a logarithmic function. Furthermore, the RNA-

seq information of healthy brain tissue was obtained from the GTEx

database (https://commonfund.nih.gov/GTEx). The ‘sva’ package in

R corrected the batch effect on the TCGA, GTEx, and

CGGA datasets.
2.2 Analysis of gene set enrichment for
individual samples using ssGSEA

To calculate the disulfidptosis scores for individual LGG

samples, the Gene Set Enrichment Analysis (GSEA) utilized the

‘GSVA’ and ‘GSEABase’ packages in R. The gene set associated with

disulfidptosis was carefully selected based on an extensive review of

relevant literature (7). Supplementary Table 1 contains the

exhaustive compilation of these genes.
2.3 Evaluation of weighted co-
expression networks

The TCGA-LGG dataset was used to construct gene co-

expression networks through the execution of the WGCNA using

the ‘WGCNA’ package in R. By examining the connectivity within

each set of genes and its correlation with phenotypic traits,

WGCNA allows for the identification of highly co-expressed gene

modules as well as potential biomarker genes or therapeutic targets.
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In particular, the WGCNA method was utilized to detect gene

modules that are associated with disulfidptosis scores in LGG

patients and to describe these genes within the identified

modules. Additionally, in order to ensure WGCNA’s rationality,

we performed a hierarchical cluster analysis to exclude outliers.
2.4 Genes intersecting through differential
expression analysis and Venny analysis

Differential expression analysis was conducted using control

samples of healthy brain tissue obtained from the GTEx database.

To identify differentially expressed genes (DEGs) (15), the R

package ‘limma’ was utilized. After applying the Benjamini-

Hochberg method for multiple hypothesis testing adjustments,

DEGs were chosen by considering an absolute log2 fold change (|

log2FC|) greater than 1.585 and an adjusted p-value lower than

0.05, ensuring a false discovery rate of less than 0.05. The ‘ggplot2’ R

package was used to create a volcano map for the visualization of

DEGs. To facilitate further analyses, a Venn diagram was utilized to

determine the overlap between important module hub genes

obtained from WGCNA and the DEGs.
2.5 Development and validation of an ideal
machine learning-based prognostic risk
model for DAGs

To begin with, a univariate Cox regression analysis was

conducted to identify genes with prognostic importance by

utilizing the hub genes associated with disulfideptosis that were

differentially expressed. Furthermore, a comprehensive

examination of two machine learning algorithms was employed

to screen these predictive genes. The LASSO algorithm, which

utilized penalty parameter tuning through 10-fold cross-

validation, and the SVM-RFE algorithm, which selected the

optimal variables based on the minimum 10-fold cross-validation

error value, were the two algorithms used. A prognostic signature

was developed by performing multivariate Cox survival analysis on

the extracted and selected overlapping genes using the LASSO and

SVM-RFE algorithms. To calculate prognostic signature risk scores,

the following formula was utilized: Risk scores =on
i=1(Coefi*Expi),

Where ‘i’ denoted the serial number of gene, ‘Coef’ represented the

coefficient value, and ‘Exp’ represented the expression value of gene.

It is crucial that the prognostic signature is validated by another

independent cohort. As a result, the strength of our predictive

pattern was confirmed by validating it on two separate glioma

datasets (mRNAseq_325 and mRNAseq_693) obtained from the

CGGA database. The TCGA- LGG cohort and two CGGA cohorts

were divided into high-risk and low-risk groups based on the median

risk score obtained from the TCGA cohort. Following assessments

involved the utilization of Kaplan-Meier survival analysis and

Receiver Operating Characteristic (ROC) curve analysis to evaluate

the variations in prognosis between the high-risk and low-risk

subcategories, as well as the precision of the risk model’s predictions.
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2.6 Development and assessment of a
prognostic risk scoring nomogram utilizing
factors related to prognosis

The Cox model was used to assess independent predictors of

OS. The variables that showed a strong correlation with prognosis

in the univariate Cox analysis were later included in the multivariate

Cox analysis. Furthermore, the Cox proportional hazards models

were used to calculate hazard ratios (HRs) and their corresponding

95% confidence intervals (CIs).

To predict the chances of 3-, 5-, and 7-year OS in patients with

LGG, a nomogram was developed. The ‘rms’ and ‘regplot’ packages

in R were used to create this model, which combines the recognized

independent prognostic clinical factors and the risk score signature.

To evaluate the reliability and precision of the developed

nomogram, calibration curves and decision curve analysis (DCA)

were utilized. Dynamic nomograms were created using the

“DynNom” package, and an interactive web-based application

was created using the Shiny platform (https://yudong-

cao.shinyapps.io/dynamic-Nomo/) (16).
2.7 Gene set variation analysis

The R package ‘GSVA’ was used to perform gene set variation

analysis with the ‘c2.cp.kegg.v7.5.1.symbols.gmt’ dataset obtained

from the Molecular Signatures Database. The R package ‘heatmap’

was used to generate a heat map for visualizing the enrichment

results. Statistical significance was determined at an adjusted p-

value of less than 0.05 using the “limma” R package.
2.8 Evaluation of the prognostic model’s
relevance to tumor immunity and
immunotherapeutic response

To determine the makeup of 22 different types of immune cells

in humans, the CIBERSORT algorithm was employed by analyzing

gene expression profiles (17–19). For successful deconvolution, a P-

value of less than 0.05 was used to determine the statistical

significance after executing 1,000 permutations for each sample.

The ESTIMATE algorithm is specifically created to measure the

amount of infiltrating immune and stromal cells present in tumor

tissue, while also providing an estimation of tumor purity based on

gene expression data (20). Using ssGSEA, ESTIMATE calculates

scores for immune, stromal, and tumor purity. The application of

this tool was used to assess the tumor purity, immune score, and

stromal score of every LGG sample. Furthermore, the ssGSEA was

employed to calculate numerical values for every individual stage in

a seven-stage cancer immunity cycle, which acts as a structure for

assessing anti-cancer immune responses (21).

The TIDE algorithm is an online tool created to measure

response metrics of immunotherapy, acting as a predictive tool to

evaluate the efficacy of immune checkpoint inhibitors, and

performing thorough analyses on various tumor expression

profiles. By employing this tool, we computed several immune
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scores, such as immune malfunction, immune segregation, cancer-

related fibroblast (CAF), and the comprehensive TIDE score. These

scores were derived from standardized expression profiles obtained

from the TCGA repository (22). To assess disparities in TIDE scores

between subgroups at high and low risk, a Wilcoxon test

was conducted.
2.9 The mutational landscape and
drug sensitivity

The gene mutation patterns of patients with LGG, acquired from

the TCGA database, were produced utilizing the ‘maftools’

application. Afterwards, the comprehensive gene mutation records

were combined with the risk assessment. Additionally, we utilized the

R software ‘oncoPredict’ to calculate the IC50 values, representing the

concentrations at which the inhibitory effect of commonly used

chemotherapeutic drugs is reduced by half. The assessment enabled

the examination of the correlation between the risk rating and the

responsiveness to medication. Wilcoxon signed-rank tests were

conducted to compare the IC50 values between the two risk groups.
2.10 Analysis of single-cell RNA sequences

The Tumor Immune Single-Cell Hub (TISCH) was employed to

examine scRNA-seq data of the GSE148842 dataset. TISCH

functions as a dedicated repository for scRNA-seq, specifically

targeting the TME [15]. By providing comprehensive annotations

of cell types at the individual cell level, it enables the exploration of

the TME in different types of cancers (23).
2.11 Cell culture

The glioma cell lines SHG44 and U251 were utilized in the

experiments and were cultured in DMEM (Dulbecco’s Modified

Eagle Medium) with the addition of 10% fetal bovine serum. The

cells were kept in a typical sterile CO2 incubator at a temperature of

37°C, with a CO2 concentration of 5%. Every day, the cells were

rinsed thrice using PBS (Phosphate-Buffered Saline), and the culture

medium was substituted. When the cell confluency reached 80%-

95%, subculturing was carried out with a split ratio of 1:2.
2.12 Tissue microarray
and immunohistochemistry

The Ethics Committee of Xiangya Hospital, Central South

University granted ethical approval for this study (Ethical

Approval Code 202309185). Informed consent was obtained from

all patients who participated. All participants were included in the

study. During the time frame from January 2021 to August 2022,

the Department of Neurosurgery at Xiangya Hospital, Central

South University, obtained a total of 70 glioma samples and

12 normal tissues from the surrounding area. Following previous
frontiersin.org
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protocols, the specimens were processed into tissue microarrays to

investigate the expression of ABI3 (24).

To remove paraffin and rehydrate, tissuemicroarrays embedded in

paraffin were baked at a temperature of 65°C for one hour. The

endogenous peroxidase activity was eliminated by incubating in

methanol with 0.3% hydrogen peroxide for 30 minutes. Afterwards,

the sections were obstructed for 30minutes using a solution of 2% BSA

in PBS. The anti-ABI3 antibody (diluted 1 250; SANTA, USA) was

incubated overnight at 4°C.The MaxVision HRP-polymer IHC Kit

Detection System (peroxidase/DAB, rabbit/mouse) from MaxVision,

Fuzhou, China, was utilized to visualize immunocomplexes, following

the guidelines provided by the manufacturer. Hematoxylin (Beyotime

Biotechnology) was employed for nuclear counterstaining. Evaluation

of staining was conducted using an optical microscope with a

magnification of 200×.We conducted a semi-quantitative evaluation

of ABI3 protein expression using methodologies that were previously

established in our research (25).
2.13 Cell transfections and real-time
quantitative PCR

The cells were placed in a 6-well dish with a seeding density of

2.5×105 cells per well. The cells were transfected with 5ml of ABI3
SiRNA (The siRNAs targeting the ABI3 gene were synthesized by

RiboBo Corporation (Guangzhou, China)) using Lipofectamine 3000

Reagent (Invitrogen, Carlsbad, CA, USA) following the manufacturer’s

instructions when they reached a confluency of 60% to 80%.

The Trizol lysis method was used to extract total RNA from

SHG44 and U251 cells that were treated. The Thermo Scientific

RevertAid First Strand cDNA Synthesis Kit (Thermo Scientific,

Waltham, MA) was utilized for the synthesis of cDNA. RNA levels

of ABI3 andb-Actin were analyzed by the 2−DDCt method. The

primers were created by The Beijing Genomics Institute (BGI) and

the sequences were designed as follows: for ABI3, the forward primer

was 5’-CAGGTGGAAGCCCGTGTAAG-3’ and the reverse primer

was 5’-AGTGGCTAAGGTGCCGATCTC-3’. The forward primer

for b-Actin was 5’-CATGTACGTTGCTATCCAGGC-3’ and the

reverse primer was 5’-CTCCTTAATGTCACGCACGAT-3’.
2.14 Western blotting assay

The Western blotting assay was performed in accordance with

the instructions provided by the manufacturer. Western blotting

utilized antibodies targeting ABI3 (sc-376982, SANTA), b-Actin
(20536-1-AP, Proteintech), vimentin (10366-1-AP, Proteintech),

and ZO-1 (21773-1-AP, Proteintech).
2.15 Wound-healing assessment

Prior to conducting the cell migration assay, U251 and SHG44

cells underwent interference treatment. When the cell density

reached 80%-90%, a 100 μl pipette tip was utilized to generate

four intersecting lines in every well, producing a crisscross pattern
Frontiers in Immunology 05
that resembled a grid. After the line was created, the culture

medium was substituted with either a serum-free or low-serum

medium. Subsequently, 8-10 positions were selected and recorded

under an imaging microscope. Thereafter, at 24-hour intervals, the

same positions were imaged using the imaging microscope. The

experiment involved capturing multiple time points (2, 3).

The distances of migration were measured using suitable software

for statistical analysis based on the captured images.
2.16 Invasion and migration experiments
with Transwell

Migration and invasion experiments were conducted in a 24-well

plate using 8.0 mm pore inserts (Millipore, Bedford, MA, USA).2

million cells were placed in the upper chamber of the Transwell insert

for the migration experiment. To perform the invasion test, Matrigel-

coated filters (BD Biosciences, Franklin Lakes, NJ, USA) were

utilized. For migration and invasion assays, cells were incubated for

24 and 48 hours, respectively. After incubation, the cells that migrated

and invaded were fixed and stained using 0.1% (w/v) crystal violet.

Using high-power microscopy, the number of cells that were chosen

randomly, migrated, and invaded were counted.
2.17 Cell viability and colony-
forming assays

1000 cells were cultured in 96-well plates, each sample was

repeated 5 times, and the number of cells was calculated daily using

the CCK-8 assay (A311-02, China Nanjing Novizan Biotechnology

Co., Ltd.) for 5 days. For colony formation assay, cells were cultured

in 6-well plates at a density of 500 cells per well for 2 weeks. The

medium was changed every 3 days. After 2 weeks, the medium was

removed and the cell colonies were stained with crystal violet (0.1%,

20% methanol) for 10 minutes.
2.18 Cell immunofluorescence staining

The U251 and SHG44 glioma cell lines were taken out of the

culture medium and rinsed twice with PBS. Afterwards, they were

subjected to 3.7% formaldehyde treatment for a duration of 20

minutes, followed by 2-4 washes using PBS containing 0.1% Triton

X-100. Each wash lasted for 5 minutes. The Actin-Tracker Red

(C2205s, Beyotime) was thinned in PBS with 1-5% BSA and 0.1%

Triton X-100 at a proportion of 1: 40-200. Following that, the cells

were placed in a dark room at room temperature and incubated for

60 minutes. DAPI (Sigma, USA) was used to stain the cell nuclei.

Observations were made using a laser confocal microscope.
2.19 Statistical analysis

GraphPad Prism software (version 9.0) was utilized to perform

statistical analysis on the experimental data. The data were obtained
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from three separate experiments and are presented as the mean plus

or minus the standard deviation (SD). Student’s t-tests were

conducted for intergroup comparisons, with significance levels

indicated as *P< 0.05, **P< 0.01, and ***P< 0.001.
3 Results

3.1 Weighted co-expression
network analysis

Figure 1 displayed the schematic diagram of the research process.

WGCNA was applied to systematically identify gene modules that

exhibit covariance with disulfidptosis. As evidenced by Figure 2A,

the adoption of a soft-thresholding value of 4 results in data that

more closely adhere to a power-law distribution, while also

stabilizing average network connectivity. This renders the dataset

amenable to subsequent analyses. As depicted in Figure 2B, twelve

distinct non-gray modules were generated through the

amalgamation of modules exhibiting similarity coefficients below

0.15, with a minimum module size established at 50 genes and a

deepSplit parameter set to 2. As discerned from Figures 2C, D, the

brown and blue modules exhibit the strongest correlation with

disulfidptosis, with correlation coefficients of -0.67 and 0.66,

respectively. Figure 2D delineates the statistical significance of gene

constituents within the brown and blue modules in relation to their

correlation with disulfidptosis scores. Furthermore, WGCNA was

also employed to pinpoint hub genes within brown and blue

modules, resulting in the identification of 181 key hub genes.
3.2 Development and verification of a
predictive signature utilizing DAGs

Initially, an integrated analysis of TCGA and GTEx databases

was performed, yielding 2093 DEGs specific to LGG (Figures 3A,

Supplementary Table 2). A Venn diagram was employed to

intersect the DEGs with the hub genes identified via WGCNA,

identifying 39 vital regulatory genes (Figures 3B, Supplementary

Table 3). Following the execution of univariate Cox regression

analysis, a subset of 34 genes was retained, each demonstrating a

significant correlation with prognosis (Supplementary Table 4).

Subsequently, upon isolating 34 prognostic genes, the LASSO

method was applied to refine this list to 19 essential genes (as

shown in Figures 3C, D), and the SVM-RFE algorithm was

employed to narrow down the list to 16 essential genes

(Figures 3E, F). Upon intersecting the critical genes identified

through both LASSO and SVM-RFE algorithms, a set of 13

potentially important genes emerged (Figure 3G). These genes

were subsequently subjected to multivariate Cox regression

analysis for further refinement and the construction of 9-gene

prognostic signature using the following equation: Risk Score=

1.656 × expABI3 + 1.041 × exp APOBEC3C + 0.949 × expCD53

+ 0.851 × expRNASE6 + 0.276 × expOLFML3 - 0.222 × expHLA-

DRB1 - 0.942 × expTYROBP - 1.201 × expSIGLEC10 - 1.763 ×

expTNFAIP8L2 (Figures 3H).
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In the training cohort, samples were segregated into low-risk

and high-risk categories, as illustrated in Figure 4A. The incidence

of mortality was significantly lower in the low-risk set than in the

high-risk set (Figure 4A).

The heatmap delineates that the expression levels of the nine

model genes were markedly elevated in the high-risk subgroup

compared to the low-risk subgroup within the TCGA cohort

(Figure 4A). These findings were corroborated through analysis of

two independent databases, namely the CGGA_325 and

CGGA_693 datasets (Figures 4B, C).

As depicted in Figures 4D-F, the prognosis for patients

categorized into the high-risk group was significantly poorer than

those in the low-risk group across both the TCGA training cohort

and the two CGGA validation cohorts (P< 0.001). This evidence

substantiates that the disulfidptosis-related prognostic model

exhibits high accuracy in forecasting patient outcomes across

both the TCGA and CGGA cohorts. ROC curve analysis was

conducted in the training set and the two test sets to further

evaluate the predictive accuracy of this signature. The areas under

the curve for the test group at 3, 5, and 7 years were observed to be

0.87, 0.79, and 0.80, respectively (Figure 4G). The Area Under the

Curve (AUC) exceeded 0.72 for both the two CGGA test sets,

indicating robust prognostic accuracy (Figures 4H, I).
3.3 Clinicopathological evaluation of the
risk model and analysis of drug sensitivity

Clinical circle plots were constructed to elucidate disparities in

clinicopathological features between the low-risk and high-risk

groups within the context of LGG, and the analysis revealed an

asymmetric distribution across all examined features with the

exception of gender (Figure 5A). Patients presenting with higher

pathological grade, advanced age, wild-type IDH1, absence of 1p/

19q co-deletion, and un-methylated MGMT promoter were

primarily allocated to the high-risk category (Figures 5A).

To rigorously validate the predictive efficacy of the disulfidptosis-

related risk model in conjunction with other clinical features, both

univariate and multivariate Cox regression analyses were conducted

within the TCGA training cohort. Univariate Cox regression analysis

revealed that both the risk scores and specific clinical parameters—

namely age, tumor grade, IDH1 mutation status, 1p/19q co-deletion

status, and MGMT promoter methylation status—exhibited

significant associations with the prognosis of LGG, as depicted in

Figure 5B. Multivariate Cox regression analysis substantiated that the

risk score persisted as an independent prognostic factor (HR = 1.99,

95% CI 1.594-2.485, P< 0.001), as illustrated in Figure 5C.

Conventional clinical attributes, such as age (HR = 1.041, 95% CI

1.024-1.058, P< 0.001) and 1p/19q co-deletion status (HR = 2.214,

95% CI 1.294-3.789, P = 0.004), were also verified as independent

determinants of OS (Figure 5C).

Further investigation was conducted to elucidate the disparities

in drug resistance among the two risk groups, as depicted in

Figures 5D-G. According to our analysis, Gemcitabine, Dasatinib,

Selumetinib, and PD0325901 have shown promise as potential

treatment options for individuals classified as high-risk.
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3.4 Construction of a
prognostic nomogram

Incorporating the risk score along with all independent

prognostic clinical variables, a nomogram was constructed to

quantify better the risk associated with LGG patients (Figure 6A).

A nomogram was employed to enhance the accuracy of patient risk

determination, thereby informing subsequent treatment strategies.

Furthermore, the clinical prediction models were assessed and

optimized through decision and calibration curve analyses,
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offering a comprehensive evaluation of their value in clinical

decision-making. The findings demonstrated that the

performance of the nomogram surpassed other clinical markers,

indicating its robust capability in prognostic prediction (Figures 6B,

C). Consequently, it holds the potential for utilization as a clinical

decision-support instrument. Besides, the nomogram was further

developed into an online, interactive tool to streamline the risk

assessment process and facilitate user engagement and clinical

decision-making (https://yudong-cao.shinyapps.io/dynamic-

Nomo/) (Figure 6D). The web server is designed to generate
FIGURE 1

The flow diagram of this project.
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estimated survival rates and Kaplan-Meier curves upon entry of the

relevant covariates.
3.5 Analyses of pathway enrichment in
cohorts with high- and low-risk

The “c2.cp.kegg.v7.5.1.symbols” file was acquired from the

Molecular Signature Database, and subsequent GSVA analysis
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was conducted utilizing this gene set to gain initial insights into

the potential mechanisms underlying the impact of the risk score on

prognosis in LGG patients. The GSVA results indicated that the

high-risk group exhibited significant enrichment in biological

processes encompassing signaling pathways related to DNA

replication and damage repair, immune response, apoptosis, cell

signaling, cell-cell interactions, and cell-matrix interactions, such as

notch signal pathway, adherens junction, pathways in cancer, DNA

replication, non-homologous end joining, focal adhesions, jak stat
B

C D

A

FIGURE 2

Identifying hub genes related to disulfidptosis phenotype via Weighted Co-Expression Network Analysis (WGCNA). (A) Network topology across
varied soft thresholding powers. The figure numerically annotates the specific soft thresholding powers applied. An approximate scale-free network
topology was observed at a soft thresholding power of 4. (B) Dendrogram of gene clusters based on topological overlap dissimilarity. Associated
module colors are denoted in the color column. Each colored column signifies a module comprising a cluster of co-expressed genes. Thirteen
distinct modules were identified. (C) Relationship between module characterization genes and disulfidptosis scoring phenotypes. (D) Association
scatterplot between Module Membership and Gene significance in the blue and brown modules.
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signaling pathway, p53 signaling pathway, MARK signaling

pathway, and regulation of the actin cytoskeleton (Figure 7).

Biochemical and metabolic pathways were predominantly

enriched in the low-risk group. The aforementioned findings

reaffirmed that the disulfidptosis-related genes utilized for risk

score calculation play crucial roles in malignant progression,

metabolism, DNA damage repair, immune responses, cell

communication, and cytoskeleton regulation of glioma.
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3.6 The disulfidptosis-based signature
exhibits a correlation with heterogeneous
TME and differential responses to
immunotherapeutic interventions

The CIBERSORT technique assessed the level of immune cell

penetration in each sample, providing insights into the arrangement

and interrelation of the relative ratios of 22 immune cells that
B

C D

E F

A

G H

FIGURE 3

Identifying the best predictive model through machine learning. (A) Differential expression analysis between lower-grade glioma (LGG) and normal
tissue (GTEx database). (B) Acquisition of 39 essential disulfidptosis-associated genes (DAGs) after intersecting hub genes obtained in WGCNA and
differentially expressed genes (DEGs). (C, D) LASSO algorithm identifies 19 important DAGs. (E, F) The SVM-RFE algorithm selected 16 authoritative
DAGs. (G) The intersection of genes obtained in LASSO and SVM-RFE algorithms. (H) Construction of 9-DAG signature via Cox regression analysis.
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infiltrated tumors within the TCGA-LGG group. Figure 8A provides

an overview of the landscape depicting the infiltration patterns of 22

distinct immune cell types. In particular, patients classified in the

high-risk group demonstrated elevated levels of regulatory T cells (T-

cell regulatory cells and T-cell follicular helper cells) and quiescent

immune cells (resting CD4+memory T cells and resting NK cells).

Conversely, the proportion of T-cell CD4+ primary cells and

activated natural killer cells was notably lower in this group

(Figure 8A). The TME plays a pivotal role in modulating the

immune response against malignant cells. We assessed the

composition of the TME between different risk subgroups within

the TCGA cohort. Briefly, elevated stromal and immune scores were

significantly associated with the high-risk subset compared to the

low-risk subgroup. Conversely, tumor purity was markedly lower in
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the high-risk subgroup (Figure 8B). This indicates that high-risk

scores are concomitant with increased levels of immune cell

infiltration within the TME. Furthermore, the high-risk subgroup

exhibited elevated expression levels of most immune checkpoints,

while the low-risk subgroup displayed the opposite pattern, as

depicted in Figure 8C. These data implied that the upregulation of

immunosuppressive cells, the inactivation of NK cells, and the

expression of immune checkpoints may contribute to establishing

an immunosuppressive TME in patients classified as high-risk group.

Finally, the TIDE analysis was conducted to assess the

variability in immunotherapeutic responsiveness among patients

stratified by distinct risk profiles. Based on the study findings, it was

observed that patients categorized in the low-risk group displayed a

more favorable response to immunotherapy. This observation can
B C

D E F
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A

FIGURE 4

Assessment and validation of the prognostic significance of risk score. (A–C) Distribution of risk scores, the status of patient survival, and the
expression patterns of the nine DAGs included inside the signature in the TCGA training set and the two CGGA validation sets, respectively.
(D–F) The Kaplan-Meier (KM) survival analysis in the TCGA training and the two CGGA validation sets, respectively. (G–I) The receiver operating
characteristic (ROC) curve analysis in the TCGA training and the two CGGA validation cohorts, respectively.
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be attributed to their comparatively lower TIDE, Dysfunction, and

Exclusion scores, as depicted in Figure 8D.
3.7 The disulfidptosis-based risk score
assesses anti-tumor immune activity

The cancer immunotherapy field is guided by the conceptual

framework of the 7-step cancer-immunity cycle, which is currently
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driving modern research (21). Using TIP, a web tool for evaluating

tumor immunophenotypes (26), we examined the immune

response against cancer in various risk subcategories of LGG

patients by analyzing the seven-step cancer-immunity cycle. In

patients belonging to the high-risk subgroup, there was notable

heightened activity observed at steps 1 (pertaining to the release of

tumor antigens), 2 (related to cancer antigen presentation), 4

(involving T-cell migration to the tumor site), and 5 (linked to

immune cell penetration into the TME). Conversely, steps 3
B
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FIGURE 5

Independent prognostic assessment of risk scores and clinical parameters, and drug susceptibility prediction. (A) Chi-Square test depicting clinical
and pathological characteristics across high-risk and low-risk subgroups within the TCGA cohort. The graphical representation employs circles to
delineate the statistical test outcomes. (B) Prognostic factors for patients with LGG in the TCGA cohort were identified via Univariate Cox regression
analysis. (C) Independent prognostic factors were further determined by multifactorial Cox regression analysis. Drug sensitivity analysis of Dasatinib
(D), Gemcitabine (E), PD0325901 (F), and Selumetinib (G) in patients with low and high risk scores. ***P< 0.001.
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(characterizing initiation and activation processes of immune cells),

6 (involving T-cell recognition of tumor cells), and 7 (concerning

the killing of tumor cell) exhibited distinctive inhibitory

characteristics (Figure 9A). Contrarily, patients categorized within

the low-risk subgroup displayed augmented activity levels at steps 3,

6, and 7, while showing discernible inhibition at steps 1, 2, 4, and 5,

as depicted in Figure 9A. These results suggested ameliorating the

immunosuppressive conditions within the high-risk subgroup of

patients, as well as enhancing immune cell infiltration among

individuals within the low-risk subgroup, could potentially be

conducive to achieving favorable clinical outcomes in patients

with LGG.

Moreover, it is essential to note that the majority of genes

implicated in the negative regulation of immune processes exhibited

upregulation within the high-risk subgroup of LGG patients, as

visually represented in Figure 9B. Finally, we conducted an in-depth

examination of potential pathways linked to risk subgroups through

GSEA enrichment analysis. The outcomes unveiled a significant

enrichment of negative regulation of immune pathways within the
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high-risk subgroups, encompassing pathways such as B-cell-

mediated humoral immunity, cellular immunity, adaptive

immune response, and immunoglobulin-mediated immune

response (Figure 9C).
3.8 Somatic mutation landscapes in high-
and low-risk subsets of LGG individuals

Distinct patterns of somatic mutations were identified between

the high- and low-risk subgroups. Despite IDH mutations being the

most prevalent, the relative frequency of IDH mutations exhibited

variations across subtypes. Among patients within the low-risk

subgroup, IDH1 mutations were notably more frequent,

constituting 92% of the total mutations. In contrast, patients

within the high-risk subgroup displayed a lower proportion, with

IDH mutations accounting for only 59% of the total mutations, as

illustrated in Figures 10A, B. Furthermore, it is noteworthy that the

highest incidence of TP53 mutations was observed within the low-
B
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FIGURE 6

Developing and validating of nomogram based on risk scores. (A) Predicting 3-, 5-, and 7-year survival of LGG patients in the TCGA database using
conventional nomogram. (B) The calibration curves for predicting 3-, 5- and 7-year overall survival (OS). (C) Decision curve analysis (DCA) for the
nomogram in 3‐year OS. (D) Printscreen of the intuitive interface of the online dynamic nomogram for OS. *P < 0.05, ***P < 0.001.
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risk subgroup, accounting for 49%, followed closely by the high-risk

subgroup, where TP53 mutations constituted 43% of the mutations.

Tumor Mutation Burden (TMB) levels exhibited significant

disparities between the two risk subgroups, with a noteworthy

positive correlation observed between risk scores and TMB

values, as depicted in Figures 10C, D.

Subsequent investigations involved the assessment of mutation

frequencies within some major oncogenic pathways among the two

risk subgroups. The outcomes revealed that the RTK-RAS, Hippo,

and TP53 pathways were predominantly identified in the high-risk

subgroup, as illustrated in Figure 10E. Conversely, the low-risk

subgroup showed a predominant detection of the Notch and Cell

Cycle pathways, as shown in Figure 10F, whereas the other

pathways did not display notable disparities between the

two subgroups.
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3.9 Validation of DAGs expression patterns
in the risk model through scRNA-
seq analysis

To obtain further validation on the particular cell types that

express the genes in the risk model within the TME, scRNA-seq

analysis was performed using the TISCH online tool on the

GSE148842 dataset. A total of six distinct cell clusters were

identified through UMAP analysis, which included the following

categories: AC-like Malignant cells, CD8Tex cells, Malignant cells,

Monocytes/macrophages, Oligodendrocyte, and other types of cells

(Figure 11A). The findings revealed distinct patterns of gene

expression within the identified cell clusters. Specifically, ABI3

exhibited predominant expression in malignant cells and

monocytes/macrophages, while APOBEC3C was primarily
FIGURE 7

Differential Gene Set Variant Analysis (GSVA) enrichment items for high-risk and low-risk subgroups. *P< 0.05, **P< 0.01, ***P< 0.001.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1294459
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhou et al. 10.3389/fimmu.2023.1294459
expressed in CD8Tex cells. CD53, TYROBP, and HLA-DRB1

showed predominant expression in monocytes/macrophages,

CD8Tex cells, and malignant cells. In contrast, SIGLEC10,

TNFAIP8L2, OLFML3, and RNASE6 displayed low expression

levels in non-tumorigenic and tumorigenic cells (Figures 11B, C).
3.10 Expression levels of ABI3 in glioma
tissue samples and its silencing efficacy in
cultured glioma cell lines

Utilizing the GEPIA2 online platform (27), we assessed the

expression profile of ABI3 in glioma and normal tissue samples.

Significantly, ABI3 expression in glioma tissues was notably higher

when compared to their normal counterparts (Figure 12A).

Furthermore, analysis of the survival curve indicated that increased

expression was linked to an adverse prognosis in patients with

glioma (Figure 12B). In order to validate ABI3 expression levels in
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glioma tissues, we conducted immunohistochemistry experiments

on tissue microarrays made from glioma specimens collected from

Xiangya Hospital (containing 11 paraneoplastic tissues and 84

diffuse glioma samples). The experimental data demonstrated a

significant diminution in ABI3 protein expression in

paraneoplastic tissues relative to tumor tissues (Figure 12C).

Moreover, there was a significant increase in protein expression of

ABI3 in WHO grade III (P< 0.05) and grade IV gliomas (P< 0.001)

compared to WHO grade II gliomas (Figure 12D). Nevertheless, no

significant statistical difference in protein expression levels was

observed between gliomas of WHO grade III and grade IV.

Immunohistochemical data pertaining to ABI3 expression are

presented in Figure 12E.

To elucidate the biological role of ABI3 in glioma, we initially

assessed the mRNA expression levels of ABI3 across six glioma cell

lines, namely HGS683, SHG44, U251, LN229, U87 and A172

(Figure 12F). Among them, the GBM cell lines exhibited relatively

higher ABI3 mRNA levels than the LGG cell lines.We chose the LGG
B
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FIGURE 8

Analysis of immune traits in the training cohort. (A) Distribution patterns of 22 tumor-infiltrating immune cells in the training set. (B) Analysis of
components in the tumor microenvironment (TME) between the two risk subgroups. (C) Expression patterns of immune checkpoint genes in the
training cohort. (D) The Tumor Immune Dysfunction and Exclusion (TIDE) analysis between high-risk and low-risk subgroups of LGG patients in the
training cohort. *P< 0.05, **P< 0.01, ***P< 0.001.
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cell line SHG44 and the GBM cell line U251 for subsequent cell

experiments. We validated the effective downregulation of ABI3

expression in SHG44 using siRNA-1 and siRNA-2 through qPCR

and Western blot analysis (Figures 12G, H).
3.11 ABI3 is implicated in the migratory and
invasive behaviors of glioma cells but not
in cellular proliferation

Further loss-of-function experiments were conducted on

SHG44 and U251 cells. LGG cell line SHG44 and the GBM cell

line U251 were segregated into a negative control group (NC) and

an ABI3-silenced group (wherein ABI3 expression was suppressed

in both SHG44 and U251 cell lines). Subsequent scratch assays and

Transwell matrigel invasion assays revealed that ABI3

downregulation notably attenuated the migratory and invasive

capabilities of SHG44 and U251 glioma cells (Figures 13A–C).

Subsequently, we performed a correlation analysis between ABI3

expression and molecular markers indicative of epithelial-

mesenchymal transition using the TCGA database. The analysis
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disclosed a significant negative association between ABI3

expression and the epithelial marker ZO-1 (Figure 13D), as well

as a pronounced positive correlation with the mesenchymal marker

vimentin (Figure 13E). To corroborate these observations, we

quantified the expression levels of ZO-1 and vimentin via

Western blot analysis. The experimental data revealed an

upregulation of ZO-1 expression and a downregulation of

vimentin expression following ABI3 interference in both SHG44

and U251 cell lines (Figures 13F, G). These findings suggest that

overexpression of ABI3 may serve as a contributory factor in the

facilitation of glioma cell invasion and metastasis.

Regarding cellular proliferation, CCK8 assay results indicated a

moderate reduction in the proliferative capacity of SHG44 cells

(Supplementary Figure 1A) following the interference with ABI3

expression. However, the proliferation of the U251 cell line

(Supplementary Figure 1B) remained unaffected. Colony

formation assay results demonstrated that interference with ABI3

expression in SHG44 and U251 cells did not yield significant

differences in the number and size of cell colonies compared to

the control group (Supplementary Figures 2C, D). These findings

suggested that the knockdown of the ABI3 gene exerted a minimal

impact on the proliferation of glioma cells.
B
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FIGURE 9

Assessment of anti-cancer immune activity between risk subgroups. (A) Differential analysis of anti-tumor immune activity in the seven-step tumor-
immunity cycle between high and low-risk subgroups. (B) Heatmap showing the expression patterns of genes involved in the negative regulation of
immune processes between high- and low-risk subgroups. (C) The Gene Set Enrichment Analysis (GSEA) reveals the underlying biological processes
associated with the high- and low-risk subgroups.
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3.12 Suppression of ABI3 expression
augments disulfidptosis in glioma cells

Using the expression profile data from TCGA and GTEx, we

analyzed the mRNA levels of SLC7A11 in patients with glioma. The

findings indicated a significant upregulation of SLC7A11 in the tumor

samples, as depicted in Figure 14A.Moreover, studies have shown that

increased SLC7A11 levels contributed to the malignant progression

and unfavorable prognosis of glioma (8, 28). As a result, we

substituted the DMEM medium with the low-glucose 1640 medium

for both the control group (NC) and the experimental group.

Following 48 hours, we proceeded to stain the cytoskeleton using

phalloidin. During the examination under confocal microscopy, it was

observed that the suppression of ABI3 gene expression led to the

contraction of the cytoskeleton and the formation of lamellipodia in

SHG44 (Figure 14B) and U251 cells (Figure 14C). The findings

suggested that ABI3 may act as a potential target in disulfidptosis.
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4 Discussion

Gliomas, being the most prevalent malignant brain tumors,

exert a substantial detrimental impact on patients’ quality of life and

impose a significant economic burden on society (29). LGG patients

currently have limited advantages from conventional treatments.

Furthermore, individuals suffering from LGG still face significant

problems due to the ongoing difficulties of postoperative recurrence

and drug resistance. The main contributing factor to the poor

prognosis and treatment results seen in LGG is thought to be the

highly diverse and complex nature of the TME (30).

Disulfidptosis is a recently discovered type of programmed

cellular demise. The initiation of abnormal cross-linking among

actin cytoskeletal proteins occurs due to the excessive accumulation

of disulfides, particularly cysteine, throughout this process. This

event leads to the contraction of the cytoskeleton, which disrupts its

structural arrangement and ultimately leads to the collapse of the
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FIGURE 10

Comparison of somatic mutations between risk subtypes. (A, B) Waterfall plots visualizing the top 10 most frequently mutated genes in the high-risk
(A) and low-risk (B) subgroups. (C) Divergence in tumor mutational burden (TMB) levels across the high- and low-risk subgroups. (D) Correlativity
betwixt TMB and risk scores. (E, F) Mutant oftenness of nine common oncogenic pathways between high- (E) and low-risk subgroups (F).
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actin network, resulting in the subsequent death of the cell. As a

tactic to avoid disulfidptosis, tumor cells accelerate the

transformation of consumed cystine into cysteine (31). Several

research studies have presented proof of the possible benefit in

focusing on proteins associated with disulfidptosis for therapeutic

interventions in tumor treatment (7, 9). Moreover, specific research

has suggested potential uses of disulfides in certain cancer

treatments. For instance, anti-tumor medications like cisplatin

and paclitaxel attain their curative advantages by engaging with
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intracellular disulfides (32, 33). Furthermore, numerous studies

have presented convincing proof that SLC7A11 plays a significant

role in promoting resistance to ferroptosis and has a vital regulatory

function in relation to tumors and various disease conditions

(34, 35).

Compared with other existing predictive models for glioma, such

as the studies of Wan RJ et al. (32) and Zeng Z et al. (33), our model

is specifically designed around the emerging concept of

disulfidptosis. This focus allows for a deeper exploration of novel
B
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FIGURE 11

scRNA-Seq revealing the expression patterns of disulfidptosis-associated genes (DAGs) at the single-cell level. (A) The UMAP plot annotates the cells
into six disparate cell types. (B, C) Violin plots (B) and UMPA (C) plots show dissimilar expression patterns of DAGs within the prognostic signature.
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pathological mechanisms specific to LGG, potentially offering

insights that are not covered by models focusing on more general

or well-established pathways. Regarding the data analysis methods in

uncovering the functional role of DAGs in LGG, this study utilized a

combination of WGCNA and ssGSEA for investigation. By utilizing

a combination of Cox regression, Lasso regression, and SVM-RFE
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algorithms, a total of nine Directed Acyclic Graphs (DAGs) were

systematically identified. Afterward, these nine chosen genes created

a new marker linked to disulfideptosis for LGG. The predictive

algorithm calculates personalized risk scores for patients and

categorizes them into two risk-defined subcategories—high and

low—by utilizing the median risk value as a dividing point. The
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FIGURE 12

Analyzing and validating ABI3 expression. (A) Significantly higher mRNA levels of ABI3 in lower-grade glioma (LGG) and glioblastoma (GBM) tissues
compared to normal tissues. (B) Survival analysis indicates that glioma patients with high ABI3 expression have a significantly worse prognosis.
(C) Quantitative immunohistochemical (IHC) scores revealed significantly reduced ABI3 protein expression in paraneoplastic tissues compared to
tumoral tissues. (D) Quantifying ABI3 protein expression across varied grades of diffuse glioma specimen via IHC. (E) Representative IHC images of
ABI3 in diverse grades of glioma and peritumoral tissues. (F) The mRNA levels of ABI3 in six glioma cell lines (HGS683, SHG44, U251, LN229, U87 and
A172). (G, H) Assessment of silencing efficiency of two ABI3-specific siRNAs via RT-qPCR (G) and Western blot (H) in SHG44 cell line. *P< 0.05,
***P< 0.001, ns indicates no significant difference.
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group at high risk shows significantly worse prognostic outcomes

than those at low risk. In order to verify the accuracy of the model,

ROC curves were performed on the TCGA training set as well as the

two CGGA validation sets. At the 3, 5, and 7-year milestones, the

AUC values exceeded 0.72. Notably, the highest AUC value detected

was 0.87, observed at the three-year point. Like the well-known

clinicopathologic features of gliomas including age and 1p/19q co-

deletion, our predictive model has become a separate prognostic

factor for patients diagnosed with LGG. Following this, prognostic
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factors that are independent and relevant to patients with LGG were

identified in order to create a nomogram, which would improve the

evaluation of prognostic outcomes specific to each patient. To

validate the predictive precision of the developed nomogram,

calibration curves, and decision curve analyses were utilized. This

enhanced predictive capability is crucial for personalized patient

management and treatment planning.

In addition, by implementing prognostic models on a server

accessible via the internet, we make it easier for both researchers
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FIGURE 13

ABI3 knockdown inhibiting the mobility of glioma cell lines. (A, B) The wound healing assay showed that ABI3 knockdown significantly inhibited the
migration of SHG44 (A) and U251 cells (B). (C) The downregulation of ABI3 significantly reduced the invasion capabilities of SHG44 and U251 cells.
(D, E) Correlation analysis betwixt ABI3 and Epithelial-mesenchymal transition (EMT) markers such as ZO-1 (D) and VIM (E) protein expression via
Spearman’s method. (F, G) Western blot demonstrating changes in the expression of EMT markers (ZO-1 and VIM protein) in the SHG44 and U251
cells after knockdown of the ABI3 gene with siRNA. **P< 0.01, ***P< 0.001.
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and clinicians to obtain estimated probabilities of OS. Gliomas’

onset and advancement are significantly impacted by the TME (24).

The TME of glioma consists of an intricate cellular environment

encompassing immune cells, endothelial cells, neoplastic cells, and

various immune-related substances released by these cellular

elements. The cellular composition of the immune system in the

glioma TME includes macrophages, microglia, dendritic cells,

neutrophils, T lymphocytes, and NK cells. The neoplastic cells

interact with these cellular components, and the cellular
Frontiers in Immunology 20
components have a regulatory function in modifying the immune

response within the TME (36). An analysis of the TME was

performed on patient subgroups categorized as high- and low-

risk. The findings indicated that patients in the high-risk subset

exhibited higher immune scores, enhanced stromal scores, elevated

ESTIMATE scores, and lower tumor purity. By employing the

CIBERSORT algorithm for examination, we noticed a heightened

abundance of quiescent memory T cells and regulatory T cells in the

subgroup of high-risk patients. Tregs act as suppressive cells that
B

C

A

FIGURE 14

ABI3 involved in glioma cell disulfidptosis. (A) Detecting the expression of the SLC7A11 gene in glioma tissues via Sangerbox 3.0 Website. (B, C)
Confocal images showing cytoskeletal contraction and lamellipodia formation labeled by Phalloidin after silencing of ABI3 in SHG44 (B) and U251
cells (C). Blue: cell nucleus labeled by DAPI; Red: F-actin labeled by Phalloidin; Green box: the phenomenon of cytoskeletal contraction and
lamellipodia formation. ****P< 0.0001.
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not only trigger cell death in effector T cells but also hinder their

signaling pathways through the release of inhibitory cytokines (37,

38). Cancer therapeutics can effectively target immune checkpoints,

and inhibitors that hinder crucial checkpoint molecules have shown

significant effectiveness against neoplastic diseases (39). The current

investigation examined a set of 31 genes associated with immune

checkpoints, indicating that most of these checkpoints were

elevated in the subgroup of patients at high risk. The evaluation

of TIDE scores suggests a higher probability of immune evasion in

the high-risk patient subset who undergo immunotherapy (40).

Moreover, specific genes that suppress the immune system were

found to be overexpressed in the subgroup of patients at high risk.

These findings suggest that the increased presence of cells that

suppress the immune system, inactive immune cells, and immune

checkpoints may create an environment that suppresses the

immune response in the subgroup of high-risk patients, thus

negatively affecting the effectiveness of immunotherapy in this

group. Elevated levels of TMB in gliomas serve as an independent

prognostic indicator, suggesting a less favorable survival outcome

(41). Our research revealed a favorable correlation between TMB

and risk assessments in line with previous investigations.

Furthermore, TMB has demonstrated the ability to predict the

effectiveness of immune checkpoint inhibitors in treating advanced

cancers (42). Moreover, we identified potential small molecule

therapeutics targeting LGG, including Dasatinib, Gemcitabine,

PD0325901, and Selumetinib. Further experimental verification is

necessary to determine the effectiveness of these substances in

treating LGG.

Among the nine genes employed for signature construction,

ABI3 exhibited the most elevated risk factor and was highly

expressed in glioma tissues. Based on our empirical evidence, we

observed a successful reduction in the expression of the ABI3 gene,

which led to a significant inhibition of migration and invasion

abilities in glioma cells. The ectopic localization of the WAVE

complex (43), a crucial component in the formation of the WAVE

Regulatory Complex (WRC) (44), is caused by the expression of

ABI3. The WRC-mediated actin cytoskeleton assembly, forming

lamellipodia, provides a stress target for disulfides (44–46). Our

experimental results showed that when the ABI3 gene was

interfered with, glioma cells exposed to glucose deprivation

exhibited significant changes in their cytoskeleton, which were

observed through immunofluorescence staining of F-Actin. The

alterations comprised notable cytoskeleton contraction, separation

from the cellular membrane, and the development of protrusions

resembling lamellipodia. Disulfide-induced cell death may be

modulated by ABI3 and could serve as a therapeutic target.

Nonetheless, further investigation is required to uncover the

precise mechanisms that occur before and after this point.

Furthermore, it is vital to acknowledge the limitations of this

study. The utilization of glioma data obtained from the TCGA

and CGGA public databases in our research does not adhere to the

recent classification criteria established by WHO in 2021 (47).

Moreover, we did not investigate the correlation between

disulfidptosis and various molecular subtypes in the latest typing

of gliomas. In future investigations, it is imperative to incorporate

the latest WHO classification of gliomas.
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5 Conclusions

We constructed an LGG prognostic signature centered on

disulfidptosis, demonstrating robust predictive capabilities for

factors including patient prognosis and immunotherapeutic

response. This signature holds promise for future LGG treatment

applications, facilitating the early identification of high-risk patients

and screening candidates suitable for immunotherapy to enhance

survival outcomes. Additionally, we identified ABI3 as a critical

component of the signature. Characterized by elevated expression

in glioma, ABI3 is implicated in the migration, invasion, and

disulfidptosis of glioma cells. These insights have, to a degree,

informed the development of targeted therapeutic strategies for LGG.
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