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Immunotherapy has revolutionized the conventional treatment approaches for

colorectal cancer (CRC), offering new therapeutic prospects for patients. Liquid

biopsy has shown significant potential in early screening, diagnosis, and

postoperative monitoring by analyzing circulating tumor cells (CTC) and

circulating tumor DNA (ctDNA). In the era of immunotherapy, liquid biopsy

provides additional possibilities for guiding immune-based treatments.

Emerging technologies such as mass spectrometry-based detection of

neoantigens and flow cytometry-based T cell sorting offer new tools for liquid

biopsy, aiming to optimize immune therapy strategies. The integration of liquid

biopsy with immunotherapy holds promise for improving treatment outcomes in

colorectal cancer patients, enabling breakthroughs in early diagnosis and

treatment, and providing patients with more personalized, precise, and

effective treatment strategies.
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1 Introduction

Colorectal cancer (CRC) ranks as the second leading cause of cancer-related mortality

worldwide (1), with increasing incidence and mortality rates. Most patients with metastatic

CRC receive systemic drug therapy, which can prolong survival and improve symptoms

but generally falls short of achieving a cure, making long-term survival challenging (2). In

recent years, immunotherapy, represented by immune checkpoint inhibitors (ICIs), has

revolutionized the traditional treatment approaches for CRC (3–5).

Immunotherapy has emerged as a promising approach for treating various cancers,

including CRC. However, a challenge in the field of immunotherapy is the accurate

assessment of treatment response and monitoring the effectiveness of immune

interventions. Some biomarkers have been identified as predictors of the anti-tumor
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efficacy of ICIs, but there remains a need for clinically useful

biomarkers. Traditional response assessment criteria, such as

tissue biopsies, fail to capture the complex dynamics of the

immune system and tumor microenvironment(TME) (6, 7),

highlighting the urgent need for novel detection methods to

monitor the efficacy of immunotherapy in real time and enable

timely treatment adjustments (8–10).

With the rapid advancements in cell isolation and genetic

testing technologies, liquid biopsy, which involves minimally

invasive acquisition of tumor material, has gained recognition for

its importance in precision oncology (11–13). It allows real-time

monitoring of tumor progression, recurrence, or treatment

response at the molecular level (14, 15). Circulating tumor cells

(CTCs) and circulating tumor DNA (ctDNA) have emerged as

representative liquid biopsy biomarkers (16).

In this review, we will first discuss the current biomarkers used

for immune monitoring in CRC. Secondly, we will analyze the

recent research progress in liquid biopsy, specifically focusing on

ctDNA and CTCs, as adjuncts for CRC treatment. Finally, we will

discuss the potential of novel technologies to address the challenges

of immune therapy monitoring by providing solutions for liquid

biopsy in the context of adjuvant immunotherapy.
2 Biomarkers currently used for
immunotherapy monitoring in CRC

Currently, the treatment modalities for CRC include

endoscopic and surgical resection, systemic adjuvant

chemotherapy , rad io therapy , ta rge ted therapy , and

immunotherapy (1, 17). Over the past five years, the discovery of

ICIs and the successful use of ICIs have revolutionized the

treatment paradigm for CRC. ICIs have brought new

opportunities for the treatment of CRC (18–21). In 2017, the U.S.

Food and Drug Administration (FDA) approved the use of immune

therapy drugs for the treatment of metastatic colorectal cancer

(mCRC) (22–25). Pembrolizumab, an anti- programmed death

receptor 1(PD-1) monoclonal antibody, has been established as

the first-line treatment standard for microsatellite-high/deficient

mismatch repair (MSI-H/dMMR) mCRC (5). Immunotherapy is

gradually becoming an essential component of precision treatment

for mCRC.

With the continuous development of medical science and

technological advancements, biomarkers play an increasingly

important role in clinical applications. These biomarkers provide

crucial information to assist physicians in the diagnosis, treatment,

and monitoring of diseases. Some biomarkers, such as programmed

cell death ligand 1 (PD-L1), tumor mutational burden (TMB), and

microsatellite stability, have been identified as predictors of the anti-

tumor efficacy of ICIs. However, there remains a gap in the clinical

demand for effective biomarkers (26).

Microsatellite stability is currently the most relevant biomarker

for immunotherapy sensitivity in CRC and is typically evaluated

through solid tissue specimens (27, 28). MSI is a condition of

genetic instability caused by defects in DNA repair mechanisms and
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is commonly observed in a subset of CRC patients. However,

despite the promising prospects of MSI-H/dMMR as a biomarker

for immunotherapy in CRC, there is variability in the reported

overall response rates (ORR) in MSI-H mCRC patients, ranging

from 30% to 70% (29–32). This suggests that a significant number

of MSI-H mCRC patients do not benefit from immunotherapy (33).

Conversely, a small subset of microsatellite-stable (MSS) CRC

patients exhibit a response to immunotherapy. One contributing

factor to this phenomenon is diagnostic errors caused by the

detection methods (34).

Currently available methods for detecting microsatellite

instability include immunohistochemistry (IHC), polymerase

chain reaction (PCR), and next-generation sequencing (NGS).

Immunohistochemistry detects the expression of four mismatch

repair genes (MLH1, MSH2, MSH6, and PMS2) in the nuclei of

tumor cells, and the absence of one or more of these proteins is

defined as dMMR, otherwise known as proficient mismatch repair

(pMMR) (35). Detection of MSI status is accomplished through

immunohistochemistry on tissue specimens, which has the

limitations of subjectivity and a lack of uniform standards (36).

TMB is associated with the treatment response to

immunotherapy, and elevated plasma TMB levels (≥28 Mut/Mb)

have shown predictable responses to the combination therapy of

PD-L1 inhibitor durvalumab and CTLA4 inhibitor tremelimumab

inMSS CRC patients (37). TMB has been approved by the U.S. FDA

as a diagnostic biomarker for the use of pembrolizumab or

dostarlimab in cancer immunotherapy (38, 39). Furthermore,

studies have shown that high TMB (TMB ≥8 Mut/Mb) in CRC

patients is associated with longer overall survival (OS) and better

prognosis compared to low TMB (34, 40). However, the use of TMB

as a sole predictor of immunotherapy response in CRC remains

controversial. Limitations of using TMB as a predictive biomarker

for immunotherapy response in CRC were observed in the

KEYNOTE 177 trial (41). TMB assessment requires tumor tissue

specimens as the gold standard, and tumor heterogeneity poses

limitations to its precise estimation (42). Additionally, similar to

any other gene or genomic biomarker, TMB may undergo changes

in CRC following standard cytotoxic drug treatments (43).

Moreover, PD-L1 expression levels serve as important

indicators of the immune status in cancer patients, which reflects

the tumor’s response to immunotherapy (44–46). In certain solid

tumors such as non-small cell lung cancer, melanoma, and renal cell

carcinoma, PD-L1 expression has been proposed as a predictive

biomarker for immunotherapy response (47–49). High PD-L1

expression is associated with a better response to immunotherapy.

Tumor cells induce immune evasion by upregulating the expression

of PD-L1, which binds to PD-1 on the surface of T cells, leading to T

cell inactivation (Figure 1). ICIs block the interaction between PD-1

and PD-L1, thereby reactivating the body’s anti-tumor immune

response (47). CRC patients have been reported to exhibit positive

PD-L1 expression (50, 51). Although high PD-L1 expression is

associated with a favorable prognosis in CRC patients (52–54),

current clinical data suggest that the use of PD-L1 expression alone

cannot accurately predict the immunotherapy response in

CRC (55).
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However, despite the widespread application of certain

biomarkers, we still face various challenges and limitations. To

overcome these limitations, researchers are actively searching for

more suitable detection methods and therapies to enhance the

reliability and effectiveness of biomarkers in clinical practice.

Through continuous exploration and innovation, we hope to

open up new fields and approaches that will bring greater

breakthroughs in disease prevention, diagnosis, and treatment.

Therefore, the quest for more accurate and reliable biomarkers

has become a hot topic in medical research, offering new

opportunities and hopes for improving patient health outcomes.
3 Application of liquid biopsy in
adjuvant therapy for CRC

Liquid biopsy has opened up a new avenue for cancer patients

in terms of prognostic evaluation, detection of minimal residual

disease (MRD), treatment selection, resistance mechanisms and

monitoring, as well as early cancer diagnosis (56–61) (Figure 2).

The fundamental principle of liquid biopsy is the non-invasive

detection and assessment of tumors using circulating cell-free DNA

(cfDNA), RNA, or tumor cells present in bodily fluids such as

blood, urine, and cerebrospinal fluid (62–66). CTCs and ctDNA are
Frontiers in Immunology 03
important components and are generally considered the foundation

of liquid biopsy. ctDNA is formed by apoptotic and necrotic tumor

cells, which release fragmented DNA into the bloodstream and

harbor genetic alterations of the original tumor cells (67, 68). CTCs

are cancer cells that spontaneously detach from primary or

metastatic tumors and circulate in the bloodstream (69). They

serve as “seeds” of the tumor and can contribute to recurrence

through liver metastasis, lymphatic dissemination, and

angiogenesis (Figure 3).

Certain characteristics of CTCs, such as the expression of

surface markers or genetic mutations, are associated with the

prognosis of cancer patients. Changes in CTC counts are

correlated with shortened disease-free survival (DFS),

progression-free survival (PFS) and OS (70, 71). Increased levels

of ctDNA may indicate disease progression (72, 73). By regularly

monitoring changes in CTCs and ctDNA, the effectiveness of

treatment and the dynamic changes of the tumor can be

assessed (59).

MRD refers to the presence of extremely low levels of cancer

cells or cancer-associated genetic material after completion of

treatment (74). Early detection of MRD can be achieved through

the detection of CTCs and ctDNA (75–77). According to the latest

results from the GALAXY observational study presented at the 2023

ASCO conference, the detection of MRD through ctDNA testing at
FIGURE 1

Programmed cell death protein 1 (PD-1) plays a crucial role in the initiation and effector phases of the anti-tumor immune response. T cell activation
is a fundamental process in immune response, involving antigen presentation by dendritic cells and recognition by the T cell receptor (TCR). Once
activated, T cells migrate to the tumor site to eliminate malignant cells. However, the tumor or bystander cells such as macrophages may upregulate
PD-L1, which hinders T cell function by inducing inhibitory intracellular signaling.
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4 weeks post-surgery is the strongest prognostic risk factor for DFS

in stage II to IV CRC patients, regardless of BRAF V600E or MSI

status (78, 79).

In early-stage CRC patients, the presence of ctDNA positivity

after curative surgery is associated with a higher risk of disease

recurrence (74, 80–85). A study demonstrated that ctDNA

positivity after adjuvant chemotherapy is associated with poorer

DFS, and ctDNA detection precedes radiological relapse by a

median of 11.5 months (86). The DYNAMIC trial (87)
Frontiers in Immunology 04
investigated whether a ctDNA-guided approach could reduce the

use of adjuvant therapy without compromising the risk of

recurrence compared to the standard approach in stage II CRC.

Among the 455 randomly assigned patients, 302 were assigned to

the ctDNA-guided management group, and 153 were assigned to

the standard management group. The median follow-up time was

37 months. The proportion of patients receiving adjuvant

chemotherapy was lower in the ctDNA-guided group compared

to the standard management group (15% vs. 28%). The ctDNA-
FIGURE 2

The current clinical applications of liquid biopsy. Liquid biopsy provides a non-invasive approach to assess the dynamic changes and treatment
response of tumors by analyzing components such as circulating tumor DNA (ctDNA), circulating tumor cells (CTCs), and extracellular vesicles.
These components can be obtained from blood samples and detected using highly sensitive analytical techniques. The information derived from
liquid biopsy aids in guiding personalized treatment strategies, including the selection of appropriate drugs, monitoring treatment efficacy, and
providing treatment guidance. Liquid biopsy holds promising applications in tumor management, offering patients more accurate and effective
treatment choices.
FIGURE 3

The components of liquid biopsy in colorectal cancer(CRC). circulating tumor cells (CTCs) and Circulating tumor DNA (ctDNA) are the main
constituents of current liquid biopsy approaches. ctDNA, extracellular vesicle, and CTCs are shed directly from tumor masses or metastatic lesions
into the bloodstream. After collection of blood samples, further analysis of these components provides a comprehensive tumor characterization.
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guided management was non-inferior to standard management in

terms of 2-year disease-free survival rates (93.5% vs. 92.4%). The 3-

year disease-free survival rate was 86.4% in ctDNA-positive patients

receiving adjuvant chemotherapy and 92.5% in ctDNA-negative

patients not receiving adjuvant chemotherapy. The ctDNA-guided

approach can reduce the use of adjuvant chemotherapy without

compromising disease-free survival in the treatment of stage II

CRC. In various cohorts of non-mCRC and resected colorectal liver

metastasis patients, the proportion of disease recurrence has

consistently exceeded 80% in patients with detectable ctDNA who

did not receive adjuvant therapy (74, 88, 89). A study (90)

demonstrated that preoperative ctDNA could be detected in 108

out of 122 (88.5%) patients with stage I to III CRC. Longitudinal

ctDNA analysis identified 14 out of 16 (87.5%) recurrences after

definitive treatment. Furthermore, at postoperative day 30, ctDNA-

positive patients were more likely to experience recurrence

compared to ctDNA-negative patients. Another study (91)

evaluated the prognostic impact of postoperative ctDNA in stage

I-III CRC patients and found that ctDNA status was the most

significant and independent factor in predicting recurrence-free

survival (RFS). Postoperative plasma samples from 108 patients

underwent NGS quality control, with 17 (15.7%) classified as

ctDNA-positive and 91 classified as ctDNA-negative. Among

these 17 ctDNA-positive patients, 2 were stage II, and 15 were

stage III. The recurrence rate for ctDNA-positive patients was

76.5% (13/17), significantly higher than the 16.5% (15/91) in

ctDNA-negative patients. Kaplan-Meier survival curves showed

significantly poorer recurrence-free survival (RFS) for ctDNA-

positive patients compared to ctDNA-negative patients. The study

results also demonstrated a sensitivity of 49.6% and specificity of

94.7% for ctDNA alone in predicting 2-year RFS. A predictive

model combining ctDNA with clinical-pathological risk factors,

referred to as CTCP prediction model, exhibited better RFS

predictive value than ctDNA alone in stage I-III CRC patients

and increased the sensitivity for 2-year RFS to 87.5%. The predictive

value of this model was also externally validated. Additionally,

ctDNA can be utilized for monitoring locally advanced rectal cancer

(LARC) patients who achieve complete response after neoadjuvant

therapy and adopt an “watch-and-wait” strategy (92, 93).

Precision therapy involves customizing drug treatments based

on the individual characteristics of tumors (94). Liquid biopsy

provides molecular profiling information of tumors, such as gene

mutations and chromosomal rearrangements, to select appropriate

targeted therapy drugs. In CRC, analysis of the molecular features of

individual CTCs has revealed significant heterogeneity in the

presence of EGFR mutations and other genetic mutations

associated with EGFR inhibition (such as KRAS and PIK3CA

mutations) among patients and between patients, which explains

the different response rates to EGFR-targeted therapy (95). By

analyzing mutations in ctDNA, patients who may benefit from

targeted EGFR therapy or BRAF and MEK inhibitors can be

identified (96–98). In ctDNA-positive CRC patients, plasma

testing for RAS status demonstrated a sensitivity of 92.9% and

specificity of 87.7% (99). The CHRONOS trial confirmed the

importance of evaluating RAS status using ctDNA in metastatic

CRC patients (100, 101). The study found that patients who were
Frontiers in Immunology 05
mutation-negative in ctDNA had good clinical responses to anti-

EGFR retreatment. An ongoing randomized Phase III trial (102) is

expected to reveal that liquid biopsy-based retreatment with anti-

EGFR monoclonal antibodies achieves approximately one-third

object ive responses in mCRC patients , prospect ively

demonstrating the effective management of patients through

genetic profiling using liquid biopsy.

Similar to predicting response to chemotherapy and/or targeted

therapy, liquid biopsy based on ctDNA can guide immunotherapy.

While immune therapy has prolonged PFS in patients with MSI-H

CRC, it is interesting to note that in the KEYNOTE-177 study,

approximately 30% of patients showed no response to

pembrolizumab (32). Using ctDNA monitoring to identify non-

responders at an early stage can provide an opportunity for

physicians to switch to chemotherapy or consider the addition of

anti-CTLA-4 agents (103). The mutational burden in ctDNA is

associated with the efficacy of immunotherapy and serves as a direct

reflection of tumor burden (104–110). Liquid biopsy utilizes ctDNA

released into the bloodstream, providing a non-invasive alternative.

However, similar to TMB, the MSI status is also influenced by

spatial and temporal heterogeneity, making it challenging to

monitor its therapeutic value through liquid biopsy (111). A

study used liquid biopsy to detect the MSI status in ctDNA and

found a high concordance with results from traditional tissue

biopsy, effectively predicting immunotherapy sensitivity and

clinical outcomes in patients (112). Another study demonstrated

that liquid biopsy could monitor changes in MSI status at different

time points, providing important information on treatment

response and disease progression in patients (74). Furthermore,

recent studies have proposed that the concentration of cfDNA can

serve as a predictive biomarker for immune therapy response (113–

116). cfDNA can be detected in MSI-H CRC patients who respond

well to immunotherapy (117, 118). Moreover, dynamic changes in

ctDNA have been shown to predict the efficacy of other

immunotherapies, including chimeric antigen receptor T-cell

(CAR-T) therapy (119, 120). Analysis of tumor-derived structural

alterations through shallow whole-genome sequencing revealed a

decrease in ctDNA levels in patients who responded well to CAR-T

cell therapy, while an increase was observed in patients who did not

achieve a treatment response. The abundance of CAR-T cell

construct-derived DNA in peripheral blood may be correlated

with the dynamic changes in ctDNA and can be used in

combination (121).

Several clinical trials focusing on liquid biopsy in the context of

immunotherapy are currently underway. The ongoing ARETHUSA

trial (NCT03519412) is investigating the use of ctDNA-based TMB

assessment as a predictive marker for immunotherapy response

following pretreatment with temozolomide in MGMT-methylated

mCRC (122). It is worth noting that there are ongoing efforts to

identify the optimal approach for TMB analysis (123). The use of

ctDNA for predicting response to immunotherapy has shown

promise in the INSPIRE study, a prospective Phase II trial that

conducted serial ctDNA assessments in 94 patients with advanced

solid tumors receiving pembrolizumab (124). It was found that in

42% of patients, an increase in ctDNA and tumor volume was

observed at 6 weeks, accurately predicting lack of response with
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100% specificity. During immunotherapy, 16% of patients exhibited

ctDNA clearance, with a median follow-up exceeding 25 months

and an OS of 100%. At the start of the third treatment cycle, 98% of

patients had an increase in ctDNA, indicating lack of objective

response. This may enable the avoidance of ineffective treatment in

a subset of patients. Zhang et al. characterized the prognostic and

predictive impact of ctDNA in patients with 16 different solid tumor

types enrolled in Phase I/II trials of single-agent durvalumab or

combination therapy with tremelimumab (125). Higher

pretreatment variant allele frequency (VAF) was associated with

poorer survival but not with ORR. In contrast, reductions in VAF

during treatment were associated with prolonged PFS, OS, and

ORR, suggesting the predictive benefit of ctDNA during the

treatment course. In ongoing clinical trials across various tumor

types, including CRC, the dynamics of ctDNA, as measured by

changes in VAF percentage and/or ctDNA clearance, have emerged

as important biomarkers.

The application of liquid biopsy-guided adjuvant therapy for

CRC is still in the research stage and requires further clinical

validation and optimization. However, it has the advantages of

non-invasiveness, repeatability, and real-time monitoring, and is

expected to become one of the important auxiliary tools for

personalized treatment of CRC.
4 Opportunities and breakthroughs
of liquid biopsy in the era
of immunotherapy

Significant progress has been made in the study of CTCs and

ctDNA using traditional liquid biopsy methods, which have played

a powerful auxiliary role in tumor treatment (126–128).

Immunotherapy has shown remarkable efficacy in various types

of cancer, but it may impact the results of liquid biopsy. Therefore,

it is necessary to reassess the traditional liquid biopsy criteria to

accommodate the needs of immunotherapy (129, 130). Emerging

detection technologies have provided support for liquid biopsy in

optimizing treatment strategies, thus contributing to further

advancements in the field of immunotherapy.
4.1 T Cell sorting: liquid detection based
on flow cytometry

T-cell subset isolation is a method used to separate and purify T

cells from a mixed population of cells. Flow cytometry can analyze

various indicators such as T-cell subgroups, functional status, and

expression of immune checkpoint molecules in blood samples. It

can aid in evaluating a patient’s immune status and predicting the

response to immune therapy (131–135).

The peripheral blood TCR repertoire serves as an important

biomarker for the selection of ICIs therapy (136). TCR sequencing

enables the study of the immune response mechanism of T cells.

Longitudinal monitoring of the dynamic therapeutic evaluation of

the TCR repertoire in ctDNA in peripheral blood provides insights

into the co-evolution of tumors and immune components during
Frontiers in Immunology 06
ICIs treatment. TCR repertoire diversity, early conversion of

peripheral T cells, and overall remodeling of the T-cell repertoire

are associated with clonal regulation during ICIs treatment and are

linked to anti-tumor immune responses. The presence of

persistently exhausted TCR clones in peripheral blood is

associated with adverse reactions to immune therapy (137–142).

By combining flow cytometry and gene sequencing techniques,

TCR sequences can be rapidly and accurately detected to

understand T-cell clonal expansion and diversity.

Peripheral blood immune cell biomarkers, as one of the easily

accessible biomarkers, can assess treatment response in the early

stages and facilitate adjustments in early management (143–145).

Studies have shown that the quantity and function of Tregs cells

change in patients receiving immune therapy and are associated

with poor prognosis (146–150). Studies using flow cytometry and

RNA analysis have found that the percentage of circulating CD4+

and CD8+ T cells is associated with inflammatory tumors,

indicating the significant role of these biomarkers in anti-tumor

responses (151). Additionally, circulating T-cell lymphocyte

subpopulations have been identified as biomarkers for mCRC

(152). Decreased proportions of CD4+ cells and Tregs during

treatment with folinic acid, 5-fluorouracil, and irinotecan

(FOLFIRI) plus bevacizumab are associated with improved

survival rates (153). Systemic immune inflammation index, ratios

of different immune cells, and ratios of immune cells to platelets are

also biomarkers for prognosis and prediction in CRC patients,

including platelet-to-lymphocyte ratio (PLR) and neutrophil-to-

lymphocyte ratio (NLR) (154–156). Recent studies have discovered

novel circulating non-tumor cells and their biomarkers and

extracellular matrix components, which have clinical application

value in diagnosis, prognosis, and treatment response (157). Some

studies suggest that circulating tumor endothelial cells (CTECs)

from the tumor may play a prognostic role in CRC, with higher

predictive value than CTCs (158–160). Similarly, in patients with

mCRC receiving treatment with bevacizumab and chemotherapy,

CECs and CD276-positive CTECs based on flow cytometry

significantly increase (161). Studies have also shown that CXCR4-

positive CECs are associated with longer PFS and OS, providing

predictive value for mCRC patients receiving bevacizumab

treatment (162–164).

Furthermore, single-cell sequencing technology (scRNA-seq) allows

the study of gene expression and genetic variations at the individual cell

level (165). The first immunotranscriptomic study based on scRNA-seq

was conducted on CD4+ T cells infiltrating CRC. In this study, the

impact of the tumor immune microenvironment (TIME) on specific

gene expression (LAYN, MAGEH1, and CCR8) in tumor-infiltrating

Tregs cells was confirmed, and these gene expressions were found to be

correlated with immune therapy response, tumor-suppressive activity,

and prognosis (166).

The gene characteristics of peripheral blood immune cells have

received attention in the field of immune therapy and precision

medicine. By combining T-cell subset isolation and liquid biopsy,

comprehensive monitoring tools for immune therapy can be

obtained, leading to a better understanding of tumor immune

response and treatment outcomes, as well as optimization of

treatment strategies.
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4.2 Mass spectrometry techniques:
unveiling the immunotherapeutic
potential of neoantigens and
non-mutated neoantigens

Mass spectrometry-based liquid-phase detection is a novel

technique that allows for the molecular-level monitoring of chemical

components within cells and organisms, providing deeper insights

into biological information. Neoantigens are novel antigenic epitopes

generated by genetic mutations and serve as important targets in

personalized immunotherapy (129). Neoantigens can be produced

through proteasome-mediated endogenous protein degradation, and

the resulting mutated peptides are subsequently transported to the

endoplasmic reticulum (ER) via antigen processing-associated

transporter (TAP), where they may be loaded onto MHC-I. MHC-

II dimers assemble in the ER and associate with the invariant chain

(Ii). The Ii-MHC-II complex can be transported directly from the cell

surface or, at times, indirectly endocytosed into the MHC-II

compartment (MIIC). Within the MIIC, a series of endolysosomal

proteases degrade Ii, releasing it and enabling MHC-II to bind specific

peptide segments derived from mutated proteins within the endocytic

pathway. These peptide-MHC (pMHC) complexes are subsequently

transported to the cell surface, where they are recognized by T cells

(167) (Figure 4). Neoantigens possess potential high specificity and

targeting, but they are predominantly patient-specific, making it

challenging to categorize their utility, and they are often prominent

in cancer patient populations. Currently, immune therapies, ICIs,

tumor-specific vaccines, and neoantigen-based tumor-infiltrating

lymphocytes (TILs) play increasingly important roles in cancer

treatment (168). Studies have observed that certain CRC patients

with MSI-H may benefit from ICIs treatment due to the presence of

neoantigens (169). One of the main obstacles faced in personalized

neoantigen immunotherapy is the accessibility of tumor biopsies.

Thus far, the identification of neoantigens has typically involved

genomic analysis of various tumor biopsies (170). Although this

approach is time-consuming, invasive, and has a low positivity rate,

it is more common in challenging cases requiring repeated sampling

or when samples are limited, particularly in cases of frequent

occurrence and metastatic cancers. Specifically, the presence of

natural neoantigens at the top of immune checkpoints can enhance

the effectiveness of significant inhibitors (171, 172). Given the current

situation, liquid biopsies can serve as a viable alternative approach to

identify potential neoantigens as immune therapeutic targets,

applicable to numerous cancers. Although the limitations of

detecting genomic mutations in plasma samples lie in detecting low

allele frequencies, the reliability of genetic information obtained from

liquid biopsies has been demonstrated (173). Therefore, based on

current research on liquid biopsies, valuable insights can be provided

for the use of neoantigens in treatment selection. Mass spectrometry-

based liquid-phase detection allows for efficient identification and

quantification of protein compositions within tumor cells, enabling

the discovery of novel tumor-specific antigens by monitoring

neoantigens in serum (174). Neoantigen-based immunotherapeutic

approaches, such as ICIs, tumor-specific vaccines, and TILs, have

become increasingly important in cancer treatment (168). Not all

MSI-H CRC patients benefit from ICIs treatment; however, certain
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MSI-H colorectal cancer patients may benefit from ICIs treatment due

to the presence of highly immunogenic neoantigens (169, 173).

Non-mutated neoantigens (NM-neoAgs) are immunogenic

protein fragments generated through translational modifications

or protein degradation of apoptotic tumor cells (175–181). These

unique fragments do not exist in normal cells and are more easily

processed and cross-presented by antigen-presenting cells (182).

Studies utilizing mass spectrometry techniques and memory T cells

as probes have identified NM-neoAgs in serum and found a strong

correlation between high levels of NM-neoAgs and the efficacy of

immunotherapy. Following induction chemotherapy, the response

of NM-neoAgs-specific effector T cells (CD4+ and CD8+ T cells)

increases and is further enhanced after immunotherapy, closely

associated with patients’ survival rates and decreased expression

levels of PD-1 (182). NM-neoAgs can target tumors with lower

mutational burdens, contributing to the development of effective T

cell-based immunotherapies for various cancer patients (182), and

expanding the potential targets of liquid biopsy.

In summary, neoantigens and NM-neoAgs are tumor cell-

specific antigens with tremendous potential in personalized

immunotherapy. New detection methods such as flow cytometry

and mass spectrometry techniques provide powerful tools for

evaluating the efficacy of immunotherapy, thereby offering more

effective treatment strategies for patients.
5 Conclusion

Liquid biopsy, as a non-invasive detection method, has emerged

as a promising approach for early screening, diagnosis,

postoperative monitoring, treatment response assessment, and

evaluation of tumor resistance (183). With advancements in mass

spectrometry-based detection of neoantigens and T cell sorting

techniques such as flow cytometry, liquid biopsy has gained support

as an adjunctive tool in the field of immunotherapy, providing

opportunities for optimizing treatment strategies. However, despite

significant progress, liquid biopsy remains in the exploratory and

developmental stage, facing various challenges and complexities.

These include issues including the typically low concentrations of

analytes collected from samples (184, 185), lack of standardization

and uniformity for liquid biopsy biomarkers, and a dearth of widely

accepted clinical practice guidelines (186, 187),related to false-

positive results (188), variations in sensitivity among studies (82,

189), limitations in detection sensitivity and specificity (186, 190),

and susceptibility to interference (184, 189, 191, 192). Overcoming

these challenges and advancing liquid biopsy requires the

development of highly sensitive and specific detection methods,

standardization of experimental procedures and validation

methods, and the application of artificial intelligence and machine

learning algorithms for data analysis and interpretation. Additionally,

the exploration of new biomarkers and the conduct of large-scale

multicenter studies and clinical trials are essential to enhance the

accuracy of early diagnosis and treatment prediction (193–196).

Despite the challenges that remain, the potential of liquid biopsy-

assisted immunotherapy in transforming the field of immunotherapy
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is undeniable. Looking ahead, in the era of immunotherapy, liquid

biopsy-assisted immunotherapy has the potential to fundamentally

change the field and provide patients with more precise, effective, and

personalized treatment strategies. Continued research, clinical trials,

and technological advancements will play a crucial role in fully

harnessing liquid biopsy as a valuable tool for guiding

immunotherapy and improving future patient outcomes.
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FIGURE 4

Neoantigens, which are mutated peptides generated through proteasome-mediated endogenous protein degradation, can subsequently be
transported to the endoplasmic reticulum (ER) via antigen processing-associated transporter (TAP) and may be loaded onto MHC-I. In the ER, MHC-
II dimers assemble and associate with the invariant chain (Ii). The Ii-MHC-II complex can be transported directly from the cell surface or, in some
cases, indirectly endocytosed into the MHC-II compartment (MIIC). Within the MIIC, a series of endolysosomal proteases degrade Ii, releasing it and
enabling MHC-II to bind specific peptide segments derived from mutated proteins within the endocytic pathway. These pMHC complexes are
subsequently transported to the cell surface, where they are recognized by T cells.
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5. André T, Shiu K-K, Kim TW, Jensen BV, Jensen LH, Punt C, et al.
Pembrolizumab in microsatellite-instability–high advanced colorectal cancer. New
Engl J Med (2020) 383:2207–18. doi: 10.1056/NEJMoa2017699

6. Raza A, Khan AQ, Inchakalody VP, Mestiri S, Yoosuf Z, Bedhiafi T, et al.
Dynamic liquid biopsy components as predictive and prognostic biomarkers in
colorectal cancer. J Exp Clin Cancer Res (2022) 41:99. doi: 10.1186/s13046-022-
02318-0

7. Lokhandwala T, Bittoni MA, Dann RA, D'Souza AO, Johnson M, Nagy RJ, et al.
Costs of diagnostic assessment for lung cancer: A medicare claims analysis. Clin Lung
Cancer (2017) 18:e27–34. doi: 10.1016/j.cllc.2016.07.006

8. Marron TU, Ryan AE, Reddy SM, Kaczanowska S, Younis RH, Thakkar D, et al.
Considerations for treatment duration in responders to immune checkpoint inhibitors.
J Immunother Cancer (2021) 9. doi: 10.1136/jitc-2020-001901

9. Meric-Bernstam F, Larkin J, Tabernero J, Bonini C. Enhancing anti-tumour
efficacy with immunotherapy combinations. Lancet (2021) 397:1010–22. doi: 10.1016/
s0140-6736(20)32598-8

10. Ott PA, Hodi FS, Kaufman HL, Wigginton JM, Wolchok JD. Combination
immunotherapy: a road map. J Immunother Cancer (2017) 5:16. doi: 10.1186/s40425-
017-0218-5

11. Ye Q, Ling S, Zheng S, Xu X. Liquid biopsy in hepatocellular carcinoma:
circulating tumor cells and circulating tumor DNA. Mol Cancer (2019) 18:114.
doi: 10.1186/s12943-019-1043-x

12. Diaz LA Jr., Bardelli A. Liquid biopsies: genotyping circulating tumor DNA. J
Clin Oncol (2014) 32:579–86. doi: 10.1200/jco.2012.45.2011

13. Alix-Panabières C, Pantel K. Clinical applications of circulating tumor cells and
circulating tumor DNA as liquid biopsy. Cancer Discovery (2016) 6:479–91.
doi: 10.1158/2159-8290.Cd-15-1483
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Glossary

CRC Colorectal cancer

ICIs immune checkpoint inhibitors

CTCs circulating tumor cells

ctDNA circulating tumor DNA

cfDNA circulating cell-free DNA

MRD minimal residual disease

mCRC metastatic colorectal cancer

DFS disease-free survival

PFS progression-free survival

OS overall survival

LARC locally advanced rectal cancer

MSI-H MSI-H microsatellite instability

CAR-T chimeric antigen receptor T

TCR T cell receptor

PLR platelet-to-lymphocyte ratio

NLR neutrophil-to-lymphocyte ratio

CTECs circulating tumor endothelial cells

scRNA-seq single-cell sequencing technology

TILs tumor-infiltrating lymphocytes

TIME tumor immune microenvironment

NM-neoAgs Non-mutated neoantigens

neoAgs Neoantigens

FDA Food and Drug Administration

MSI-H microsatellite-high

dMMR deficient mismatch repair

PD-L1 programmed cell death ligand 1

PD-1 programmed death receptor 1

RFS recurrence-free survival

NGS next-generation sequencing

RFS recurrence-free survival

IHC immunohistochemistry

PCR polymerase chain reaction

ORR overall response rates

TME tumor microenvironment

TMB tumor mutational burden

MSS microsatellite-stable

IHC immunohistochemistry

PCR polymerase chain reaction

(Continued)
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pMMR proficient mismatch repair

ER endoplasmic reticulum

TAP processing-associated transporter

Ii invariant chain

MIIC MHC-II compartment

pMHC peptide-MHC
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