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T-cell-mediated autoimmune type 1 diabetes (T1D) is characterized by the

immune-mediated destruction of pancreatic beta cells (b-cells). The increasing

prevalence of T1D poses significant challenges to the healthcare system,

particularly in countries with struggling economies. This review paper

highlights the multifaceted roles of Peroxisome Proliferator-Activated

Receptors (PPARs) in the context of T1D, shedding light on their potential as

regulators of immune responses and b-cell biology. Recent research has

elucidated the intricate interplay between CD4+ T cell subsets, such as Tregs

and Th17, in developing autoimmune diseases like T1D. Th17 cells drive

inflammation, while Tregs exert immunosuppressive functions, highlighting the

delicate balance crucial for immune homeostasis. Immunotherapy has shown

promise in reinstating self-tolerance and restricting the destruction of

autoimmune responses, but further investigations are required to refine these

therapeutic strategies. Intriguingly, PPARs, initially recognized for their role in

lipid metabolism, have emerged as potent modulators of inflammation in

autoimmune diseases, particularly in T1D. Although evidence suggests that

PPARs affect the b-cell function, their influence on T-cell responses and their

potential impact on T1D remains largely unexplored. It was noted that PPARa is

involved in restricting the transcription of IL17A and enhancing the expression of

Foxp3 byminimizing its proteasomal degradation. Thus, antagonizing PPARsmay

exert beneficial effects in regulating the differentiation of CD4+ T cells and

preventing T1D. Therefore, this review advocates for comprehensive

investigations to delineate the precise roles of PPARs in T1D pathogenesis,

offering innovative therapeutic avenues that target both the immune system

and pancreatic function. This review paper seeks to bridge the knowledge gap

between PPARs, immune responses, and T1D, providing insights that may

revolutionize the treatment landscape for this autoimmune disorder.

Moreover, further studies involving PPAR agonists in non-obese diabetic

(NOD) mice hold promise for developing novel T1D therapies.
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Introduction

Diabetes is regarded as the most critical and chronic medical

condition that is illustrated by the increased blood glucose levels in

association with impaired insulin activity due to the defective

pancreatic beta cells (b-cell) function (1, 2). As per the definition

and classification by the American Diabetes Association, diabetes

has four distinct subtypes: (i) Type 1 diabetes (T1D) – an

autoimmune disorder marked by insufficient insulin production

that extinguishes b-cells; (ii) Type 2 diabetes (T2D) – associated

with insulin resistance and a gradual decline in insulin levels

accompanied by the loss of b-cells; (iii) Specific type of diabetes

ascending from diverse underlying causes; and (iv) Gestational

Diabetes Mellitus (GDM) – occurring in the later trimesters of

pregnancy, without prior existence before conception (3). It has

been estimated that diabetes impacts 9.3% of the overall global

population (4), with 19.3% in elderly patients (5). Alarmingly,

diabetes is escalating within certain nations (6–9).

Type 1 diabetes (T1D) is a chronic and progressive autoimmune

illness. It is a long-lasting disease marked by the body’s incapability

to generate insulin. Insulin, produced by b-cells, is a pivotal

anabolic hormone that exerts distinct effects on protein, lipid,

glucose, and growth (10, 11). T1D primarily occurs due to the

death of b-cells in response to recurrent autoimmunity (12, 13).

Consequently, T1D emerges as a systemic disorder defined by the

hallmark trait of hyperglycemia (14). An array of investigations has

underscored the substantial role of genetic, social, economic, and

environmental factors in triggering autoimmune responses and

ultimately driving the onset of T1D (15–21).

The immune mechanisms driving the autoimmune assault on

b-cells have primarily been elucidated through studies conducted

in T1D models in rodents (22). Ample evidence indicates

that humoral immune responses are pivotal in producing

autoantibodies that target the pancreatic b-cells (23, 24). These

autoantibodies, including those against insulin, glutamic acid

decarboxylase (GAD), islet cell antigens, insulinoma-associated

antigen-2 (IA-2), and zinc transporter 8 (ZnT8), initiate an

autoimmune response (23, 25–27). This misguided immune

attack leads to the progressive destruction of insulin-producing b-
cells, resulting in insulin deficiency and elevated blood sugar levels.

Also, the presence of these autoantibodies is a hallmark of T1D and

is often utilized in precision diagnosis (28, 29). Besides, this

autoimmune process occurs when the immune system, primarily

coordinated by T cells, initiates an abnormal assault on the insulin-

producing b-cells within Langerhans’ pancreatic islets (30). Both

CD4+ and CD8+ T cells play pivotal roles in T1D, as their

significance in the development of T1D is supported by

substantial evidence (31, 32). Meanwhile, it has been understood

that specific major histocompatibility complex (MHC) class II

haplotypes, and to a lesser extent, MHC class I haplotypes, are

associated with an increased predisposition to the development of

diabetes (32, 33).

Considering the impact of T cells and b-cells in the

pathogenesis of T1D, the present therapeutic strategies have

predominantly resolved on either overturning the ongoing
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immune assault or activating the regeneration of beta cells;

however, the effectiveness of these therapies is limited (34, 35).

Consequently, a persistent demand exists for approaches that

simultaneously attenuate the immune response while enhancing

b-cells function. The PPAR family stands out as a promising focus

for addressing T1D using this approach because PPARs exhibit

anti-inflammatory characteristics, influence the biology of b-cells,
and control the lipid composition in the pancreas (36–39). This

review aims to provide a comprehensive summary of the current

understanding regarding the role of T cells in the pathogenesis of

autoimmune T1D and how PPARs play essential roles in mediating

the immune responses within the pathophysiological context of

T1D. By elucidating the connections between T cell-mediated

autoimmune T1D and the modulatory functions of PPARs, this

review underscores the potential attractiveness of PPARs as targets

for therapeutic interventions in T1D management.
Role of T cells in the pathogenesis
of T1D

The concept of a connection between the immune system and

T1D was first introduced in 1973 when researchers discovered a

clear connection between HLA antigens and insulin-dependent

diabetes mellitus and distinguished it from insulin-independent

diabetes (40). Subsequent genome-wide association investigations

have established this link and revealed that HLA genes subsidize up

to 50% of the genetic susceptibility to T1D, particularly the HLA

class II loci. This finding strongly advocates that the selective

exhibition of specific autoantigen peptides exerts a critical part in

the pathogenesis of T1D (41–43). In the meantime, several meta-

analyses have brought to light non-HLA high-risk genetic variations

within specific genes, including but not limited to IL2RA, CTLA4,

PTPN22, and INS-VNTR (variable number of tandem repeats) (44–

47). Studies examining the longitudinal levels of plasma oxylipins

and their connection to the risk of T1D in at-risk children showed

that higher levels of certain oxylipins related to linoleic acid and

alpha-linolenic acid were associated with a reduced risk of T1D (48,

49). These oxylipins, which have pro-resolving and pro-

inflammatory properties, may reflect resilience to environmental

triggers (50). Conversely, oxylipins related to arachidonic acid

(ARA) were linked to an increased risk of T1D, possibly

indicating inflammation after the onset of islet autoimmunity

(48). Meanwhile, the SNP rs143070873 was strongly linked to the

LA-related oxylipin 9-HODE, and rs6444933 (linked with

CLDN11) was associated with the LA-related oxylipin 13 S-

HODE. Additionally, a locus between LOC100131146 and

MIR1302-7, rs10118380 and an intronic variant in TRPM3 were

connected to the ARA-related oxylipin 11-HETE, highlighting their

involvement in inflammatory signaling and oxylipin production

(51). These genetic variations have been associated with a reduced

ability to maintain both peripheral and central immune tolerance

toward self-antigens and heightened T-cell stimulation and

proliferation. These observations underscore the significant role

that T cells play in the intricate process of T1D.
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The phenotype of human T1D is recapitulated in the non-obese

diabetic (NOD) mouse (52). These NOD mice comprehensively

enhanced our knowledge of the T1D pathogenesis. Research

conducted in NOD mice has elucidated that the development of

T1D depends on the involvement of CD8+ and CD4+ T cells (53).

The involvement of T cells in the progression of T1D has been

shown in Figure 1. Notably, T1D can be transferred solely to

immunocompromised syngeneic recipients when splenic T cells,

CD8+ and CD4+ T cells, are transferred from a donor NOD mice

(53). Conversely, detecting islet-specific autoreactive CD8+ and

CD4+ T cells in insulitis lesions, pancreatic draining lymph nodes,

and peripheral blood has furnished compelling findings subsidizing

the autoimmune nature of T1D (54–58). This presence of

autoreactive T cells points towards an impaired immune

response, where central immune tolerance weakening towards

self-antigens results in the loss of their immune reactivity for

foreign proteins, and this weakening is believed to play a role in

the insulin-producing cells for the immune attack directed at self-

antigens (59–61).

The elevated population of autoreactive CD8+ T cells (which

are abundant for particular resident memory cells) in the pancreas

of individuals with T1D suggests a differential peripheral regulation

and/or activation in patients with T1D (62) as islet autoreactive T

cells exhibit different functions than T cells that guard us from

infections and cancer. For instance, it was reported that b-cell-
specific CD8+ T cells extinguish the insulin-secreting b-cells,
predominantly due to the intrinsic events of b-cells (57, 63–65). It
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was reviewed that CD8+ T cells can diminish the pancreatic b-cells
via MHC class I-regulated cytotoxic mechanisms (66). Even though

auto-reactive cells are also found in individuals without

autoimmune conditions, the elevated numbers of CD8+ T cells,

especially resident memory cells, in the pancreas of T1D individuals

suggest distinct immune activity in these patients (54, 67, 68).

It is noteworthy to mention that both CD8+ T cells and CD4+ T

cells can secrete various effector cytokines, such as interferon-g
(IFNg), IL (interleukin)-1b, and tumor necrosis factor-a (TNFa)
(69, 70). In T1D, the release of IFNg by CD4 and CD8 cells may

destroy b-cells and islets (69). Meanwhile, IFNg, along with other

cytokines, induces the death receptor FAS (also known as CD95)

levels, stimulates the production of chemokines by b-cells and

elevates their vulnerability to the autoimmune T1D (70–75). The

process of b-cell apoptosis can be triggered by the activation of FAS

by activated CD4 T lymphocytes that express the FAS ligand

(FASL) (76–78). Additionally, the chemokines produced by b-
cells contribute to the recruitment of further mononuclear cells to

the site, thereby intensifying the inflammatory response (79–81).

The pathogenesis of T1D is believed to commence when there is

a low-level demise of b-cells, leading to the exposure of b-cell
antigens. Through MHC class II molecules, these antigens are then

taken up, processed, and displayed on the cell surface of antigen-

presenting cells (APCs) (82, 83). CD4+ T lymphocytes in the

surrounding pancreatic lymph nodes proliferate and develop into

auto-reactive CD4+ effector T cells (Teffs) in response to antigen

presentation and costimulation by APCs (84–86). Immune cell-
FIGURE 1

Involvement of T cells in the pathogenesis of autoimmune T1D. The pathogenesis of Type 1 Diabetes (T1D) involves a complex interplay between
genetic susceptibility and environmental factors. In individuals predisposed to T1D, environmental triggers lead to stress in pancreatic b-cells,
releasing b-cell antigens. These antigens are processed by Antigen-Presenting Cells (APCs) and presented via HLA class II MHC molecules to naïve
CD4+ T cells. Activated CD4+ T cells shift towards (i) Th1 phenotype, releasing cytokines such as TNFa and INFg; (ii) Th17 phenotype, releasing
inflammatory cytokines such as IL17 and IL-22; and (iii) Immunosuppressive regulatory T cells (Tregs), which secret anti-inflammatory IL-10 and
TGFb. The activation of Th1 and Th17 activates auto-reactive cytotoxic CD8+ T cells, which then migrate to pancreatic islets, releasing cytotoxic
agents, such as granzyme B (GRZB), perforin (PRF), TNFa and INFg, ultimately leading to the destruction of b cells, a central event in T1D
pathogenesis. Meanwhile, the release of anti-inflammatory IL-10 and TGFb molecules from Tregs inhibits the auto-reactive CD8+ T cell activity,
leading to the inhibition of T1D. Created with BioRender.com.
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derived complement proteins (C3a and C5a), which are activated

locally during the contact between T cells and APCs, help further to

promote Teff growth and function (87). Within the pancreatic islets,

these activated Teffs release an array of cytokines, including IFNg
and IL-2, leading to the recruitment of cytotoxic macrophages and

CD8+ T lymphocytes (88, 89). These cytotoxic inflammatory cells

ultimately infiltrate the islets and initiate the destruction process

known as “insulitis”. b-cell death ensues, partly due to direct

perforin/granzyme-mediated toxicity by CD8+ T cells and partly

as a result of the release of pro-inflammatory cytokines (IFNg,
TNFa, IL-1b) by CD4+ T cells and macrophages (88, 89).

Additionally, chemokines released by injured b-cells promote

further recruitment of mononuclear cells, and the subsequent

release of additional autoantigens enables the expansion and

perpetuation of the autoreactive Teff response (90, 91).

Effector T cell subsets Th17, which produces IL-17A, a

prominent pro-inflammatory cytokine, and is primarily

recognized for its role in attracting other immune cells to sites of

inflammation (92, 93). Numerous investigations on rodent models

of diabetes suggest the participation of the Th17 subsets in the

development of T1D. For instance, in the NOD, a spontaneous

autoimmune diabetes model, IL-17F and IL-17A levels in the islets

are associated with insulitis. It was suggested that young mice at a

prediabetic stage do not exhibit increased expression of IL-17F or

IL-17A in the islets. However, older diabetic mice show increased

IL-17F and IL-17A, which coincides with the onset of insulitis (94).

Inhibiting Th17 cells has significantly reduced diabetes

development effectively (95, 96). In IL-17-depleted NOD mice,

there is an adjournment in the commencement of diabetes, and

insulitis is reduced (97). Additionally, in streptozotocin-induced

diabetes, IL-23 plays a role in promoting diabetes development,

mainly when subdiabetogenic doses of streptozotocin are

administered, as it leads to the expansion of Th17 cells (98). In

parallel, clinical T1D patients also support the pathogenic role of

Th17. For instance, CD4+ T cells from newly diagnosed T1D

adolescents are reported to produce enhanced levels of IL-17 and

IL-22 (99). Interestingly, there is no noticeable increase in IFNg
levels or T-bet levels in T1D patients, indicating a bias toward a

Th17 response in these individuals (99). Moreover, memory CD4+

T cells from the majority of the T1D patients display elevated

secretion of IL-17 and IL-22, signifying an active Th17 response in

vivo (99). Similarly, alternative investigation detected enhanced IL-

17-producing CD4+ T cells in newly diagnosed T1D children (100).

Notably, the circulatory CD4+ T cells in T1D patients secrete IL-17

upon activation by b-cell autoantigens (101). A proinflammatory

cytokine environment that encourages Th17 development could be

accountable for the elevated levels of IL-17 in T1D. In fact,

monocytes from individuals with T1D dynamically express

considerably more IL-6 and IL-1, encouraging memory CD4+ T

cells to produce IL-17 (102).

Besides Teff, the population of CD4+ Foxp3+ regulatory T cells

(Tregs) is also impaired, particularly in inflamed islets (103, 104).

Foxp3+ Treg cells immunosuppressive cells, which maintain

immune balance and modulate self-antigen response (105). The

disruption of Foxp3+ Treg homeostasis is believed to enable the

favorable differentiation and proliferation of pathogenic b cell-
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specific Teff (106–108). Though a few studies have concluded that

the population of Tregs in the blood of T1D subjects is

predominantly unbothered, the analysis of the suppressor

function of Tregs isolated from T1D patients shows abridged

Treg activity (109–112). Meanwhile, research involving NOD

mice has highlighted the significance of Treg cells in prohibiting

T1D. Notably, CD28-deficient NOD mice lack Tregs and

experience an accelerated disease progression [17]. Another study

showed that expression of CD226 in Tregs may lead to decreased

Treg immunosuppressive function. In an attempt to elucidate the

effect of CD226 in Treg, they found that specific deletion or

inhibition of CD226 in Treg enhances the immunosuppressive

function of Tregs, which decreases the susceptibility of T1D

progression in NOD mice (106). Furthermore, approaches like

administering IL-2 to augment Tregs numbers are considered a

potential therapeutic avenue in diabetes (113). Although the

function of T cells in autoimmune diseases, especially T1D, has

been studied widely, further understanding of the role of T cells in

T1D pathogenesis is necessary to develop innovative drugs that

could enhance the function and population of b-cells by targeting

these auto-reactive T cells and elevate the population of Tregs.
Role of PPARs in b-cells

PPARs, or peroxisome proliferator-activated receptors, were

discovered in the 1990s for their role in peroxisome proliferation

(114). These receptors belong to the ligand-responsive nuclear

hormone receptor family. They include three isoforms in

mammals: PPARa, PPARb/d, and PPARg. They primarily

regulate lipid metabolism genes, encompassing lipogenesis, lipid

storage and transport, and fatty acid oxidation (FAO) (114). These

ligand-activated transcription factors are essential in regulating

inflammation, energy homeostasis, and addressing issues like

obesity and metabolic syndrome (115–117). They form

heterodimers with the nuclear receptor RXR, bind to specific

DNA-response elements in target gene promoters, recruit

coactivators and facilitate chromatin remodeling to initiate DNA

transcription (118, 119). Several peptides targeting PPARa (e.g.,

clofibrate, bezafibrate, fenofibrate) and PPARg (e.g., ciglitazone,

pioglitazone, rosiglitazone, troglitazone) have been employed to

mdeicate metabolic conditions like T2D and hyperlipidemia

(120–122).

PPAR isoforms exhibit significant functional and structural

similarity, yet their expression patterns vary considerably. For

instance, PPARa is characterized by its high expression in

metabolically active tissues, e.g., adipose tissue, kidney, and liver.

It is enhanced during periods of fasting and plays a pivotal role in

regulating various metabolic processes. These processes include

facilitating fatty acid oxidation (FAO), overseeing amino acid

catabolism, modulating lipoprotein metabolism, regulating

gluconeogenesis, controlling ketogenesis, and managing

inflammatory responses (123, 124). PPARb/d, on the other hand,

is ubiquitously expressed throughout the body. Its primary role

revolves around promoting fatty acid oxidation (FAO). Meanwhile,

the activation of PPARb/d employs an anti-inflammatory role,
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leading to abridged production of proinflammatory cytokines,

contributing important roles in immune regulation (125, 126).

On the contrary, PPARg demonstrates a broader tissue

distribution, with expression observed in numerous organs,

including kidney, adipose tissue, intestine, and liver (127, 128). Its

functions encompass the modulation of fat cell differentiation, the

management of lipid storage, and the facilitation of monocyte

differentiation into macrophages. In essence, PPARg serves an

essential role in controlling processes related to lipid metabolism

and immune response modulation (129, 130).

In the pancreas, all three PPAR isoforms—PPARa, PPARg, and
PPARd—are expressed in pancreatic b-cells. It has been believed that

PPARa regulates fatty acid oxidation, whereas its expression is

influenced by glucose levels (131, 132). Notably, high glucose levels

repress PPARa expression in INS-1E cells (islets b-cell line) and primary

rat islets (133, 134). Moreover, the glucose-dependent increase in insulin

level appears to depend on PPARa, as glucose fails to enhance insulin

levels in islets PPARa knockoutmice (135). PPARa directly or indirectly

impacts the key genes tangled in regulating b-cell function and

development. For instance, In INS-1 cells and isolated rat islets, PPAR

has been found to increase Pdx-1 levels [a transcription factor important

for pancreatic and beta-cell development (136–138)]. Additionally, it was

observed that PPARa knockout reduced the level of insulin, MafA [a

regulator of insulin secretion (139)], Nkx6.1 [a transcription factor

essential for maintaining mature b-cell function (140)], GLUT2, and

glucokinase (141).

Interestingly, it was explored that PPARg directs fatty acids

toward esterification (132). Additionally, research investigating the

effects of PPAR stimulation or upregulation on insulin secretion and

proinsulin production has produced inconsistent findings (142–146).

On the one hand, some research has shown that overexpressing

PPARg in INS-1E cells impairs glucose-stimulated insulin secretion

(GSIS) (142). On the other hand, several investigations have shown

that activation or upregulation of PPAR promotes GSIS in isolated

islets and b-cell (147–149). Recently, it has been found that

polymorphisms in the IGF1 and PPARg genes are linked to

decreased estimated glomerular filtration rates in children and

adolescents with T1D, elevating their susceptibility to early renal

complications and impacting the immune response (150–152).

Like PPARa, PPARg exerts a role in regulating several critical

proteins intricately regulating the function and development of b-
cells. Activation of PPARg through compounds like troglitazone

(a PPARg agonist) leads to upregulating genes such as GLUT2,

glucokinase, Nkx6.1, and Pdx-1 (153, 154). Furthermore, in PPARg
pancreatic knockout mice, decreased levels of Pdx-1 protein were

observed in islets (155). These findings are supported by the presence

of peroxisome proliferator response elements (PPRE) sequences in

the promoter regions of genes such as Pdx-1 (153, 155), GLUT2

(156), and glucokinase (157).

Although PPARd is the most prevalent isoform in the pancreas,

its impacts on fatty acid oxidation (FAO) have received little

attention until recently. PPARd activation boosts FAO more than

PPARa activation does. Fatty acids in the pancreas can cause

lipotoxicity and GSIS, which are both long-term impacts on

insulin production (149, 158). PPARb/d seems to play a crucial

part in pancreatic development, as evidenced by studies involving
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pancreatic PPARb/d knockout mice. These mice showed a

substantial increase in the mass of b-cells and pancreatic islets

(159). This elevation in b-cell mass was connected to higher plasma

insulin concentrations, which led to hypoglycemia and better

glucose tolerance, and it raises concerns about the detrimental

effects of insulin production in the adult pancreas (159) and

suggests the negative role of insulin secretion in the mature

pancreas. However, these observations contrast with another

study, signifying a different role for PPARb/d. According to this

study, PPARb/d promotes the differentiation of beta cells from stem

cells by upregulating Pdx-1 (160). This inconsistency in findings

underscores the complexity of PPARb/d’s role in pancreatic

function and development, indicating that its effects may be

context-dependent and influenced by various factors. Meanwhile,

it is evident that polymorphisms in the promoter region of PPARb/
d and PPARg subsidize the genetic susceptibility to T1D and impact

the disease score of autoimmunity in islets (151). The impact of

PPAR isoforms on the islets suggests that PPAR may exert crucial

roles in regulating the function and biology of b-cells (161–163),
and further investigations are necessary to explore the part of

PPARs in b-cells and T1D.
Role of PPARs in T cells differentiation

The pathogenicity of T1D includes the intricate interactions of b-
cells with various immune cells, particularly T cells (164, 165). The

effect of PPARs in T cell regulation and differentiation is multifaceted

and characterized by isoform-specific variations. Tregs derived from

PPARa knockout mice manifest impaired suppression of CD8+ and

CD4+ T cells, diminished migratory capabilities, and reduced

expression of several chemokine receptors (166). This phenomenon

aligns with the prolonged inflammatory response observed in PPARa
knockout mice upon exposure to agents like arachidonic acid (167).

In mouse models, the Fenofibrate, a PPARa agonist, has been shown

to elevate Foxp3+ regulatory T cells (168, 169). Similarly, our recent

study emphasizes that knockout of PPARa in mice diminishes the

population of Th17 cells, whereas treating T cells with fenofibrate

elevates the population of Th17 (170). Mechanistically, we found that

PPARa-depletion augments the activity of IKKa, which positively

contributes to the transcription of IL17A by interacting with RORg.
Meanwhile, IKKa also interacts with Foxp3 for its proteasomal

degradation, thus leading to an elevated population of Th17 cells.

Notably, PPARa ablation augmented the IL-17+Foxp3+ double-

positive cells in the brain of the EAE-induced animal model (170).

These results indicate that activation of PPAR may inhibit the

formation of Th17 cells and enhance the percentage of Foxp3+

Tregs, which may slow the evolution of autoimmune disorders,

including T1D.

PPARa also regulates effector T cells, with heightened PPARa
expression associated with augmented secretion of Th2-related

cytokines. Conversely, PPARa knockout mice exhibit a greater

propensity for differentiation toward a Th1 phenotype (171). The

PPARa agonist WY14643 has also been observed to curtail

proliferation in human T cells and enhance depletion of T cells

by arresting them in the G2/S phase (172). Patients with
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hyperlipidemia who undergo fenofibrate treatment experience

reduced levels of IFNg and TNFa (173). These findings are

corroborated by PPARa knockout mice observations, where

elevated TNFa and IFNg levels are evident (171).
The role of PPARg in regulating the ratio of regulatory to effector T

cells is now becoming clear. In PPARg knockout mice, decreased

PPARg activity is correlated with a higher number of effector T cells,

which is distinguished by increased antigen-specific proliferation and

excessive IFNg production in response to IL-12 (174). Furthermore, it

has been demonstrated that PPAR inhibits RORt expression,

preventing the development of Th17 cells in both humans and mice

(175). In mouse models of colitis, PPARg agonists, such as troglitazone
and rosiglitazone, have been observed to alter the immune response

from Th1 to Th2, resulting in reduced Th1-related transcription

factors, cytokines, chemokines, and heightened expression of Th2-

associated factors (176, 177). Conversely, PPARg deficiency is

associated with a diminished CD4+ Foxp3+ regulatory T cell

population (178). This is underscored by identifying a specific Treg

subset characterized by high PPARg expression within visceral adipose

tissue (179). PPARg serves a central role in orchestrating these Tregs, as
evidenced by the Treg formation prevention upon Treg-specific PPARg
deletion. Additionally, PPARg activation encourages the growth of

Foxp3+ regulatory T cells, whereas PPARg depletion in Tregs increases
the responses of effector T cells (174, 178, 180). Thus, the impact of

PPARg on Tregs may be context-dependent. Notably, PPAR-g is

essential in elevating the differentiation of Tregs and regulating

insulin resistance. This occurs through a synergistic mechanism that

reduces the expression of pro-inflammatory cytokines such as IL-6,

TNFa, and IL-1b, while simultaneously enhances the anti-

inflammatory cytokines like TGF-b, and IL-10 (181). In addition to

the role of PPARs in the differentiation of Th1, Th2, Treg, and Th17

subsets, PPARg likely to influence the generation of follicular helper T

cells (Tfh). It was investigated that mice with CD4 cell-specific PPARg
knockout exhibit increased Tfh cell activation and a greater propensity

for germinal center formation (182).

Activation of PPARb/d inhibits Th17 and Th1 responses while

bolstering Th2 responses (183–185). In contrast, deletion of

PPARb/d produces an opposing outcome. This discrepancy can

be attributed to PPARb/d’s role in promoting FAO, thereby

preventing the T cell proliferative burst that occurs after antigen

identification as metabolism shifts from oxidative pathways to

glycolysis (186–188). Although the information regarding the role

of PPARs in autoimmune diseases is limited, the available data

suggests that activation of PPARs, especially PPARa, may restrict

the development of autoimmune diseases.
Therapeutic potential to target PPAR
in T1D

Considering the importance of herbal medicines (189, 190),

numerous researches have been conducted to find herbs and natural

compounds for treating T1D (191–193). In addition, a few studies also

investigated various natural compounds that exhibited potency to

target PPARs and have the potency to cure T1D. For instance, it has

been studied that Astilbin, a flavonoid compound initially discovered
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for its ability to suppress effector CD4+ T cells by inhibiting their

function (194), activates the ROS-dependent PPARg pathway which

leads to the suppression of effector CD4+ T cell activities through direct

binding to Cytochrome P450 1B1. Consequently, It was suggested that

Astilbin exerts immune-suppressive effects by downregulating the

secretion of inflammatory cytokines by CD4+ T cells in the NOD

mice (195). Similarly, another flavonoid, Epigallocatechin gallate, also

decreases the progression of T1D by activating PPAR-g (196–198).

Curcumin, a PPAR agonist, has shown the ability to anticipate the

damage of islets by exerting a protective impact on the b-cells (199,
200). A recent study exhibits that Curcumin exerts protective effects on

the autoimmune T1D (201). They found that Curcumin dampens T

lymphocyte responses by inhibiting proliferation and production of

IFNg, affecting the T-bet transcription factor. It also reduces NF-kB
activation in NOD lymphocytes stimulated via TCR (201, 202).

In the pancreas, activation of PPAR enhances fatty acid

oxidation, which can acutely potentiate GSIS. The PPARg-agonist
pioglitazone was observed to boost GSIS in db/db mice while the

PPARa-agonist fenofibrate inhibited GSIS in newborn rats with

active obesity (203, 204). This discrepancy may be attributed to the

minimal level of PPAR-g in INS-1E cells. In those with recently

discovered T1D, pancreatic islets exhibit reduced sulfatide levels (23%

of those in control participants) and decreased sphingolipid

metabolism-related enzyme levels. Fenofibrate, known to activate

sulfatide biosynthesis and act as an anti-inflammatory drug (205),

ultimately impeded T1D in NODmice (151). In a 19-year-old female

with newly diagnosed T1D, fenofibrate medication started seven days

after diagnosis disregarded the need for insulin therapy (206).

Numerous PPAR antagonists have been synthesized, although not

initially developed for diabetes treatment (207). For example, a

synthetic potent PPAR-a antagonist, GW6471, is primarily

employed as a pharmacological tool for identifying effects that are

reliant or independent of PPARs. GW9662, which has been elucidated

as a PPAR-g antagonist, facilitates the recruitment of NCOR1 nuclear

receptor corepressor 1 (NCoR). Additionally, GSK3787 and GSK0660

serve as PPAR-d antagonists for pharmacological purposes. Notably,

GSK0660, when employed solely in human retinal microvascular

endothelial cells, exhibits inverse agonist activity, inhibiting the

TNFa-dependent level of numerous chemokines (208, 209).

Similarly in the brain, agonists for PPAR-g (rosiglitazone), PPAR-d
(GW501516), and PPAR-a (fenofibrate), as well as their respective

antagonists (GW9662, GSK0660, and GW6471), collectively reduce the

production of the pro-inflammatory cytokine TNFa in rat astrocytes

under the influence of lipopolysaccharide (LPS) (210).
Conclusion

In conclusion, the cumulative prevalence of Type 1 diabetes (T1D),

particularly in Asian countries, presents a significant challenge to

healthcare systems due to its associated complications, treatment

costs, resource limitations, and low awareness levels. To reduce this

burden and mortality due to diabetes, countries must comprehend the

extent of the disease and develop effective strategies. Recent research

has unveiled the intricate interplay between CD4+ T cell subsets,

particularly Th17 cells and Tregs, in autoimmune diseases like T1D.
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Th17 cells promote inflammation and immune responses, whereas

Tregs exert immunosuppressive functions, striking a balance critical for

immune homeostasis. The evolving understanding of the pathogenesis

and etiology of T1D emphasizes the roles of both adaptive and innate

immunity in driving the autoimmune response against pancreatic b-
cells. Immunotherapy shows promise in regaining self-tolerance and

preventing harmful autoimmune reactions, but further investigations

are needed to refine these treatments.

In the realm of molecular mechanisms, PPARs have gained

attention not only as regulators of lipid metabolism but also as

potent modulators of inflammation and b-cell biology. While their

potential in modulating T cell responses and impacting T1D remains

largely unexplored, studies on PPAR agonists in NOD mice show

promise. Thus, future investigations should focus on unraveling the

precise roles of PPARs in T1D pathology, offering a novel treatment

approach that targets both the immune system and pancreatic

function. Conversely, as the utilization of medicinal plants and their

derivatives has shown promise in reducing the overall prevalence of

T1D by augmenting the population of Tregs and activating the PPARs,

further research should prioritize the extraction of novel herbal plants

or the purification of their derivatives for consideration in diabetes

treatment. This immunomodulatory effect underscores the potential of

herbal remedies in T1D management. Moreover, these promising

herbal interventions warrant more extensive exploration through

clinical trials, potentially offering novel and effective therapeutic

options for individuals living with T1D.
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