
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Veronique Demers-Mathieu,
Exagen, Inc., United States

REVIEWED BY

Claudio Nicoletti,
University of Siena, Italy
Marie Van Der Merwe,
University of Memphis, United States

*CORRESPONDENCE

Julia Kuligowski

julia.kuligowski@uv.es

Pilar Sepúlveda
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extracellular vesicles with
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gastrointestinal inflammation
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Introduction: Premature infants (PIs) are at risk of suffering necrotizing

enterocolitis (NEC), and infants consuming human milk (HM) show a lower

incidence than infants receiving formula. The composition of HM has been

studied in depth, but the lipid content of HM-derived small extracellular vesicles

(HM sEVs) remains unexplored. Identifying these molecules and their biological

effects has potential for the treatment of intestinal disorders in PIs and could

contribute to the development of HM-based fortified formulas.

Methods: We isolated HM sEVs from HM samples and analyzed their oxylipin

content using liquid chromatography coupled to mass spectrometry, which

revealed the presence of anti-inflammatory oxylipins. We then examined the

efficacy of a mixture of these oxylipins in combating inflammation and fibrosis, in

vitro and in a murine model of inflammatory bowel disease (IBD).

Results: HM-related sEVs contained higher concentrations of oxylipins derived

from docosahexaenoic acid, an omega-3 fatty acid. Three anti-inflammatory

oxylipins, 14-HDHA, 17-HDHA, and 19,20-DiHDPA (w3 OXLP), demonstrated

similar efficacy to HM sEVs in preventing cell injury, inducing re-epithelialization,

mitigating fibrosis, and modulating immune responses. Both w3 OXLP and HM

sEVs effectively reduced inflammation in IBD-model mice, preventing colon

shortening, infiltration of inflammatory cells and tissue fibrosis.

Discussion: Incorporating this unique cocktail of oxylipins into fortified milk

formulas might reduce the risk of NEC in PIs and also provide immunological and

neurodevelopmental support.

KEYWORDS

oxylipins, small extracellular vesicles (sEVs), human milk (HM), inflammatory bowel
disease (IBD), necrotizing enterocolitis (NEC)
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1 Introduction

Human milk (HM) has several nutritional and immunological

benefits that favor the clinical evolution and neurodevelopment of

premature infants (PIs) in the short- and long term (1). PIs fed HM,

especially their own mother’s milk, are at significantly less risk of

serious diseases such as necrotizing enterocolitis (NEC), neonatal

sepsis, bronchopulmonary dysplasia and retinopathy of prematurity

(2). However, PIs have higher nutrient requirements than full-term

infants, and need enriched milk formulations to meet their

nutritional needs, and it is challenging to fulfil their high and

variable nutrient requirements during hospitalization (3).

HM consists of 87% water, 1% protein, 4% lipids, and 7%

carbohydrates (including 1 to 2.4% oligosaccharides) (4). It also

contains many minerals and vitamins. HM is unique in its high

abundance of long-chain polyunsaturated fatty acids (LC-PUFAs),

which are derived from two essential fatty acids: linoleic acid (LA,

omega-6 [w6]) and alpha-linolenic acid (ALA, w3). Elongation of

these two LC-PUFAs gives rise to arachidonic acid (AA, w6) and
eicosapentaenoic acid (EPA, w3), respectively, with the latter

further metabolized to docosahexaenoic acid (DHA, w3) (5). LC-
PUFAs are important for regulating growth, immune function,

vision, cognitive development, and motor systems in newborns (6–

8). There is accumulating evidence that milk-derived bioactive

lipids have multifunctional properties (6). Oxylipins are a diverse

class of specialized signaling molecules derived from LC-PUFAs

that regulate neonatal intestinal development and protect PIs

against intestinal injury (9, 10). Both w-3 and w-6 oxylipins are

involved in the initiation and resolution of inflammatory processes

(10). In addition, some oxylipins are precursors of specialized pro-

resolving and cytoprotective mediators (SPMs), in particular, w3-
derived oxylipins (resolvins, maresins, and protectins) have anti-

inflammatory effects and are involved in the resolution process

following tissue injury (11–13).

Bioactive compounds of HM can also be transferred frommother

to child via small extracellular vesicles (sEVs) (8), which are lipid

bilayer membrane vesicles (50 to 200 nm) containing myriad

signaling molecules including proteins, lipids, microRNAs, mRNAs

and other biomolecules protected from degradation (14). sEVs are

present in high concentrations in HM and play an important role in

inflammation and immune response of the newborns through

intracellular communication (15). It has been reported that sEVs

can escape degradation during digestion, reach gut cells, and be

transferred to circulation through lymphatic vessels (16, 17).

Moreover, HM sEVs have been reported to enhance gut cells

migration and inhibit CD4+ T cell activation in vitro (18), and

restore intestinal barrier homeostasis in a mouse model of

ulcerative colitis (19, 20). The use of HM sEVs in fortified formulas

is, however, controversial due to obvious ethical and logistical reasons

(21), and well-defined formulations are needed. A better

understanding of the composition of sEVs is essential to identify

key molecular players and their mechanism of action. While many

characteristics of sEVS are under active investigation, such as surface

markers (22), protein cargo (18, 23), and miRNA content (24), little is

known about the lipid composition of sEVs from HM (25).
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In the present study, we used targeted lipidomic analysis to

profile oxylipins in HM sEVs purified from 15 breast milk samples

donated by healthy volunteers. We then evaluated and compared

the efficacy of a combination of the three most abundant oxylipins

in HM sEVs in reducing inflammation in a mouse model of colitis

with HM sEVs, which confirmed the potent therapeutic value of 14-

HDHA, 17-HDHA, and 19,20-DiHDPA (hereafter referred to asw3
OXLP). Our findings suggest that the w3 OXLP formulation could

serve as a promising dietary supplement for early and intensive

nutrition in PIs to prevent NEC.
2 Materials and methods

2.1 Ethical statements

For inclusion in the study, all donors gave their informed

consent. The research was carried out in accordance with the

Declaration of Helsinki, and approved by the Ethics Committee

of the Hospital Universitari i Politècnic La Fe, Valencia, Spain

(approval numbers 2021-071-1, 2022-748-1 and 2019-289-1).

Ethics Committee of the Hospital Universitari i Politècnic La Fe

(protocol N° 2021/VSC/PEA/0060) approved animal procedures by

according to guidelines from Directive 2010/63/EU of theEuropean

Parliament on the protection of animals used for scientific purposes.
2.2 Human samples

HM samples were obtained from lactating women (28–42 years of

age). Fifteen volunteers were enrolled at the Human Milk Bank of the

University & Polytechnic Hospital La Fe (Valencia, Spain). Buffy coats

of healthy donors were from human blood obtained from the Centro

de Transfusión de la Comunidad Valenciana (Valencia, Spain), and

were used to obtain peripheral blood mononuclear cells (PBMCs).
2.3 Cell culture

Caco-2 intestinal epithelial cells (isolated from human colonic

cancer) were maintained in Dulbecco’s modified Eagle’s medium

(DMEM)-high glucose (Gibco, Thermo Fisher Scientific, Waltham,

MA, USA) supplemented with 10% heat-inactivated fetal bovine serum

(FBS, Corning, Glendale, AZ, USA) and 100 U/mL penicillin and 100

mg/mL streptomycin (P/S, Sigma-Aldrich, Saint Louis, MO, USA).

Caco-2 cells were stimulated with 60 mg/mL of lipopolysaccharide

(LPS) from Escherichia coli O111:B4 (Sigma-Aldrich, Darmstadt,

Germany) in DMEM-high glucose supplemented with 0.5% FBS and

1% P/S for 24 h in the presence or not of HM sEVs or w3 OXLP. For
differentiation experiments, Caco-2 cells (1×105 cells/cm2) were added

to 8 mm-pore size Transwell® polycarbonate membranes (Corning®

Inc., Corning, NY, USA) in complete medium. Upon reaching a

confluent monolayer, Caco-2 cells differentiate spontaneously, and

after 21 days they show dense microvilli on the apical side,

characteristic of small intestinal enterocytes (26).
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Fibroblasts were isolated from human skin biopsies and were

cultured in DMEM/F12 (Gibco, Thermo Fisher Scientific)

supplemented with 10% FBS and 1% P/S. One day before

stimulation, cel ls were seeded in serum-free medium

supplemented with 1% P/S. Fibroblasts were then stimulated with

LPS (10 ng/mL) for 24 h in the presence or not of HM sEVs or w3
OXLP in the same medium.

Both fibroblasts and Caco-2 cells were cultured under oxygen/

glucose deprivation (OGD) conditions in some experiments. OGD

conditions were induced by culturing the cells with DMEM medium

without glucose, glutamine, nor phenol red (Thermo Fisher Scientific)

in a cell culture incubator at 1.5% O2, creating a hypoxic environment.

PBMCs were isolated from healthy blood donor buffy coat by

density gradient centrifugation with Histopaque (Sigma-Aldrich,

Darmstadt, Germany), and were cultured in the Rosewell Park

Memorial Institute medium (RPMI, Gibco, Thermo-Fisher

Scientific) supplemented with 10% FBS, 1 mM pyruvate, 2 mM

glutamine and 1% P/S (all from Sigma-Aldrich). Monocytes were

isolated as described (27). To generate monocyte-derived type 1 or

type 2 macrophages (Mj1 or Mj2, respectively), cytokine

stimulation was added to the cells in complete RPMI medium: 5

ng/mL recombinant human granulocyte macrophage-colony

stimulating factor (rhGM-CSF, Peprotech) or 20 ng/mL

recombinant human macrophage-colony stimulating factor (rhM-

CSF, Peprotech). Cytokines were fed back every two days. On the

fifth day of differentiation, 10 ng/mL of LPS and 20 ng/mL of IFNg
(R&D Systems, Minneapolis, MN, USA) were added to Mj1,
whereas 10 ng/mL of LPS and 40 ng/mL of IL4 (PeproTech,

London, UK) were added to Mj2, for 16 h. Under Mj1
conditions, HM sEVs or w3 OXLP were added on day 0 of the

differentiation protocol.
2.4 sEV isolation and characterization

sEVs were isolated using a serial ultracentrifugation protocol

(25). Briefly, HMwas centrifuged three times at 3000×g for 10 min at

4°C to remove milk fat and fat globules. After removing the upper fat

layer, the liquid was transferred to a 25-mL polycarbonate bottle and

centrifugated twice at 10,000×rpm for 1 h at 4°C. Supernatants were

filtered manually through a 0.45-mm filter using a syringe. HM sEVs

were then concentrated by three of rounds ultracentrifugation at

30,000 rpm for 2 h at 4°C. Samples were filtered through a 0.22-mm
filter to maintain sterility. To ensure equal amounts of protein were

used for experiments, a Pierce BCA Protein Assay Kit (Thermo

Fisher Scientific) was used to determinate protein concentration. For

western blotting, sEVs were suspended in RIPA buffer, Sigma-

Aldrich). For characterization and functional analysis, sEVs were

suspended in PBS. Nanoparticle tracking analysis (NTA) and

electron microscopy were performed as described (28). Dynamic

light scattering (DLS) was performed to determine the size,

distribution, surface charge and stability of sEVs. HM sEVs were

placed in a cuvette filled with PBS. The zeta potential magnitude (z)
and the polydispersity index (PDI) of the samples were measured

using a DLS detector (Zetasizer Nano ZS DLS detector, Malvern,

UK), which was operated in both continuous and discontinuous
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modes, employing laser doppler micro-electrophoresis. The

instrumental conditions for the DLS system, including temperature,

acquisition time, measurement position, and attenuator settings, were

optimized for accurate measurements. The specific details of the DLS

system setup are described in Table 1, which summarizes the

parameters for continuous DLS, discontinuous DLS, and Z-

potential measurements. The temperature was maintained at 25°C

throughout the experiments, and an equilibration time of 120 s was

allowed before each measurement. The acquisition time and

attenuator settings were automatically adjusted to seek the

optimum conditions for data acquisition. The Smoluchowski model

with a correction factor of 1.50 F(ka) was employed for zeta potential

calculations, and the voltage was set to auto with a maximum value

of 150 V.
2.5 Western blot analysis

Equal amounts of HM sEVs were lysed in RIPA buffer

containing protease and phosphatase inhibitors (Complete Mini

and PhosSTOP, Sigma-Aldrich), then were mixed with non-

reducing Laemmli sample buffer (BioRad) and denatured at 96°C

for 5 min. Proteins were separated on 10% SDS-polyacrylamide

gels. Human primary antibodies used were: anti-calnexin (dilution

1/1000, Santa Cruz Biotechnology, H-70), anti-Hsp70 (dilution 1/

500; Cell Signaling Technology; D69), anti CD63 (dilution 1/500;

Santa Cruz Biotechnology; H-193), anti-TSG101 (dilution 1/200;

Santa Cruz Biotechnology; C-2), anti-CD81 (dilution 1/500; Santa

Cruz Biotechnology; B-11) and anti-CD9 (dilution 1/500; Santa

Cruz Biotechnology; C-4). Peroxidase-conjugated secondary

antibodies were anti-IgG rabbit (dilution 1/4000; Dako; P0448)
TABLE 1 Instrumental conditions of the DLS system.

Continuous DLS Acquisition time 3.0 s

Measurement
position

4.2 mm

Attenuator 11

Discontinuous
DLS

Equilibration time
120 s

Measurement angle 173° (NIBS default)

Acquisition time 10.0 s

Position Automatic seek for optimum
conditions

Attenuator
Automatic seek for optimum
conditions

Z-Potential Model Smoluchowski (1.50 F(ka))

Equilibration time 120 s

Acquisition time
Automatic seek for optimum
conditions

Attenuation
selection

Automatic seek for optimum
conditions

Voltage Auto (Max. 150 V)
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and anti-IgG mouse (dilution 1/10000; Sigma-Aldrich; A9044).

Proteins were detected with ECL Plus Reagent (GE Healthcare,

Chicago, IL, USA) or SuperSignal West Femto (Thermo Fisher

Scientific). Visualization was carried out using an Amersham

Imager 600 (GE Healthcare) and quantified with ImageJ software

(NIH, Bethesda, MD, USA).
2.6 Uptake of labeled HM sEVs

HM sEV uptake by Caco-2 cells was performed after labeling

EVs with carboxyfluorescein succinimidyl ester (CFSE; Thermo

Fisher Scientific) (29). HM sEVs were stained with 5 mM of CFSE in

PBS for 15 min at 37°C in darkness, then were washed with PBS in

an Amicon Ultra-0.5 Centrifugal Filter 100 kDa (Merk, Darmstadt,

Germany) and suspended in filtered PBS. 30mg/mL of dyed HM

EVs were added to 1×105 Caco-2 cells seeded in a 48-well plate.

CFSE mixed with PBS was used as a negative control to normalize

the amount of unincorporated dye. CFSE-positive cells were

detected by flow cytometry after 24 h incubation.
2.7 Extraction of the HM-sEVs lipid fraction
and oxylipin quantification

Sample preparation and oxylipin quantification were adapted as

described elsewhere (30). In short, HM sEVs were extracted using a

solid phase extraction Oasis® MAX 96 well plate from Waters

(Taunton, MA, USA). Recovered sample extracts were evaporated

using a miVac centrifugal vacuum concentrator (Genevac Ltd.,

Ipswich, UK) and then dissolved in 60 μL methanol:acetonitrile

(50:50, v/v).

Sample extracts were analyzed using an Acquity-Xevo TQ-XS

system (Waters, Milford, MA, USA) operating in negative

electrospray ionization mode. Separations were performed on a

Waters Acquity UPLC BEH C18 (2.1×100 mm, 1.7 μm) column

using a 0.1% v/v acetic acid and acetonitrile: isopropanol (90:10 v/v)

binary gradient. Mass spectrometry (MS) detection was carried out

by multiple reaction monitoring. Oxylipins quantified were as

follows: 12,13-DiHOME, 9,10-DiHOME, 14,15-DiHETRE, PGE2,

PGF2a, 19,20-DiHDPA, 17-HDHA, 14-HDHA, 17,18-DiHETE,

14,15-DiHETE, Resolvin D5, Maresin 2, and 8(S),15(S)-DiHETE.
2.8 T-cell proliferation assay

T-cell proliferation assays were performed as described (28).

PBMCs were labeled with 5 mM CFSE and activated with

Dynabeads™ Human T-Activator CD3/CD28 (Thermo Fisher

Scientific). As T-lymphocytes of PBMCs become activated and

divide, CFSE staining is diluted. Immunosuppressive potential

was evaluated by adding 30 μg/mL of HM sEVs to 1×105 CFSE-

labeled and activated PBMCs seeded in a 24-well plate. After 5 days

of activation, proliferation of T-cells was evaluated by flow

cytometry to quantify CFSE dilution. The Flowjo® software

(FlowJo LLC, BD, Franklin Lakes, NJ, USA) was used in order to
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analyze flow cytometry data and the expansion index (EI) (31). The

percentage of immunosuppression was calculated using the

following formula, where EI of untreated activated PBMCs (Act)

represents 0% of immunosuppression and EI of non-activated

PBMCs (No act) represents 100%:

% Immunosuppression   =  
(EIAct   −   EItreated)  
(EIAct  −   EINo   act)

� 100
2.9 Flow cytometry

PBMCs or macrophages were incubated with a blocking solution

for 10 min and incubated with fluorochrome-conjugated antibodies

for 1 h at 4°C. Human antibodies used were: anti-CD3 (PerCP-Cy,

BD Biosciences; SK7), anti-CD14 (RPE, Dako, TUK4, Santa Clara,

CA, USA), anti-CD163 (PerCP-Cy, BD Biosciences, GHI/61), anti-

CD80 (APC, BD Biosciences, FUN-1), anti-CD86 (V450, BD

Biosciences, L307.4) and anti-HLA-DR (FITC, Miltenyi Biotec,

AC122) at concentrations recommended by the manufacturers.

The BD FACSCANTO II flow cytometer was used for cellular

analysis and the data were processed using Flowjo® software.
2.10 Cell viability assay

To test whether HM sEVs or w3 OXLP affected cell viability,

Caco-2 cells were cultured at a density of 1×104 cells/cm2 on a 96-

well plate and were then stimulated with LPS or cultured under

OGD conditions and treated with HM sEVs or w3 OXLP. After 24 h
the Cell Counting Kit-8 (CCK-8) assay was used to measure

proliferation. After 4h of incubation with CCK-8 solution, the

optical density (450 nm) was measured.
2.11 Lactate dehydrogenase assay

Caco-2 cells were seeded at 1×104 cells/cm2 in complete

medium. On the next day, cells were stimulated with LPS or

cultured under OGD conditions and treated with HM sEVs or w3
OXLP. After 24 h the for lactate dehydrogenase was tested using the

Cytotoxicity Detection KitPLUS (LDH) (Roche, Indianapolis, IN,

USA). Following manufacturer’s instructions, 50 mL of cell

supernatant was mixed with 50 mL of reaction mix (1:45 catalyst

in dye solution), incubated for up to 30 min at room temperature

and measured the absorbance at 492 nm.
2.12 Oxidative stress assay

LPS- and OGD-treated cells were washed with PBS and stained

with 5 mM 2′,7′-dichlorofluorescin diacetate (DCFH-DA; Sigma-

Aldrich) for 20 min at 37°C to detect cell reactive oxygen species

(ROS). After staining, cells were washed three times with PBS, and

were detached with trypsin for flow cytometry, DCF fluorescence

was detected at lex of 488 nm and lem of 525 nm.
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2.13 Scratch assay

Caco-2 cells and fibroblasts were seeded in a 24-well plate at

2×105 cells/well. Caco-2 cells were stimulated with LPS and treated

with HM sEVs or w3 OXLP for 48 h. To develop scratch assays

under OGD conditions, the medium was replaced after 24 h with

complete medium and cells were cultured under standard oxygen

conditions. Caco-2 cells were then stimulated with LPS and treated

with HM sEVs or w3 OXLP for 48 h. A 20-mL pipette tip was used

to generate a thin line in the monolayer culture. After 48 h with

treatments, the cultures were imaged using a Leica DM600 inverted

microscope at 10× magnification. ImageJ software was used to

measure the scratch wound area.
2.14 Real time quantitative PCR

RNA was extracted using a guanidine-thiocyanate–containing

lysis buffer (RLT; Qiagen, Dusseldorf, Germany) and purified with

the RNeasy Plus Mini Kit (Qiagen). For quantified RNA, NanoDrop

ND-1000 (NanoDrop Technologies, Wilmington, DE, USA) was

used. PrimeScript RT Reagent Kit (Takara, Kusatsu, Japan) was

used to obtain cDNA. Human- or mouse-specific sense and

antisense primers and RT-SYBR™ Green PCR Master Mix

(Applied Biosystems) were used to performed th RT-qPCR. 384

multiwells plates were run on a Viia 7 PCR System (Applied

Biosystems). The primers used were:

hGAPDH CCCCTCTGCTGATGCCCCA (F ) and

TGACCTTGGCCAGGGGTGCT (R)

hTNF-a CCCTCTGGCCCAGGCAGTCA (F ) and

ATGGGTGGAGGGGCAGCCTT (R)

hCOX 2 GAATCATTCACCAGGCAAA ( F ) a n d

TCTGTACTGCGGGTGGAACA (R)

hOCLN GGACTGGATCAGGGAATATC (F ) and

ATTCTTTATCCAAACGGGAG (R)

hCLDN CCGGGTTGCCCACCTGCAAA (F ) and

CGTACATGGCCTGGGCGGTC (R)

hTGF-b GAGTGTGGAGACCATCAAGGA (F) and

CTGTTTTAGCTGCTGGCGAC (R)

hIL-1b AGGCACAAGGCACAACAGGCT (F) and

AACAACTGACGCGGCCTGCC (R)

h I L 6 CATTCTGCCCTCGAGCCCACC ( F ) a n d

GGCAGCAGGCAACACCAGGA (R)

h IL8 CGTGGCTCTCTTGGCAGCCTTC (F ) and

TTCCTTGGGGTCCAGACAGAGCTC (R)

hTLR4 CCCTGCGTGGAGGTGGTTCCTA (F) and

CTCCCAGGGCTAAACTCTGGATGGG (R)

hMMP1 GTGTCTCACAGCTTCCCAGCGAC (F) and

GCACTCCACATCTGGGCTGCTTC (R)

mActb GCCAACCGTGAAAAGATGACC (F) and

GAGGCATACAGGGACAGCAC (R)

mArg1 GTGGGGAAAGCCAATGAAGAG (F) and

TCAGGAGAAAGGACACAGGTTG (R)

mCd206 TGTGGAGCAGATGGAAGGTC (F) and

TGTCGTAGTCAGTGGTGGTTC (R)
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mCc r 2 GTAGTCACTTGGGTGGTGGC ( F ) a n d

TACAGCGAAACAGGGTGTGG (R)

mCx3c r1 ACTCCGGTCTCATTTGCAGG (F) and

GGGACCTCTGTAGGAGCAGA (R)

mTnf-a CCCTCACACTCAGATCATCTTCT (F) and

GCTACGACGTGGGCTACAG (R)

mI l - 4 GTACCAGGAGCCATATCCACG (F ) and

CGTTGCTGTGAGGACGTTTG (R)

mIl-10 GGACAACATACTGCTAACCGAC (F) and

CCTGGGGCATCACTTCTACC (R)
2.15 Immunofluorescence analysis

Caco-2 cells were cultured on Transwells® for differentiation.

After 21 days, cells were cultured under LPS or OGD conditions and

treated with HM sEVs or w3 OXLP for 24 h. The next day, cells

were fixed in 4% paraformaldehyde for 10 min and after washing

with PBS, cell were permeabilized and blocked with 5% BSA and

0.1% Triton X-100 in PBS for 1 h. Mouse anti-human occludin

(Santa Cruz, E-5) and rat anti-human E-cadherin (EMD Millipore,

DECMA-1) were used at a concentration of 1/200 overnight.

Secondary antibodies used were: goat anti-mouse IgG (1:500,

Alexa Fluor® 488, Abcam) and goat anti-rat IgG (1:500, Alexa

Fluor® 555, Abcam). DAPI (4’,6-diamidino-2-fenilindol) was used

for stain nuclei. Quantification of mean fluorescence intensity

(MFI) was performed using ImageJ.
2.16 Pyrogen test assay

An in vitro pyrogen test using PBMCs was used to detect

substances that activate human immune cells to express pro-

inflammatory cytokines such as TNFa, IL-1b, IL-6 and IL-8 by

qPCR. PBMCs (4×106 cells/mL) were incubated with HM sEVs and

w3 OXLP for 5 h. LPS at concentration of 1 μg/mL was used as a

positive control.
2.17 Mice

Adult male Balb/c mice (6 weeks old, 18−22 g) were purchased

from Envigo (Inotiv Inc., Indianapolis, Indiana, USA), and maintained

under standard laboratory conditions. All animal procedures were

approved by institutional ethical and animal care committees.
2.18 TNBS-induced colitis

Coli t i s , a type of IBD, was induced using 2,4,6-

trinitrobenzenesulfonic acid (TNBS) by an intrarectal administration

of 3.5 mg/mice of TNBS (Sigma-Aldrich) dissolved in 100 mL of 40%

ethanol, as described (32). The sham group received 100 μL of 40%

ethanol. Mice were treated by oral gavage with 50 mg of HM sEVs or

0.5 mg of w3 OXLP prepared in 100 μL of PBS. The untreated TNBS

group only received 100 μL of PBS. Treatment was administrated just
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after colitis induction and at day 1 and 2 thereafter. After 4 days of

colitis induction, mice were sacrificed by cervical dislocation. Colons

were removed and their length was measured. Tissue was fixed in 4%

paraformaldehyde acid and embedded in paraffin for

immunohistochemistry or frozen in liquid nitrogen for protein and

RNA extraction.
2.19 Production of oxylipins preparation
for in vivo assays

Oxilipins can be conjugated with albumin to make them more

accessible for cellular uptake. For in vivo assays oxylipins were

prepared as described before (33). First, 10% fatty acid-free bovine

serum albumin (FAF-BSA, Sigma-Aldrich) was dissolved into PBS,

shaken for 3 h at room temperature and filtered through a 0.22-μm

filter. For every w3 OXLP dose, 0.5 mg of a mixture of 14 HDHA, 17

HDHA and 19-20 DiHDPA at the same concentration each, was

prepared together on 100 mL of PBS supplemented with 10% of

FAF-BSA and stirred for 16 h at 37°C. Oxylipins were freshly

prepared before experiments. Mice received three doses of w3
OXLP, a cumulative dose of 1.5 mg/mouse.
2.20 Myeloperoxidase activity

For detection of myeloperoxidase (MPO) activity, protein was

extracted by homogenizing colon tissue and Colorimetric Activity

Assay Kit (Sigma-Aldrich, St. Louis, MO, USA) was used according

to manufacturer’s instructions. Optical density was measured at 412 nm

in a micro-plate reader. MPO activity was expressed as U/mg protein.
2.21 Cytokine protein array

Colon samples were homogenized in PBS with protease inhibitors.

Samples from each group were pooled and then a BCA assay was

performed. A normalized protein content was analyzed with the

Proteome Profiler Mouse Cytokine Array Kit, Panel A, (R&D

systems, Inc., Minneapolis, Minnesota, USA). The array membrane

was blocked for 1 h and then washed. Colon samples and the array

detection antibody cocktail were mixed and added to the blocked

membrane followed by overnight shaking at 4°C. Membranes were

washed and incubated for 30 min with streptavidin-HRP buffer. After

washing, a chemiluminescence reagent mix was added and

measurements were performed using an Amersham Imager 600 (GE

Healthcare) and quantified with ImageJ.
2.22 Measurement of cytokines by ELISA

Supernatants from in vitro macrophage differentiation,

supernatants from colonic tissue homogenized, and the mice

plasma were collected and used to measure the levels of TNF-a
and IL-10. Commercial ELISA kits (Invitrogen, Waltham, MA,

USA) were used to quantify these cytokines, according to the

manufacturer’s instructions.
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2.23 Mouse histology and
immunofluorescence

Paraffin-embedded colon samples were cut into 5-μm-thick

sections and stained with hematoxylin-eosin (Sigma-Aldrich) to

evaluate inflammatory infiltrates, the presence of ulceration and the

lesion of crypts. In addition, a blind pathological examination was

carried out and tissues were scored using the histological colitis scoring

method described before (34–36). This score tests for three tissue

characteristics: inflammation severity, crypt damage and colon wall

thickness; all three relativized to the percentage involvement. The score

pathology was calculated as the sum of each characteristic multiplied by

the percent involvement. The total maximum score is 40. To evaluate

fibrosis, a Picro-Sirius Red stain (Direct Red 80 and Picric Acid, Sigma-

Aldrich) was developed. Slides were visualized on a Leica DMD108

Digital Microscope (Leica Microsystems). For immunofluorescence,

slides were blocked with 5% normal goat serum and 0.1% Triton X-100

in PBS for 1 h. Slides were then incubated with rabbit anti-MUC2

(dilution 1/200, Invitrogen, PA5-21329), rat anti-F4/F80 (dilution 1/

200, Abcam, ab6640), rabbit anti-CD206 (dilution 1/200; Abcam,

ab64693) or rabbit anti-CD274 (dilution 1/200, AB Clonal A11273)

overnight in a humidified chamber at 4°C. After washing with PBS,

slides were incubated with secondary antibodies: anti-rat IgG Alexa 555

or anti-rabbit IgG Alexa 488 for 1 h. After washing, DAPI was used to

stain cell nuclei and FluorSave™ Reagent (Merck Millipore) to mount

the slides. The sections were observed and visualized on a Leica

DM2500 fluorescent microscope (Leica Microsystems). Final image

processing and quantification were performed with ImageJ by counting

green and red spots in the fixed area.

2.24 Statistical analysis

Data are expressed as mean ± SD (standard deviation) or

standard error of the mean (SEM), as specified. Student’s t-test

was used for unpaired samples in the comparison between groups.

To compare means of more than two groups, one-way analysis of

variance (ANOVA). To study the effect of two factors

simultaneously, a two-way ANOVA was used. Analyzes were

conducted with GraphPad Prism 8 software (San Diego, CA,

USA). Differences were considered statistically significant at

p< 0.05 with a 95% confidence interval.
3 Results

3.1 Isolation and characterization
of HM sEVs

sEVs were isolated from HM by sequential centrifugation and

filtration (25). Purified sEVs showed a median number of particles

of 1.3 x 1011 and a median size of 158 nm, as determined by NTA

(Figure 1A). We also used DLS to measure the size of vesicles, the z
potential (which gives an indication of the potential stability of the

colloidal system), and the PDI, which is used to characterize the size

distribution of sEVs. The z potential was -7.7 ± 1.0 mV, which
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represents an incipient instability of the system, so it cannot be

stored for a long time, or the particles will tend to aggregate. The

PDI was 0.390 (Figure 1B), indicating a relatively even size

distribution of sEVs. WB revealed that the sEVs expressed the

typical markers Hsp70, CD63, TSG101, CD81 and CD9

(Figure 1C), but were negative for the endoplasmic reticulum

protein calnexin. Finally, transmission electron microscopy

analysis of sEVs revealed a round or cup-shaped morphology and

the size was consistent with the findings of NTA (Figure 1D).
3.2 Quantification and comparison of
oxylipins in HM sEVs

Quantification of oxylipins from HM sEV samples was

performed by means of a validated LC-MS and multiple reaction

monitoring. Of the different oxylipins identified, the following could

be quantified both in HM sEVs: 9,10-DiHOME, 12,13-DiHOME,

14-HDHA, 17-HDHA, 19,20-DiHDPA. Moreover, 14,15-DiHETE,

14,15-DiHETrE, 17,18-DiHETE, PGE2, and PGF2a (Table 2). The

most abundant oxylipins were 9,10-DiHOME, 12,13-DiHOME,
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19,20-DiHDPA, 14-HDHA and 17-HDHA (Figure 1E). In

general, HM-derived sEVs showed higher concentration of DHA-

derived oxylipins than LA-derived oxylipins. The former have been

reported to have anti-inflammatory activity, and the latter show

pro-inflammatory activity (Figures 1E, F) (10). Based on these

results, we investigated whether the protective effects of HM-

derived sEVs could be partly attributed to the presence of the

three w3-derived oxylipins – 19,20-DiHDPA, 14-HDHA and 17-

HDHA – hereafter referred to as w3 OXLP.
3.3 Protective effects of HM sEVs and w3
OXLP on intestinal epithelial cells under
stress and ischemic conditions

The main risks for developing NEC are known to be a weak

immune system, which increases the presence of infection, and

lack of blood flow reaching the colon to supply intestinal cells with

oxygen and nutrients, preventing their maturation (37). To

emulate these conditions in vitro, Caco-2 intestinal epithelial

cells were stimulated with LPS at 60 μg/mL or were cultured in
A B D

E F
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C

FIGURE 1

Characterization of HM sEVs and oxylipin content. (A) Representative images of HM sEVs assessed by nanoparticle tracking and (B) DLS analysis;
(C) representative western blots of Hsp70, CD63, TSG101, CD81 and CD9 proteins in 30 mg of HM sEVs; absence of calnexin signifies a pure sEVs
preparation (D) representative transmission electron microscopy images of HM sEVs. Scale bar: 200 nm; (E) concentration [nM] of the more abundant
oxylipins in HM sEVs isolated from 25 mL of HM; (F) scheme of oxylipin synthesis; (G) Intestinal epithelial cells were incubated with CFSE-labeled HM
sEVs for 3 h at 37°C and sEV internalization was assessed by flow cytometry. As a negative control, PBS was mixed with CFSE and added to cells in
parallel. Representative histograms are shown. sEV internalization was measured by fluorescence intensity and is represented as the percentage of sEV
uptake. Graphs represent mean ± SD of four independent experiments. Two-way ANOVA was used for statistical analysis. *p< 0.05, **p< 0.01.
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OGD to mimic an ischemic environment. We used an

internalization assay with CFSE-stained HM sEVs to question

how stress and ischemic conditions affected the uptake of HM

sEVs by intestinal cells. Uptake of HM sEVs was observed in 72.3

± 5.5% of intestinal cells 3 h after their addition to cultures

(Figure 1G), and this was increased by 11.2% and 19.3%,

respectively, when cells were treated with LPS and OGD

(Figure 1G). Notably, cell death increased in Caco-2 cells treated

with LPS or OGD, likely due to an increase in cytotoxicity and

oxidative stress (ROS) (Figure 2). To assess the protective effect of

HM sEVs and w3 OXLP, Caco-2 cells were treated with 7.5 μg/mL

of HM EVs or 0.5 nM of each of the three oxylipins. Both HM

sEVs and w3-OXLP protected Caco-2 cells from LPS-induced

damage, improving cell viability over non-treated cells

(Figure 2A). Treatment with HM sEVs and w3 OXLP also

decreased cytotoxicity (Figure 2B) and oxidative stress

(Figure 2C). Similar results were found under OGD conditions

with respect to cell death (Figure 2D). However, only w3 OXLP

treatment had a significant protective effect against cytotoxicity

(Figure 2E) and oxidative stress (Figure 2F) generated by OGD.

We next tested whether the cell injury triggered by LPS and OGD

also affects migration. Indeed, a major concern of PIs with NEC is

the presence of “wounds” in the intestine due to the lack of tissue

maturation. If the wounds are not repaired the prognosis for the

PIs is poor (38). To investigate whether HM sEVs and w3 OXLP

modulate the migration of intestinal epithelial cells, we used an in

vitro scratch-wound assay. Results showed that wound closure was

slower in cells treated with LPS and OGD vs control cultures.

Treatment with HM sEVs or w3 OXLP restored their migratory

capacity and proliferation rate, promoting the development of a

continuous monolayer (Figures 2G, H).
3.4 Modulation of pro-inflammatory genes
and tight junction proteins by HM sEVs and
w3 OXLP in inflammatory conditions

Inflammatory responses triggered by LPS or hypoxia in the

intestinal epithelium trigger the upregulation of pro-inflammatory
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genes such as tumor necrosis factor alpha (TNF-a) and

cyclooxygenase-2 (COX-2). TNF-a is involved in the pathogenesis

of IBD by increasing intestinal cell death and detachment in the gut,

which damages the integrity of the epithelial barrier (39). COX-2,

an enzyme that accelerates inflammation, also plays a role in the

pathophysiological processes of intestinal inflammation (40). As

expected, both LPS and OGD increased the expression of these

genes in Caco-2 cells, whereas co-treatment with 7.5 μg/mL of HM

sEVs or 0.5 nM of each of the three w3 OXLP significantly reduced

their expression (Figures 3A, B). The intestinal epithelium contains

tight junctions that link neighboring cells to create a barrier

preventing the free flow of substances between cells (38). Tight

junctions are made up of proteins such as occludins (OCLN) and

claudins (CLND). Results showed that stimulation of the intestinal

epithelium with LPS or OGD decreased the expression of OCLN

and CLND, whereas co-treatment with HM sEVs or w3 OXLP

increased their expression (Figures 3A, B). We validated this by

immunofluorescence. LPS and OGD treatment decreased the

expression of tight junction proteins (E-cadherin (E-CADH) in

red and occludin in green), whereas co-treatment with HM sEVs or

w3 OXLP restored their expression and the architecture and

cohesion of the intestinal epithelium (Figures 3C, D).
3.5 Modulation of pro-fibrotic genes and
inhibition of fibroblast migration by HM
sEVs and w3 OXLP

Fibrosis is a pathological feature of most chronic inflammatory

diseases, whereby fibroblast proliferation and migration lead to the

excessive deposition of fibrous connective tissue, reducing its

functionality (41). LPS activates fibrosis, modulating the release of

inflammatory cytokines and increasing fibroblast proliferation and

migration (42, 43). Results showed that the expression of the pro-

inflammatory genes TNF-a, transforming growth factor beta (TGF-

b), interleukin (IL)-1 and IL-6 increased significantly 24 h after LPS

stimulation of fibroblasts. Treatment of LPS-activated fibroblasts

with 7.5 μg/mL of HM sEVs or 0.5 nM of each of the threew3 OXLP
decreased the expression of these genes significantly (Figure 4A). In
TABLE 2 Quantification of oxylipins. Calibration range, linear coefficient of determination (R2), limit of detection (LOD), lower limit of quantification
(LLOQ), mean concentration in HM sEVs.

Oxylipin Calibrated range (nM) R2 LOD (nM) *LLOQ (pM)
HM sEVs

Mean ± SD (pM)

17-HDHA 0.29 - 300 0.996 0.09 0.9 21.02 ± 19.64

14-HDHA 0.15 - 300 0.996 0.04 0.5 18.65 ± 17.51

19,20-DiHDPA 0.07 - 300 0.995 0.02 0.2 11.32 ± 8.50

9,10-DiHOME 0.29 - 300 0.998 0.09 0.9 10.61 ± 4.16

12,13-DiHOME 0.15 - 300 0.995 0.04 0.5 7.46 ± 3.09

17,18-DiHETE 0.15 - 300 0.994 0.04 0.5 1.8 ± 1.1

14,15-DiHETRE 0.07 - 300 0.994 0.02 0.2 0.8 ± 0.3

PGF2a 0.07 - 300 0.995 0.02 0.2 0.7 ± 0.3
*referred to HM sEV encountered in the HM sample.
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addition, the levels of other classical pro-fibrotic genes, toll-like

receptor (TLR)-4 and matrix metallopeptidase (MMP)1, were

higher after LPS stimulation, and their expression was normalized

after HM sEVs or w3 OXLP treatment (Figure 4A). To test whether

the changes in gene expression correlated with an anti-fibrotic

response, the effect of HM sEVs and w3 OXLP on fibroblast

migration was assessed in scratch-wound assays. Stimulation with

LPS promoted fibroblast migration and wound closure (37.8 ±

8.4%) of free area in LPS-treated cultures vs (57.5 ± 4.5%) in control

cultures at 24 h. Contrastingly, the addition of HM sEVs and w3
OXLP to LPS-activated fibroblasts reduced their migration,

reaching levels similar to control cultures (Figure 4B).
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3.6 Effects of HM sEVs and w3 OXLP on
inflammatory signaling pathways, T-cell
activation, and macrophage polarization

Immune system cells, and more specifically macrophages, play a

pivotal role in the pathogenesis of NEC, orchestrating both the

inflammatory response and tissue repair processes (44, 45). To

study the effect of HM sEVs or w3 OXLP on immune system cells,

we performed different in vitro assays. First, 7.5 μg/mL of HM sEVs

or 0.5 nM of each of the three w3 OXLP were added to PBMCs to

test whether they generated an immune response, activating the

upregulation of pro-inflammatory cytokines genes TNF-a, IL-1b,
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FIGURE 2

HM-derived sEVs and w3 oxylipins protect intestinal epithelial cells from damage. (A) Quantification of cell viability measured by CCK8 assay (B); cell
cytotoxicity measured by LDH assay and (C) Reactive oxygen species (ROS) production measured by DCFH-DA oxidation in intestinal cells stimulated
with lipopolysaccharides (LPS) (100 ng/mL) or oxygen/glucose deprivation (OGD) (D–F). One-way ANOVA was used for statistical analysis. Quantification
of intestinal cell wound area (G) after LPS (100 ng/mL) or OGD (H) treatment. Data were normalized to initial wound area and represented as mean
percentage ± SD. One-way ANOVA was used for statistical analysis at different points. Representative brightfield images of wound healing assay at
different times (0 and 48 or 72 h) are shown (pink area represents opened wound). Images were taken at 10× magnification. Scale bar: 100 mm.
Experiments were performed in triplicate. *p< 0.05, **p< 0.01, ***p<0.001.
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IL-6, and IL-8. Results showed that w3 OXLP did not activate

proinflammatory signaling pathways with respect to non-

stimulated control PMBCs, indicating that they are not

immunogenic. However, the addition of HM sEVs resulted in a
Frontiers in Immunology 10
slight increase in the expression of IL-1b, IL-6 and IL-8 in PBMCs,

although to a lesser extent than LPS (positive control) (Figure 5A).

Second, we developed a T-cell activation and proliferation assay.

Addition of w3 OXLP to T-cells caused a slight reduction in their
A

B

D

C

FIGURE 3

HM sEVs and w3 OXLP dampen inflammatory responses in the inflamed epithelium. (A) Expression levels of TNF-a, COX-2, OCLN and CLND
quantified by RT-qPCR in intestinal cells stimulated with lipopolysaccharides (LPS) and/or treated with 7.5 µg/mL sEVs or 0.5 nM of each of the three
w3 OXLP. (B) E-cadherin (E-CADH, red) and occludin (OCLN, green) immunofluorescence and nuclei staining (blue) show the distribution of tight
junctions in the cell membrane. Unstimulated intestinal cells were used as controls. (C) Expression levels of TNF-a, COX-2, OCLN and CLND
quantified by RT-qPCR in intestinal cell cultures under oxygen/glucose deprivation (OGD) condition and/or treated with 7.5 µg/mL sEVs or 0.5 nM of
each of the three w3 OXLP. The expression level of the target gene in each sample was normalized to GAPDH expression. (D) E-cadherin (E-CADH,
red) and occludin (OCLN, green) immunofluorescence and nuclei staining (blue) show the distribution of tight junctions in the cell membrane. Scale
bar: 20 µm. The bar graph shows the quantification of the mean fluorescence intensity (MFI). The graph represents the mean ± SD of three
independent experiments. One-way ANOVA was used for statistical analysis. *p< 0.05, **p< 0.01.
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proliferation, whereas HM sEVs treatment appeared to increase

proliferation (Figure 5B). Third, to study the ability of HM sEVs or

w3 OXLP to modulate Mj polarization, we differentiated

monocytes to Mj type 1 (Mj1, pro-inflammatory) or type 2

(Mj2, pro-resolutive). During the differentiation to Mj1, some

cultures were treated with HM sEVs or w3 OXLP and surface

markers were compared against non-treated Mj1 and Mj2 by flow
cytometry. Results showed that the percentage of CD14+CD163+

cells, representative of a classical Mj2 phenotype, was not modified

by HM sEVs or w3 OXLP treatment (Figure 5C). Contrastingly,

when the expression of cell surface receptors on differentiated and

LPS-stimulated Mj1 were analyzed, we observed that treatment

with HM sEVs significantly reduced the expression of the co-

stimulatory molecules CD80 and CD86, and also HLA-DR

expression to levels seen in Mj2. Treatment with the w3 OXLP

also reduced the expression of all three markers, although to a lesser

extent (Figure 5C). To confirm the ability of HM sEVs and w3
Frontiers in Immunology 11
OXLP to induce Mj polarization, we measured the levels of

proinflammatory TNF-a and anti-inflammatory IL-10 cytokines

in the culture medium of Mj. Mj1 released a large amount of TNF-

a and low levels of IL-10, and the opposite occurred with Mj2
(Figure 5D). Treatment of Mj1 with HM sEVs resulted in a profile

more similar to Mj2, with a reduced amount of TNF-a and a

higher amount of IL-10; and treatment with w3 OXLP significantly

reduced released TNF-a but failed to alter IL-10 release by

Mj1 (Figure 5D).
3.7 Therapeutic potential of HM sEVs and
w3 OXLP in an experimental model of
inflammatory bowel disease

The evident beneficial effects of HM sEVs and w3 OXLP in vitro

motivated us to test their therapeutic potential in an IBD model
A

B

FIGURE 4

HM sEVs and w3 OXLP prevent LPS-induced fibrosis. (A) Expression levels of TNF-a, TGF-b, IL-1b, IL-6, TLR4 and MMP1 quantified by RT-qPCR in
fibroblasts stimulated with lipopolysaccharides (LPS) and/or treated with 7.5 µg/mL sEVs or 0.5 nM of each of the three w3 OXLP. Unstimulated
fibroblasts were used as controls. The expression level of the target gene in each sample was normalized to GAPDH expression. represented as
mean percentage ± SD. (B) Quantification of fibroblast wound closure at 24 and 48 h. Data were normalized to initial wound area and are
represented as mean percentage ± SD. Representative brightfield images of wound healing assay at different times (0, 24 and 48 h) after wound
generation on a monolayer fibroblast culture stimulated with LPS alone or treated with 7.5 µg/mL sEVs or 0.5 nM of each of the three w3 OXLP.
Images were taken at 10× magnification. Scale bar: 200 µm. Experiments were performed in triplicate. One-way ANOVA was used for statistical
analysis. *p< 0.05, **p< 0.01, ***p< 0.001.
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using TNBS administered intrarectally to induce severe colonic

inflammation in mice (46). Balb/c mice were divided into four

groups: a healthy sham group, an untreated TNBS group, a treated

TNBS group with 50 μg of HM sEVs and a treated TNBS group with

a cumulative dose of 1.5 μg of w3 OXLP. Treatments were dissolved

in 100 μL of PBS and were orally administered by gavage just after
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induction of acute colitis by TNBS and at 24 and 48 h later. The

sham group was treated with 100 μL of vehicle (PBS). On the fourth

day, mice were sacrificed, and the regenerative and anti-

inflammatory effects of the treatments were assessed.

We monitored weight loss of mice across the experiment

(Figure 6A). The sham group showed no weight loss, whereas the
A

B

D

C

FIGURE 5

Response of HM sEVs and w3 OXLP on immune system cells. (A) Expression of proinflammatory genes (TNF-a, IL-1b, IL-6 and IL-8) in peripheral blood
mononuclear cells (PBMCs) cultured for 6 h with treatments (HM sEVs and w3 OXLP). Unstimulated and lipopolysaccharides (LPS)-stimulated PBMCs
were used as negative and positive controls, respectively. The expression level of the target gene in each sample was normalized to GAPDH expression.
The graphs represent the mean ± SD of four independent experiments. (B) PBMCs were stained with carboxyfluorescein succinimidyl ester (CFSE) and
stimulated with anti-CD3 and anti-CD28 in the presence or absence of HM sEVs or w3 OXLP. After 5 days, cells were stained with anti-CD3 antibody
and T-cell proliferation was determined by flow cytometry measuring CFSE dilution. Suppression (percentage) was calculated from the expansion index.
The graphs represent the mean ± SD of four independent experiments. Representative histograms are shown. (C) Monocytes were differentiated to Mj1
with treatment (HM sEVs and w3 OXLP). Differentiation to Mj1 and Mj2 was used as a reference of pro-inflammatory and pro-resolving macrophages,
respectively. After 5 days of differentiation, the percentage of CD14+ and CD163+ cells was assessed by flow cytometry. After LPS activation, CD86,
CD80 and HLA-DR expression was assessed by flow cytometry. The mean relative fluorescence intensity (MFI) was calculated by dividing all individual
data by the mean expression in Mj1. (D) TNF-a and IL-10 production by Mj was determined by ELISA 16 h after LPS stimulation. Graphs represent the
mean ± SD of five independent experiments. One-way ANOVA was used for statistical analysis. *p< 0.05, **p< 0.01, ***p<0.001.
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TNBS group lost almost 20% of their weight. Mice treated with HM

sEVs and w3 OXLP also showed weight loss; however, this

stabilized on the third day, reaching a maximum of 10% loss at

sacrifice (Figure 6B). Colon length was shorter in the TNBS group

than in the sham group, whereas TNBS-induced mice treated with

HM sEVs and w3 OXLP showed protection against colon

shortening (Figure 6C).
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Examination of colonic histology revealed severe mucosal

damage in the TNBS group, characterized by fewer intestinal

glands, distortion of crypts and a huge inflammatory cell

infiltration. By contrast, the TNBS group treated with HM sEVs

and w3 OXLP showed significant protect ion against

histopathological damage and a preserved tissue architecture

(Figures 6D, E). To investigate the pathways underlying colitis
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FIGURE 6

HM sEVs and w3 OXLP attenuate disease in mice with TNBS-induced colitis. (A) Scheme of the in vivo experimental design. (B) Measurement of the
weight loss of mice throughout the experiment (4 days). (C) Macroscopic images of colon tissue on day 4 after 2,4,6-trinitrobenzenesulfonic acid (TNBS)
administration. Scale bar: 1 cm. Percentage differential length of the colon compared with the healthy group (horizontal dotted line). (D) Histology score
table based on grade of pathology and percentage of damage. (E) Hematoxylin and eosin staining of representative histological sections of the colon of
mice in the healthy group and in the PBS, sEVs and w3 OXLP groups after TNBS administration. Scale bar: 200 mm. (F) Sirius Red staining was used to
detect collagen fibers. Scale bar: 200 mm. Fibrillar collagen proportion (%) was calculated by dividing the area stained with red by the total tissue area.
(G) Immunofluorescence of MUC2 (green) and nuclei staining (blue). Scale bar: 50 µm. Bar graph shows quantification of green mean fluorescence
intensity (MFI) per cm2. (H) Myeloperoxidase (MPO) activity was measured in colon homogenates. Values were relativized by mg of protein tissue. The
graph represents the mean ± SEM of five mice in each group. One-way ANOVA was used for statistical analysis. *p< 0.05, **p< 0.01, ***p< 0.001.
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recovery after treatment with HM sEVs and w3 OXLP, we analyzed
the presence of collagen fiber by Sirius Red staining. Chronic

inflammation leads to intestinal fibrosis, causing tissue damage

and difficulty in tissue regeneration with high deposits of

extracellular matrix (47). As expected, the percentage of collagen

in the colon was significantly higher in the TNBS group than in the

sham group, whereas the groups treated with HM sEVs orw3 OXLP
showed significantly lower levels of collagen (Figure 6F), indicating

that treatment with HM sEVs and w3 OXLP alleviated intestinal

fibrosis in colitis.

The intestinal mucosa is protected by a variety of glycoproteins

known as mucins (MUC), which play a role in the mucociliary

transport system by trapping pathogens in a mucin gel layer (48).

To further explore the protective effects of w3 OXLP from HM sEVs

in experimental colitis, we investigated the expression of mucin-2

(MUC2) by immunofluorescence. Results demonstrated that

treatment with HM sEVs or w3 OXLP maintained MUC2

expression in TNBS-induced mice (Figure 6G). Because a

correlation between disease severity in IBD patients and

neutrophil infiltration has previously been reported (49), we used

a MPO assay to assess neutrophil activity. MPO activity was

significantly higher in the TNBS group than in the sham group,

and treatment with HM sEVs or w3 OXLP resulted in a trend for

decreased neutrophil activity (Figure 6H).
3.8 Modulation of immune response and
cytokine expression by HM sEVs and w3
OXLP in TNBS-induced colitis

An imbalance between proinflammatory and anti-

inflammatory immune cells and cytokines is a key characteristic

of IBD, which hinders the resolution of inflammation. To assess the

modulation of immune responses by HM sEVs and w3 OXLP, we

examined cytokine expression in colon tissues of treated mice.

Cytokine protein arrays revealed that the levels of several

cytokines were higher in the untreated TNBS group than in the

sham group, including intercellular adhesion molecule (ICAM)-1,

tissue inhibitors of metalloproteinase (TIMP)-1, CC motif

chemokine ligand (CCL)2, CXC motif chemokine ligand (CXCL)

9, CXCL13, CXCL1, IL-1b, triggering receptor expressed on

myeloid cells (TREM)-1, IL-1a, CXCL11, IL-17, and TNF-a. By
contrast, the TNBS group treated with HM sEVs or w3 OXLP

showed significantly lower levels of these cytokines, with some

approaching the levels seen in the sham group. Notably, the colitis-

induced group treated with HM sEVs or w3 OXLP had elevated

levels of anti-inflammatory cytokines such as IL-10 and IL-1

receptor antagonist (IL-1Ra) (Figure 7A).

To further evaluate the immune response, we examined

immune cell infiltrates in colon tissue. mRNA expression levels of

pro-inflammatory cytokines (Tnf-a and Il-6) were significantly

lower in the groups treated with HM sEVs and w3 OXLP than in

the untreated TNBS group, whereas the opposite pattern was seen

for the anti-inflammatory cytokine Il-10. Analysis of Mj2-
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associated genes: Arginase (Arg1), Cd206, CC motif chemokine

receptor (Ccr2), and C-X3-C motif chemokine receptor (Cx3cr1)

(50), also revealed an increase in the groups treated with HM sEVs

and w3 OXLP (Figure 7B). We also measured IL-17A and IL-10 in

plasma and colonic tissue by ELISA. The pro-inflammatory

cytokine IL-17A was elevated in the TNBS group, but its levels

were lower in mice co-treated with HM sEVs and w3 OXLP.

Conversely, IL-10 levels were lower in the TNBS group but were

increased in TNBS mice co-treated with HM sEVs or w3 OXLP,

both in plasma and colon extracts (Figure 7C).

To gain further insight into the impact of the treatments on

macrophage infiltration at the injury site during the disease, we

performed an immunofluorescence assay using the classical

macrophage marker F4/F80, combined with CD274 or CD206 to

distinguish Mj1 and Mj2, respectively. The results demonstrated

that the ratio of Mj1 to Mj2 was significantly higher in the

untreated TNBS group than in the sham group, whereas

treatment with HM sEVs and w3 OXLP reversed this ratio,

decreasing Mj1 and increasing Mj2 (Figure 7D). Overall, our

findings indicate that HM sEVs and w3 OXLP can mitigate the

inflammatory response in TNBS-induced colitis by regulating

immune cell infiltration and cytokine expression.
4 Discussion

HM is the best food for newborns and PIs, as it provides them

with all the necessary nutrients in the right measures. Indeed, the

World Health Organization recommends mothers to breastfeed

infants for the first six months of life to achieve optimal growth,

development, and health (51), and HM is an essential member of

the complex biological system between mother and infant (52). In

cases where breastfeeding is not possible or not chosen, infant

formula may be a suitable alternative. However, while milk formula

may provide adequate nutrition, it does not contain the

immunological factors and other bioactive components present in

HM, which provide additional protection against illness and

promote optimal development. Recently, there has been renewed

interest in bioactive lipids, as oxidized metabolites of PUFAs

(oxylipins) have been detected in HM (53). Several oxylipins,

especially those derived from w-3 fatty acids (w-3-PUFAs), have
been found to have anti-inflammatory properties and might be

protective against chronic diseases and inflammatory conditions

(54, 55).

Recent clinical studies have demonstrated that formula feeding

might constitute a risk for NEC in PIs (56). In this sense,

supplementing HM is warranted. Here, we comprehensively

investigated the presence of oxylipins derived from HM-sEVs and

their therapeutic potential in the setting of intestinal inflammation.

Our results support the idea of incorporating a combination of pro-

resolving lipid mediators in milk formulations.

We show that HM-derived sEVs are loaded with 14-HDHA, 17-

HDHA and 19,20-DiHDPA, that are pro-resolutive metabolites

derived from the w-3 fatty acid DHA and, in addition, both 14-
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HDHA and 17-HDHA are precursors of SMPs; specifically,

maresins and D-series resolvins, respectively (57). This may have

a biological significance when considering HM-sEVs as therapeutic

vehicles. Pizzinat et al. (58) previously reported the presence of lipid

mediators in EVs derived from cardiomyocytes and mesenchymal

stromal cells. However, they find a different oxylipin profile to the

one found in HM-sEVs described in this work, probably because the
Frontiers in Immunology 15
source of EVs is different. Also, Chen et al. identified a total of 395

lipids in term and preterm HM-derived EVs (59), but no studies on

oxylipins have thus far been reported.

We corroborated the utility of HM-sEVs for treating

inflammatory disorders (60). Since their discovery (61), the

interest in the role of HM-derived EVs in early development has

gained increasing interest, particularly with regards to their role in
A

B

D

C

FIGURE 7

HM sEVs and w3 OXLP change the ratio of infiltrating Mj1/Mj2. (A) Levels of inflammation-related cytokines were analyzed in colonic tissues by
immunoblot array (left). Different time exposition was used to reveal different amounts of protein. The relative expression of each cytokine was
quantified and represented in a heat map (right); data are representative of a pool of five animals per group. (B) ArgI, Cd206, Ccr2, Cx3cr1, TNFa, Il-
6, and Il-10 mRNA expression levels quantified by RT-qPCR in colon. Sham group was used as a control. Expression level of the target gene in each
sample was normalized to b-actin expression. Graphs represent mean ± SEM of fold change of five independent experiments. (C) ELISA assay to
assess IL-17A and IL-10 production (pg/mL) in colon extracts and plasma. (D) Immunodetection of F4/F80 (pan-macrophage marker, red) and PD-L1
(Mj1, green) or CD206 (Mj2, green) in colon samples 4 days after TNBS-induced colitis. Scale bar: 100 mm. Quantification of double-positive cells
per mm2. Ten sections of 0.14 mm2 per mouse were analyzed. Graphs represent the Mj1/Mj2 ratio ± SEM of five mice. One-way ANOVA was used
for statistical analysis. *p< 0.05, **p< 0.01.
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the gastrointestinal tract (14), and the contribution of HM-EVs to

the maturation of the intestinal barrier has been studied in both

physiological and pathological models (62, 63). Moreover, recent

studies have shown that HM EVs are resilient to digestion and can

be endocytosed by intestinal epithelial cells (16). In the present

work, we show that HM-sEVs are taken-up by intestinal cells and

that different damage stimuli (LPS or OGD) increase this process,

pointing to a potential role for HM-sEVs in rescuing injured tissue

from damage. In this regard, several studies have reported that milk

derived EVs can ameliorate IBD in different in vivo models by

suppressing immune cell infiltration and fibrosis, modulating

MUC2 expression, reducing neutrophil activity, and promoting a

pro-resolutive cytokine environment (19, 60, 64). However, the

potential use of milk-derived EVs is limited by the need for donors

and the lack of scale-up procedures that would allow cost-

effective commercialization.

We then tested whether w3 OXLP present in HM-sEVs could

reproduce the four main effects that are exerted by HM-EVs their

selves in in vitro and in vivo models: (i) cell survival and

proliferation, (ii) integrity (cell-cell junctions), (iii) resolution of

inflammation and (iv) mucin production (additional defence) (14,

18, 59). We demonstrate that w3 OXLP present in HM-sEVs

ameliorates oxidative stress and cytotoxicity in intestinal cells,

resulting in improved cell viability and wound healing. Moreover,

w3 OXLP restored tissue integrity, increasing the expression of cell

junction proteins including occludin, claudin and E-cadherin and

halting fibrosis. w3 OXLP was not immunogenic, endorsing its

suitability for in vivo administration. Moreover, w3 OXLP reduced

T-lymphocyte proliferation and Mj1 polarization in vitro. It has

been previously described that different SPMs can stimulate a

switch in macrophage phenotype from a proinflammatory to a

pro-resolving M2-like phenotype (65).

Several studies have addressed the potential beneficial effects of

PUFAs in inflammatory diseases. For example, RvD1 administration

(17-HDHA-derived) was found to reduce intestinal fibrosis in a

colitis animal model (66). In another study, Borsini et al. combined

the w3-PUFAs, EPA and DHA, to stimulate the production of lipid

mediators, including 14-HDHA and 19,20-DiHDPA, which had

neuroprotective effects. Also, treatment with w3-PUFAs prevented

neurogenesis loss and reduced apoptosis induced by pro-

inflammatory cytokines in human hippocampal progenitor cells

(67). Regarding this latter strategy, increasing the intake of EPA

and DHA provides the necessary substrates for the body to produce

SPMs, which can be effective in boosting SPM levels indirectly and

may have broader effects beyond the administration of specific SPMs.

In this context, several studies have indicated that increasing the

consumption of EPA and DHA can lead to higher concentrations of

specific SPMs in human plasma or serum (68). However, the

relationship between the intake of EPA and DHA and the

augmentation of particular SPMs remains unclear. The impact of

EPA and DHA on SPM levels may be influenced by the minimum

intake threshold of w3-PUFAs required to stimulate significant

endogenous biosynthesis of SPMs. While the availability of free

EPA and DHA is crucial as substrates for endogenous SPM

production, most of the EPA and DHA in the bloodstream, cell
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membranes, and intracellular compartments is esterified within

complex lipids (69). For this reason, the administration of w3
OXLP rather than their precursors might overcome this problem.

Interestingly, two of these OXLP are present in a commercial marine

oil formulation, whose pro-resolutive properties have been

demonstrated by our research group and others (33, 70).

The present study has several limitations that should be

addressed. First, we did not use a NEC mouse model. NEC is the

most common life-threatening gastrointestinal emergency

experienced by PIs (71), affecting 7–8% of patients in the

neonatal intensive care units and with mortality rates

approaching 20–30% (72). Nonetheless, despite the differences in

their clinical presentation and affected demographics, emerging

evidence suggests commonalities in the underlying inflammatory

processes and molecular mechanisms between NEC and IBD,

including dysregulated immune responses, mucosal barrier

dysfunction, and altered gut microbiota composition, which

contribute to intestinal inflammation in both NEC and IBD.

While NEC primarily affects PIs, IBD encompasses a group of

chronic inflammatory disorders that can occur in both children and

adults. Moreover, the alterations in immune response, intestinal

necrosis and fibrosis seen in the NEC model are relatively non-

specific clinical manifestations that can be easily conflated with

other gastrointestinal diseases, such as Crohn’s disease (73). For this

reason, we used the TNBS-induced mouse colitis model, as it shares

common functional alterations with NEC (74).

A second major limitation is that although we detected other

oxylipins, such as 9,10-DiHOME and 12,13-DiHOME (w6-
PUFAs), we did not analyze their therapeutic potential in our

preclinical models. Nonetheless, the role of g-linolenic acid

(GLA), another w6-fatty acid, was investigated recently in an

elegant study on cardiac physiology (63). The findings of these

authors support the significance of w-6 fatty acids in maternal milk,

highlighting the complex interplay between specific fatty acids, such

as GLA, retinoid x receptors, and the metabolic switch towards fatty

acid utilization for energy production in cardiac myocytes after

birth (75). Further research exploring other w6-PUFA-derived
oxylipins in HM-sEVs and their therapeutic role in intestinal

inflammation could provide valuable insights into the usefulness

of these molecules in the resolution of inflammation.

Finally, although differential ultracentrifugation has been

considering the gold standard for sEVs isolation, critical

drawbacks of this technique include vesicle aggregation (especially

originating from highly viscous solutions such as milk) and

lipoprotein contamination, where high density lipids (HDLs)

could sediment alongside HM-sEVs due to similar densities (76).

If the suspension has a large negative z potential, vesicles will tend

to repel each other and there will be no tendency for be added (77).

In conclusion, oral administration of w3 OXLP attenuates

intestinal inflammation via inhibiting pro-inflammatory signaling

pathways, restoring M2/M1 macrophage balance and preventing

collagen deposition, preserving tissue integrity. Our findings

support that a diet formula supplemented with this cocktail of w3
OXLP may have great potential in protecting and preserving the gut

health of PIs and adults with IBD.
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