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Biology of Pellino1: a potential
therapeutic target for
inflammation in diseases
and cancers
Lili Yan, Yueran Cui and Juan Feng*

Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
Pellino1 (Peli1) is a highly conserved E3 Ub ligase that exerts its biological

functions by mediating target protein ubiquitination. Extensive evidence has

demonstrated the crucial role of Peli1 in regulating inflammation by

modulating various receptor signaling pathways, including interleukin-1

receptors, Toll-like receptors, nuclear factor−kB, mitogen-activated protein

kinase, and phosphoinositide 3-kinase/AKT pathways. Peli1 has been

implicated in the development of several diseases by influencing

inflammation, apoptosis, necrosis, pyroptosis, autophagy, DNA damage

repair, and glycolysis. Peli1 is a risk factor for most cancers, including

breast cancer, lung cancer, and lymphoma. Conversely, Peli1 protects

against herpes simplex virus infection, systemic lupus erythematosus,

esophageal cancer, and toxic epidermolysis bullosa. Therefore, Peli1 is a

potential therapeutic target that warrants further investigation. This

comprehensive review summarizes the target proteins of Peli1, delineates

their involvement in major signaling pathways and biological processes,

explores their role in diseases, and discusses the potential clinical

applications of Peli1-targeted therapy, highlighting the therapeutic

prospects of Peli1 in various diseases.
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1 Introduction

Ubiquitin (Ub) is an evolutionarily conserved polypeptide that plays a crucial role

in post-translational modifications by binding to protein substrates, thus regulating

signaling in various receptor systems (1, 2). Ubiquitination involves several reactions

mediated by three classes of ubiquitin-related enzymes. First, the ubiquitin-activating

enzyme (E1) activates the Ub molecules. Subsequently, the Ub-conjugating enzyme

(E2) receives an activated Ub molecule from E1. Lastly, the Ub-ligase (E3) transfers the

Ub molecule bound to E2 to the target protein (1).
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Pellino1 (Peli1) has been extensively studied among the E3 Ub

ligase family members. Initially identified in Drosophila, Peli1 has a

molecular mass of 47 kDa and interacts with Pelle, a homolog of

interleukin-1 receptor-associated kinase 1 (IRAK1) (3). Three

members of the mammalian Peli family (Peli1, Peli2, and Peli3)

have been identified, along with two selectively spliced forms of

Peli3, namely Pellino3a and Pellino3b (4, 5). The N-terminal region

of Peli contains a core forkhead-associated (FHA) structural

domain, characterized by two inserted fragments forming a

“wing” or appendage tightly bound to the FHA domain (6).

Similar to the classical C3HC4 loop structure, the C-terminus of

the Peli family features a RING-like domain encompassing two

stable Cys-Gly-His motifs and two conserved CysPro-X-Cys motifs,

enabling ubiquitination through K11, K48, and K63 linkages (7, 8).

Peli1 phosphorylation is necessary for its E3 Ub- ligase activity.

Substrate recognition is facilitated by the FHA structural domain,

with the amino acid located at the +3 position relative to the

phosphorylated threonine, a key determinant of PT peptide

recognition by many FHA domains. Different Pellinos exhibit

diverse phosphothreonine peptide binding properties (9). The

strong binding of Peli1 to IRAK1 and receptor-interacting protein

kinase 1 (RIP1) is associated with its preference for pTxxY- or

pTxxS-binding motifs, whereas Pellinos no show a preference for

binding to the pT141 + 3D motif (9).

Peli1 modulates immune response, cell death, autophagy, DNA

damage repair, and glycolysis through its E3 Ub ligase activity in a

dependent or independent manner. Peli1 exhibits remarkable

versatility in immune regulation by participating in interleukin-1

receptors (IL-1R), Toll-like receptors (TLRs), nuclear factor−kB
(NF-kB), mitogen-activated protein kinase (MAPK), and

phosphoinositide 3-kinase (PI3K)/AKT pathways. These

multifaceted pathways involving Peli1 regulate numerous diseases,

particularly tumors, inflammatory disorders, and autoimmune

conditions. E3 ligase-related targeted regulation is common; for

instance, the E3 ligase SKP1-CUL1-F-box-protein (SCF) or Cullin-

RING E3 ligase (CRL) has been investigated with several targeted

inhibitors and agonists. For example, inhibitors such as compound

A blocks substrate SKP2 binding to the SCF complex, and agonists,

such as thalidomide, primarily target cereblon (CRBN), a substrate-

recognizing subunit of the CUL4-DDB1 E3 Ub ligase complex (10,

11). The substrates regulated by Peli1 as an E3 ligase are also

relatively specific (Table 1); therefore, selectively targeting Peli1 is

essential. A few strategies to target and manipulate Peli1 for

therapeutic benefits, underscoring its potential as a therapeutic

target, such as the inhibitors BBT-401 and S62 (22, 48).

This review comprehensively examines the signaling pathways

involving Peli1, elucidates the target proteins under its regulation,

explores their contributions to tumors and inflammation, and

discusses the potential clinical applications of Peli1 as a

therapeutic target. This comprehensive understanding of the

multifunctionality of Peli1 in a pathological contexts provides

valuable insights for future research and clinical interventions.
Frontiers in Immunology 02
2 Molecular function

Peli1 exhibits robust E3 Ub ligase activity, predominantly

mediating the Lys11, Lys48, and Lys63 linkages (K11, K48, and

K63) of Ub (Table 1) (8). In vivo, Peli1 primarily facilitates the

ubiquitination of target proteins via K48 and K63 linkages and

promotes the K48-linked ubiquitination of target proteins, leading

to their degradation via the Ub-proteasome system. Peli1 mediates

K48-linked Ub (K48-Ub) in the HPD, resulting in its degradation

and tyrosinemia (17). Peli1 mediates the K63-linked Ub (K63-Ub)

of target proteins, thereby enhancing their stability or promoting

subcellular localization, and mediates the K63-Ub in murine double

minute X (MDMX), facilitating its nuclear export (49). Peli1 can

regulate both K48-Ub and K63-Ub concurrently but differentially,

where Peli1 mediates K63-Ub more substantially than the K48-Ub

of BubR1 (14). Peli1-mediated K63-Ub of target proteins can signal

Met1-linked Ub (M1-Ub) through K63/M1-Ub hybrids. Peli1

ubiquitinates RIP1 via K63-Ub in the TLR signaling pathway

(27). Peli1 interacts with molecules and function in an E3 ligase-

independent manner facilitated by its FHA structure (Table 1).
3 Peli1 modulation and modifications

3.1 Peli1 regulation in transcription

Several proteins act as transcription factors that regulate Peli1

transcription, and various molecules are involved by modulating

the promoters or transcription factors (Table 2). One such

transcription factor is interferon regulatory factor 3 (IRF3), which

regulates Peli1 through the Toll-interleukin-1 receptor -domain-

containing adaptor-inducing IFN-beta (TRIF)-dependent pathway

of TLR3/4, influencing Peli1 expression (36). The activation of

TANK-binding kinase 1 (TBK1) and IkappaB kinase epsilon (Ikkϵ)
phosphorylates and activates IRF3, leading to transcriptional Peli1

and type I interferon-beta (IFN-b) upregulation. Subsequently,

IFN-b further enhances Peli1 transcription via the Janus kinase/

signal transducer and activator of the transcription (JAK/STAT)

signaling pathway (36). The TRIF-IRF3 signaling pathway,

activated by Bid-dependent mechanisms, contributes to Peli1

transcription upon TLR3 and TLR4 activation (44, 66). The

glucocorticoid receptor (GR) interacts with b-arrestin-1,
maintaining GR stability and regulating the GR-sensitive region

of the Peli1 promoter, thereby influencing Peli1 transcription (50).

Several microRNAs (miRNAs) have been identified as post-

transcriptional regulators of Peli1, targeting its 3’-untranslated

region (3’ UTR) and repressing its expression (Table 2). MiRNAs

are small, non-coding RNA molecules that regulate gene expression

at the post-transcriptional level by binding to the 3’ UTR of target

genes (67). MiRNAs are closely associated with various biological

functions and pathological processes, including differentiation,

metabolism, aging, autophagy, cell proliferation, and apoptosis (68).
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3.2 Post- translational modifications
of Peli1

Peli1 activity is modulated by various post-translational

modifications, including phosphorylation, ubiquitination, and

SUMOylation (Table 2). Peli1 can be interconverted between its

inactive and active forms through a reversible phosphorylation

mechanism, and various kinases can phosphorylate Peli1 and

enhances its E3 ligase activity (63). IRAK1/IRAK4 and TBK1/Ikkϵ
Frontiers in Immunology 03
are the primary kinases responsible for Peli1 phosphorylation (7,

36). IRAK1 interacts with the FHA structural domain and

phosphorylates the phosphorylation sites (Ser-76, Ser-78, Ser-80,

Ser-82, and Thr-86) clustered within the “wing” of Peli1 (63).

TBK1/IkappaB kinase (IKK) regulates the phosphorylation at Ser-

76, Thr-288, and Thr-288 of Peli1 (36). The epidermal growth

factor receptor (EGFR) leads to Peli1 phosphorylation at Tyr-154

(22). In the DNA damage response context, Ser-121 and Thr-127

phosphorylation by ataxia-telangiectasia mutated (ATM) kinase
TABLE 1 Proteins targeted by Peli1-mediated ubiquitination or ubiquitination-independent.

Interaction Target Protein Modifying site Association Ref

K48 RIP3 K363 Toxic epidermal necrolysis (TEN) (12)

K48 c-Rel T cell activation (13)

K48,K63 BubR1 Tumor (14)

K48 NIK SLE, Esophageal squamous cancer (15, 16)

K48 HPD Tyrosinemia (17)

K48 LAMP2 Parkinson’s disease (18)

K48 C/EBPb Alzheimer’s disease (AD) (19)

K48 PKCq Tumor (20)

K48 LSD1 Breast cancer (21)

K63 EGFR Breast cancer (22)

K63 SNAIL/SLUG Breast cancer, Lung cancer (23, 24)

K63 cIAP2 CNS inflammation, Endotoxin tolerance, Lung cancer (25, 26)

K63 RIP1 K115 TLRs signal, Necroptosis (27, 28)

K63 TRAF6 Morphine Tolerance (29)

K63 BCL6 Lymphoma (30)

K63 IRF5 Glucose Intolerance, myocardial Ischemia/reperfusion injury (31, 32)

K63 MDMX Tumor, DNA damage response (33, 34)

K63 NBS1 K686, K690 DNA damage response (35)

K63 TBK1 TLRs signal (36)

K63 IRAK1 Tumor (37)

K63 BECN1 HIV infection (38)

K63 TSC1 K30,K632 Tumor (39)

K63 ASC K55 Inflammasome activation (40)

K63 P62 K7 Myocardial ischemia/reperfusion injury (41)

K63 P21 Chronic Obstructive Pulmonary Disease (42)

E3 Ub ligase activity independent DEAF1 Sendai Virus infection. (43)

E3 Ub ligase activity independent Smad6,Smad7 IL-1R/TLRs (44, 45)

E3 Ub ligase activity independent gH2AX DNA damage response (33)

E3 Ub ligase activity independent P53 DNA damage response (33)

E3 Ub ligase activity independent IRAK4 DNA damage response (46)

E3 Ub ligase activity independent HSP90 Cardiac microvascular endothelium injury (47)
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activates Peli1 ubiquitination activity (35). Death-associated protein

kinase 1 (DAPK1) phosphorylates Peli1 at Tyr-154, destabilizing it

and releasing the TRIF-RIP1 signalosome (64).

IRAK1 promotes auto- and mutual-polyubiquitination of Peli1

in a kinase-dependent manner and induces kinase-dependent Peli1

degradation. However, the precise mechanism governing the

phosphorylation-mediated auto-Ub proteasome-dependent Peli1

degradation remains unclear (7).

Peli1 can undergo SUMOylation, a process in which the small

Ub-related modifier (SUMO)- conjugating enzyme UBC9 binds

and modifies Peli1 (65). Five lysine residues (Lys-202, Lys-266, Lys-

295, Lys-297, and Lys-303) in Peli1 serve as SUMO-1 receptor sites,

partially overlapping with lysine residues involved in ubiquitination

(Lys-169, Lys-202, and Lys-266), suggesting competition between

SUMOylation and ubiquitination (65).
4 Biological processes involving Peli1

4.1 Signaling pathways

Peli1 plays a role in multiple signaling pathways upon

stimulation by various factors, including IL-1R, TLRs, NF-kB,
Frontiers in Immunology 04
MAPK, and PI3K/AKT pathways, and participates in their

crosstalk (Figure 1).

4.1.1 IL-1R pathway
Peli1 plays a pro-inflammatory role in a variety of diseases

through participation in the IL-1 pathway, where Peli1 was initially

identified as interacting with IRAK homologous proteins (3). Peli1

participates in IL-1R signaling and to has limited modulation of IL-

1 signaling (Figure 1). Upon IL-1 stimulation, the adaptor protein

myeloid differentiation primary response protein 88 (MyD88) is

recruited by the IL-1 receptor complex. Subsequently, the receptor

complex recruits serine-threonine kinases IRAK4 and IRAK1 (69,

70). IRAK4 undergoes dimerization facilitated by MyD88, leading

to IRAK4 trans-autophosphorylation (71). IRAK mediates TNF

receptor-associated factor 6 (TRAF6) hyperphosphorylation,

promoting its recruitment to the receptor complex (72). Peli1

interacts with IRAK4 and IRAK1 (72) and directly binds to

TRAF6 and transforming growth factor-b (TGF-b)-activated
kinase 1 (TAK1) (73). Ultimately, this binding results in MyD88-

IRAK4-IRAK1-Peli1-TRAF6 signaling complex formation (45, 72,

74). Translocation of this complex from the membrane-bound

receptor complex to the cytoplasm, necessary for MyD88-

dependent signal transduction to TAK1 (75), involves Peli1-
TABLE 2 Molecules Regulating Peli1.

Molecule Type Modifying Type on Peli1 Association Ref

IRF3 TF Promote transcription TLRs signal pathway (36)

GR TF Promote transcription Glucocorticoids and immunity (50)

miR-21 MiRNA Repress post-transcriptional translation Idiopathic Pulmonary Fibrosis, Pathogenic TH17 Cells,
Liver regeneration

(51–
53)

miR-124 MiRNA Repress post-transcriptional translation Acute Lung Injury (54)

miR-135b MiRNA Repress post-transcriptional translation Mycobacterium tuberculosis infection (55)

miR-142a-3p MiRNA Repress post-transcriptional translation Methamphetamine-induced inflammation (56)

miR-153-3p MiRNA Repress post-transcriptional translation Systemic lupus erythematosus (57)

miR-155 MiRNA Repress post-transcriptional translation Generation and function of Tfh Cells, Methamphetamine-induced
inflammation, Japanese Encephalitis Virus

(56,
58, 59)

miR-301a-3p MiRNA Repress post-transcriptional translation Systemic lupus erythematosus (60)

miR-590-5p MiRNA Repress post-transcriptional translation Intracerebral hemorrhage, Alzheimer’s disease (61,
62)

IRAK1 Kinases Phosphorylation on Ser-76, Ser-78, Thr-80, Ser-
82, Thr-86, Thr-288 and Ser-293

IL-1R/TLRs signal pathway (7, 63)

IRAK4 Kinases Phosphorylation on Ser-76, Ser-78, Thr-80, Ser-
82, Thr-86, Thr-288 and Ser-293

IL-1R/TLRs signal pathway (7, 63)

TBK1/Ikkϵ Kinases Phosphorylation on Ser-76, Thr-288, and Ser-
293 sites

IL-1R/TLRs signal pathway (7, 36)

EGFR Kinases Phosphorylation on Tyr-154 Breast cancer (22)

ATM Kinases Phosphorylation on Ser-121 and Thr-127 DNA damage response (35)

DAPK1 Kinases Phosphorylation on Ser39 Acute Kidney Injury (64)

UBC9 SUMO
conjugating
enzyme

Sumoylation on Lys-202, Lys-266, Lys-295, Lys-
297, and Lys-303

Sumoylation (65)
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mediated TRAF3 degradation (44). Peli1 Phosphorylation by

IRAK1 upon activation enhances its stability through K63-linked

ubiquitination of the cellular inhibitor of apoptosis protein 2

(cIAP2). This event follows the cIAP2-mediated K48-linked Ub

proteasome-dependent degradation of TRAF3, relieving

cytoplasmic translocation inhibition of the MyD88-associated

multiprotein complex by TRAF3 (44). Complex II (IRAK1-IRAK-

TRAF6-Peli1-TAK1-TAB1-TAB2) forms the intermediate complex

that transitions into complex III (TRAF6-TAK1-TAB1-TAB2) (72).

The IKK complex, comprising IKKa, IKKb, and the nuclear factor-

kB essential regulator (NEMO), is a key component (76). TRAF6

mediates the ubiquitination of the K63-linked TAB2 subunit after

M1-Ub chain formation from the NEMO subunit of the IKK

complex catalyzed by the linear Ub chain assembly complex. The

formation of K63/M1-Ub hybrids allows for the co-recruitment of

both kinase complexes to the same Ub chain. TAK1 phosphorylates

IKKb at Ser-177, then autophosphorylated at Ser-181 of IKKb,
culminating in IKKb activation (76). IKKb has a dual role in the
Frontiers in Immunology 05
TLRs pathway: first, it recruits the E3 ligase SCF through IkBa
phosphorylation, leading to the K48-linked IkBa ubiquitination

and degradation through IkBa phosphorylation. This results in the

derepression of P65 and P50, allowing their entry into the nucleus

and activating of the NF-kB signaling pathway (76). Second, IKKb
phosphorylates the transcription factor interferon regulatory factor

5 (IRF5) at Ser-462, leading to its dimerization and nuclear

translocation, thereby initiating the transcription of genes

encoding major inflammatory cytokines such as IL-12 and IFN-b
(76). TAK1 also induces MAPK phosphorylation (44). TAK1-

mediated phosphorylation of Jun N-terminal kinase (JNK)

activates IRF3 (77), suggesting that JNK activation facilitates

crosstalk between MyD88-independent and dependent pathways

associated with IRF3 activation (44).

TGF-b-BMP induces Smad6/Smad7, inhibiting the MyD88-

IRAK4-IRAK1-Peli1-TRAF6 signaling complex by binding to

different Peli1 regions. Consequently, the IL-1R-TLR signaling

pathway is inhibited (45, 74). Moreover, the formation of the
FIGURE 1

Pellino1 in interleukin-1 receptors/Toll-like receptors, nuclear factor−kB, mitogen-activated protein kinase, and AKT pathways. Pellino1 (Peli1), activated
by interleukin-1 receptor-associated kinase (IRAK) phosphorylation, promotes the degradation of tumor necrosis factor receptor-associated factor 3
(TRAF3) by mediating cellular inhibitor of apoptosis protein 2 (cIAP2) ubiquitination in the myeloid differentiation primary response protein 88 (MyD88)-
dependent interleukin-1 receptors (IL-1R)/Toll-like receptors (TLRs) signaling pathway. This process facilitates the cytoplasmic translocation of IRAK1-
IRAK-TRAF6-PELI1 (an intermediate complex). The transforming growth factor-b (TGF-b)-activated kinase 1 (TAK1) complex forms complex II (IRAK1-
IRAK-TRAF6-PELI1-TAK1-TAB1-TAB2) in conjunction with an intermediate complex that subsequently assembles into TRAF6-TAK1-TAB1-TAB2 (complex
III). TRAF6 mediates TAK1 complex ubiquitination and recruits the IkappaB kinase (IKK) complex via the K63/M1-UB Ub chain, ultimately activating
nuclear factor−kB (NF-kB) and mitogen-activated protein kinase (MAPK) signaling, and stimulating interferon regulatory factor 5 (IRF5) to induce
interferon beta (IFN-b) production. In the Toll-interleukin-1 receptor-domain-containing adaptor-inducing IFN-beta (TRIF)-dependent Toll-like receptor
(TLR)3/4 pathway, phosphorylated Peli1, in conjunction with the TBK1-Ikkϵ complex, mediates receptor-interacting protein kinase 1 (RIP1) ubiquitination,
enabling RIP1 to recruit the IKK and TAK1 complexes through the K63/M1-UB Ub chain. This cascade activates NF-kB and MAPK signaling. The TBK1-
Ikkϵ complex and Jun N-terminal kinase (JNK), activated by the TAK1 complex, can phosphorylate and activate IRF3, promoting IFN-b and Peli1
transcription. Peli1 enhances the positive feedback loop of IFN-b production. Peli1 promotes NF-kB canonical signaling by activating the IKK complex
through TRAF6 and RIP1. NF-kB induces elevated miR-21 expression, inhibiting Peli1 expression, potentially forming a negative feedback loop. Peli1
mediates the ubiquitin-proteasome-dependent degradation of NIK, thus inhibiting NF-kB non-canonical signaling. However, Peli1 can also promote
p100 to p52 processing and, ultimately, NF-kB non-canonical signaling by inhibiting TRAF3. Peli1 mediates ubiquitin-proteasome-dependent
degradation of c-Rel. Peli1 activates the TAK1 complex via TRAF6 and RIP1, activating MAPK. Peli1 also inhibits TRAF3 via CIAP2, promoting JNK
activation. Peli1 facilitates IRE1a phosphorylation by binding to HSP90, resulting in JNK activation. Peli1 inhibits phosphatase and tensin homolog (PTEN)
by upregulating miR-44-3P, relieving Raf and phosphatidylinositol 3,4,5-trisphosphate (PIP3) repression, and ultimately activating extracellular signal-
regulated kinase (ERK)1/2. In addition, Peli1 inhibits inducible co-stimulator (ICOS) through C-REL inhibition and activates phosphoinositide 3-kinase
(PI3K), promoting PIP3 and AKT activation. Created using BioRender.com.
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Smad6-A20 complex, involving Smad6 and the deubiquitinating

enzyme A20, enhances the association of A20 with TRAF3 and

TRAF6, thereby inhibiting IL-1 signaling (44).

However, Peli1 overexpression in human embryonic kidney

cells (293 cells) did not affect cJNK and ELK1 expression (73). Peli1

deletion does not impact IL-1b-stimulated IKK activation, and Peli1

knockdown in primary epithelial cells does not alter the response to

IL-1. Functional redundancy among Peli family proteins may

account for these findings (78).

4.1.2 TLRs pathway
The innate immune system encompasses multiple pattern

recognition receptors responsible for sensing the pathogen-

associated molecular patterns of invading pathogens, thus

initiating an efficient innate immune response. Peli1 has been

implicated in various TLR signaling pathways (Figure 1) (79).

Several l igands of MyD88-dependent TLRs, including

lipopolysaccharide (LPS) (for TLR4), CpG (for TLR9), R837 (for

TLR7), and Pam3CSK4 (for TLR1 and TLR2), activate pathways

consistent with IL-1R-dependent MyD88 (80). Peli1 also functions

in the TLR3/4-dependent TRIF signaling pathway. TLRs dimerize

in endosomes upon TLR3/4 stimulation by the corresponding

ligands (e.g., TLR3: poly IC, viral double-stranded RNA; TLR4:

LPS) (81) and recruits TRIF and TRAF3 (82, 83). H omologous to

the E6-associated protein carboxyl terminus domain containing 3

mediates the K63-linked ubiquitination of TRAF3 at K138 (84), and

TRAF3 ubiquitination or auto-ubiquitination (75) is necessary for

binding and activation of the TBK1/Ikkϵ complex (83).

Subsequently, the TBK1-Ikkϵ complex phosphorylates Peli1,

activating its E3 ligase activity (27, 36, 85). Peli1 mediates TBK1

K63-Ub, resultING in a bidirectional signaling pathway that

induces TBK1/Ikkϵ-mediated Peli1 phosphorylation. Activated

Peli1 ubiquitinates RIP1 at K115 via K63 linkages (27, 28).

Consequently, the TAK1 and IKK complexes are recruited to the

polyubiquitin chains through K63-Ub of TABs and M1-Ub of

NEMO, respectively (27). The proximity between TAK1 and

IKKs facilitates TAK1-mediated IKKs phosphorylation and

subsequent NF-kB activation (27). TAK1-mediated JNK

phosphorylation activates IRF3 (44), suggesting that crosstalk

between MyD88-independent and -dependent pathways

associated with IRF3 activation occurs through JNK activation

(77). Thus, Peli1 serves as a critical intermediary molecule in the

TRIF-dependent NF-kB activation and the inducing pro-

inflammatory genes (27). The TBK1-Ikkϵ complex regulates IFN-

b and Peli1 transcription by inducing IRF3 phosphorylation. IFN-b
can moderately increase Peli1 transcription through the JAK/

STAT1 pathway (36). Furthermore, wild-type Peli1 might

negatively regulate STAT1 expression, possibly preventing JAK-

STAT1/2 pathway overactivation (86). This negative feedback

regulation may be part of the complex regulatory mechanisms

involving Peli1. However, further investigations are required to

elucidate these mechanisms fully.

Inducing IFN-b is a substantial implications of the TRIF-

dependent signaling pathway of TLRs. However, the mechanisms

of IFN regulation by Peli1 are yielded complex and contradictory.
Frontiers in Immunology 06
Virus-stimulated secretion of IFN-b relies on a positive feedback

loop, reduced IRF7, IFN4, and IFN6 mRNA production, and

diminished IFN secretion in mice overexpressing Peli1 lacking

ligase activity. T he positive feedback loop components we are

also diminished, suggesting that Peli1 positively regulates IFN-b
expression through a positive feedback loop (86). The synthetic

product Smaducin-6 disrupts IKKe/TBK1/Peli1 and RIR1/Peli1

complexes by binding to Peli1, reducing IFN-b1 in immune cells

(87). Therefore, Peli1 is necessary for interferon production in the

viral double-stranded RNA reactions.

The interaction between Peli1 and IRF3, and their association

with the IFN-b promoter, facilitates inducing IFN-b expression

(36). This process is influenced by DEAF1, which binds to Peli1,

and Peli1 phosphorylation can potentially impede this binding (43).

DEAF1 is essential for the initial phase of TLR3-dependent IFN-b
production after viral stimulation. DEAF1 enters the nucleus alone

or forms a heterodimer with IRF3 or IRF7, binding to the IFN-b
promoter to stimulate its transcription. The interaction of DEAF1

with the IFN-b promoter requires the presence of IRF3 (43). In

contrast, Peli1 negatively regulate TLR-mediated IFN-I induction in

microglia by inhibiting signaling events associated with TBK1 and

Ikkϵ activation. Peli1 knockdown may enhance its antiviral capacity

(88). In vitro restimulation of CD4+ and CD8+ splenic T cells in

Peli1-/- mice with West Nile virus (WNV)-specific peptides

increased IFN-g production compared to wild-type mice.

However, WNV infection in dendritic cells of Peli1-/- mice led to

reduced IFN-b levels compared to wild-type mice (89). These

findings suggest that Peli1 in different cells may be dominated by

different regulatory pathways, exhibiting distinct IFN

regulatory directions.

4.1.3 NF-kB pathway
Peli1 influences the classical NF-kB pathway by engaging in the

IL-1R/TLR pathway (Figure 1). Peli1 triggers TAK1 activation

through TRAF6 within the MyD88-dependent pathway,

facilitated by K63-Ub of TRAF6 (90–92). Peli1 facilitates RIP1

recruitment to the IKK complex and TAK1 in the TRIF-dependent

pathway via the K63/M1-Ub hybrid chain (91, 92). The IKK

complex induces IkBa phosphorylation, leading to its

degradation via SCF-mediated ubiquitination, enabling the

nuclear translocation of canonical NF-kB molecules, p50/p65

(76). Peli1 participates in a negative feedback loop of NF-kB
during liver regeneration, wherein NF-kB upregulates miR-21

precursor transcripts that target Peli1, suppressing the NF-kB
pathway (51). Peli1 negatively regulates NF-kB in T cells by

mediating the Ub proteasome-dependent degradation of the late

phase NF-kB protein, c-Rel (13, 58, 93), preventing excessive NF-

kB activation (13, 52).

In the non-canonical NF-kB pathway, Peli1 displays contrasting

regulatory functions depending on the context. Peli1 acts as a

negative regulator of esophageal squamous carcinoma’s

radiotherapy sensitivity and lupus erythematosus syndrome by

promoting the Ub proteasome-dependent NIK degradation,

inhibiting the nuclear translocation of non-canonical NF-kB
effector molecules, p52, and Rel B (15, 16). Peli1 also augments
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cIAP2 stability by facilitating the K63-linked cIAP2 ubiquitination

(25, 94, 95), enabling cIAP2 to mediate the K48-Ub and TRAF3

degradation (26), thereby alleviating the inhibition of p100

processing into p52 by TRAF3 (59). Consequently, Peli1

promotes p52 entry into the nucleus and relieves the inhibition of

the classical NF-kB molecule p65 owing to p100 accumulation (59).

4.1.4 MAPK pathway
Peli1 influences the MAPK pathway through multiple

mechanisms (Figure 1), regulating inflammation and apoptosis and

participating in brain development and angiogenesis (61, 85, 94, 96,

97). Peli1 facilitates TRAF6 and RIP1 ubiquitination in the IL-1R/

TLR pathway (29, 98), leading to P38 activation via TAK1 (99).

Moreover, Peli1 mediates the K63-Ub of cIAP2, activating JNK and

P38 by via increasing cIAP2-mediated TRAFT3 degradation (26, 80).

Peli1 induces miR-494-3p expression in cardiomyocyte exosomes,

inhibiting its target, phosphatase and tensin homolog (PTEN), and

activating the AKT, Smad2/3, and extracellular signal-regulated

kinase (ERK) signaling pathways (100). Peli1 activates the MAPK

pathway by modulating endoplasmic reticulum (ER) stress. By

binding to heat shock protein 90 (HSP90), Peli1 hinders the

interaction of HSP90 with IRE1a, a key protein in ER stress,

promoting phosphorylation-dependent IRE1a activation (47).

Activated IRE1a facilitates TRAF2 recruitment, further promoting

p-JNK activation through apoptosis signal-regulating kinase 1

inducing downstream apoptotic signaling (47, 101). IRE1a
promotes x-box binding protein 1 (XBP1) splicing and maturation

(47), while p38MAPK phosphorylates XBP1 at Thr-48 and Ser-61,

augmenting the induction of apoptotic signaling and nuclear

migration of XBP1 in mice (102).

4.1.5 AKT pathway
Peli1 activates the AKT pathway and is involved in various

biological and pathological processes, including cancer progression

(23, 103), drug resistance (104), angiogenesis (96, 100, 105), T

follicular helper (Tfh) cell differentiation (93), microglia activation

(98), glycolysis, andmacrophage M1 polarization (31). Peli1 regulates

AKT activationvia several pathways: 1) Peli1 inhibits the inducible

co-stimulator (ICOS) and suppresses the PI3K/AKT pathway

downstream of ICOS by mediating ubiquitination-dependent c-Rel

degradation (93); 2) Peli1 upregulates miR-494-3p expression in

cardiomyocyte exosomes and inhibits its target PTEN. This

inhibition prevents PTEN-mediated phosphatidylinositol 3,4,5-

trisphosphate (PIP3) dephosphorylation, activating downstream

AKT/endothelial nitric oxide synthase/nitric oxide signaling (100).
4.2 Cell death

Peli1 regulates cell death through various pathways, including

apoptosis, necroptosis, and pyroptosis (Figure 2). Peli1 plays a dual

regulatory role in necrosis and apoptosis by modulating the

ubiquitination of RIPK1 (RIP1) and mRNA levels of cellular

FLICE-like inhibitory protein (c-FLIP) (28). Upon TNF

stimulation of tumor necrosis factor receptor 1 (TNFR1), RIPK1

is recruited to the TNFR1-associated death structural domain
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(TRADD), which recruits cIAP1 and cIAP2 via the TRAF2 and

linear ubiquitin chain assembly complexes (LUBAC), culminating

in complex I formation (28, 106). In complex I, RIPK1 undergoes

rapid Ub chain polymerization, activating the TAK1 and IKK

complexes through the K63/M1-Ub hybrids, inducing NF-kB/
MAPK pathway activation. K63 and M1 ubiquitination of RIPK1

contributes to recruiting Peli1 to complex I. Without an A20-

binding inhibitor of NF-kB1 (ABIN1), Peli1 further promotes

K63-linked RIPK1 ubiquitination (28, 106). A20 and

cylindromatosis (CYLD) mediate complex I degradation by

deubiquitinating its components to form complex IIa or IIb.

Complex IIa comprising the Fas-associated death domain

(FADD), caspase-8, and RIPK1, triggers RIPK1-dependent

apoptosis by activating caspase-8, -3, and -7 (106). TRADD in

complex I recruits FADD and caspase-8 to initiate RIPK1-

independent apoptosis. C-FLIP, a catalytically inactive caspase-8

homolog, interacts with procaspase-8 and impedes caspase-8

processing by counteracting the cytotoxic activity of complex IIa.

Peli1 upregulates c-FLIP mRNA levels by inhibiting the repressive

transcription factor c-Myc to inhibit RIPK1-dependent and RIPK1-

independent apoptosis (28, 107). Upon caspase-8 inactivation,

RIPK1 binds to the RIP homotypic interaction motif (RHIM) of

RIPK3 to form complex IIb. This complex promotes RIPK3

oligomerization and phosphorylation, which recruits and

phosphorylates Mixed lineage kinase domain-like protein

(MLKL), resulting in membrane perforation and programmed

necrosis (28, 106). Peli1 mediates the K63-linked ubiquitination

of RIPK1 in complex II, and deleting Peli1 inhibits RIPK3, RIPK1,

and FADD binding, and RIPK3 and MLKL phosphorylation,

indicating the indispensable role of Peli1 in the RIPK1-RIPK3

necrosome (28). However, how Peli1 exerts its ubiquitination

function requires further investigation.

Under hypoxic LPS conditions, DAPK1 phosphorylates Ser-39

of Peli1, destabilizes it, and reduces the binding between Peli1 and

RIPK1. The release of the TRIF-RIPK1 signalosome enhances

RIPK1 binding to caspase-8, ultimately inducing apoptosis in

renal tubular cells (64). Surprisingly, T182 phosphorylation on

RIPK3 preferentially recruits Peli1, leading to the K48-linked

ubiquitination-dependent degradation of kinase-active RIPK3 (12,

108), possibly functioning as a feedback mechanism. Although

much progress has been made, further investigations are needed

to uncover additional mechanisms by which Peli1 is involved in

RIPK1-mediated necrosis and apoptosis.

In contrast, Peli1 promotes apoptosis through alternative

pathways (61, 94, 109–111). Peli1 inhibits ionizing radiation-

induced (IR) activation of the non-classical NF-kB pathway by

promoting NIK degradation, thereby preventing IR-induced

expression of B-cell lymphoma-extra large. Consequently,

caspase-9 maturation and apoptotic signaling are restored (16).

Peli1 mediates K63-linked ubiquitination of the autophagy-

associated protein P62 at residue K7, disrupting P62 homodimer

formation and autophagic degradation. Furthermore, Peli1

upregulates BIK expression by inhibiting BIK autophagic

degradation, inhibiting the apoptosis suppressor protein B-cell

lymphoma 2 (BCL2) and ultimately promoting apoptosis (41).

Peli1 upregulates IFN-b expression by promoting IRF3/IRF5, and
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IFN-b1 augments the tumor necrosis factor-related apoptosis-

inducing ligand in human peripheral blood T cells, inducing

apoptosis in septic cells (87).

The inflammatory vesicle complex NACHT, LRR, and PYD

domains-containing protein 3 (NLRP3) comprises the ligand-

sensing receptor NLRP3, adapter protein apoptosis-associated

speck-like protein (ASC), pro-caspase-1, and the regulatory

protein NIMA-associated kinase 7. Peli1 facilitates K63-Ub at

K55 of ASC at the inflammasome junction, promoting ASC/

NLRP3 interactions and ASC oligomerization for inflammasome

activation and pyroptosis induction (40).
4.3 Autophagy

Peli1 demonstrates dual regulation of autophagy depending on

specific circumstances. T in vivo in vitro the E3 ligase activity of

Peli1 was significantly increased under in vivo and in vitro

reoxygenation conditions (Figure 2). On the one hand, Peli1

promotes cardiomyocyte death by impairing P62 autophagic

degradation and reducing autophagic flux (41). On the other
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hand, inhibiting BIK autophagic degradation promotes the

activation of the apoptotic pathway by inhibiting BCL2 (41). T he

human immunodeficiency virus (HIV) protein Tat induces

increased Peli1 expression, mediating the K63-Ub of Beclin 1,

leading to increased autophagy and disruption of the blood-brain

barrier (BBB) through reduced tight junctional zonula occludens-1

(ZO1). In Parkinson’s disease, Peli1 is upregulated in microglia by

extracellular preformed fibrils (PFF) of a-synuclein, resulting in

reduced lysosomes and blocked autophagic flux due to Ub

proteasome-dependent lysosome-associated membrane proteins

degradation (18). Overall, Peli1 regulates autophagy through

diverse pathways, necessitating further investigations to determine

the underlying regulatory mechanisms depending on the

specific context.
4.4 DNA damage repair

DNA double-strand breaks (DSBs) signaling and repair are

crucial for maintaining genomic integrity. Peli1 is crucial in DNA
FIGURE 2

Peli1 regulation in cell death and autophagy. Upon tumor necrosis factor (TNF) stimulation, the TNFR1-associated death structural domain (TRADD)
recruits cIAP1 and cIAP2 to RIPK1 via the TRAF2 and linear ubiquitin chain assembly complexes, forming complex I. Rapid ubiquitination of RIPK1
occurs. Complex I is deubiquitinated by A20 and cylindromatosis, forming complex II. Complex II bifurcates into complex IIa, triggering RIPK1-
dependent apoptosis, and complex IIb, which induces necrosis. Complex I forms a TRADD-FADD-caspase-8 complex, leading to RIPK1-independent
apoptosis. PELI1 preferentially recruits RIPK3 to form complex IIb by mediating RIPK1 ubiquitination in complex II. However, PELI1 mediates the
ubiquitin-proteasome-dependent degradation of RIPK3, thereby inhibiting necrosis. PELI1 inhibits RIPK1-dependent or RIPK1-independent apoptosis
by suppressing c-myc and promoting c-FLIP (a catalytically inactive caspase-8 homolog) expression. However, Peli1 can also promote apoptosis
through tumor necrosis factor-related apoptosis-inducing ligand by upregulating IFN-b expression. Peli1 inhibits NF-kB non-classical signaling and
downstream B-cell lymphoma-extra large via NIK, promoting apoptosis. Peli1 inhibits autophagy by mediating p62 ubiquitination, resulting in BIK
accumulation, which activates downstream apoptotic signals. Peli1 inhibits lysosome formation and autophagic signaling by mediating the ubiquitin-
proteasome-dependent degradation of lysosome-associated membrane protein 2. However, Peli1 can also promote autophagosome production by
mediating the ubiquitination of K63-linked Beclin 1. In addition, Peli1 induces NLRP3 inflammasome production and pyroptosis through the
ubiquitin-mediated modification of apoptosis-associated speck-like protein (ASC). Created using BioRender.com.
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damage-responsive protein accumulation and efficient

homologous recombination (HR) repair, making it essential for

DSB-responsive pathways (Figure 3) (33–35, 46). Peli1

participates in multiple pathways associated with the DNA

damage response (35). Peli1 is recruited to DSB sites by gH2AX

and activated through ATM phosphorylation.DSBs activate ATM

upon laser micro-irradiation-induced DNA damage, which

phosphorylates H2A histone family member X (H2AX) to its

activated state, gH2AX. Peli1 binds to nibrin (NBS1), also

recruited to DSBs by gH2AX. Peli1 mediates the K63-Ub of

NBS1 at the K686 and K690 sites, leading to MRE11 and

RAD50 recruitment to form the MRE11-RAD50-NBS1 (MRN)

complex. The MRN complex phosphorylates and activates ATM,

activating MDC1 and its partner RNF8 recruited by gH2AX. This

activation leads to RNF8/RNF168 recruitment and establishing of

a platform for downstream DNA repair proteins by mediating

histone ubiquitination (112). Additionally, Peli1, recruited by

gH2AX to the site of DNA damage, binds to phosphorylated

P53 at the Thr-18 site through its FHA domain, facilitating the

ubiquitination of the P53 repressor protein MDMX via K63

linkage. U biquitination promotes the nuclear export of MDMX

and releases P53, which activates the transcription of downstream

genes involved in DNA damage repair (DDR), such as P21 (33,

34). Peli1 binds to IRAK4 after IR and autophosphorylates Thr-

345/Ser-346, independent of its E3 Ub ligase activity. This event

recruits IRAK1 to Peli1 via IRAK4, leading to IRAK1 activation

and nuclear translocation through Thr209 phosphorylation.

Nuclear IRAK1 co-localizes with gH2AX and inhibits the pro-

apoptotic PIDDosome complex (PIDD1-RAIDD-caspase-2),

exerting an anti-apoptotic function (46).
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4.5 Glycolysis

Peli1 exerts a complex and context-dependent regulation of

glycolysis through various mechanisms. Peli1 is reportedly a

negative regulator of glycolysis (37, 39, 52); however, other studies

have shown that Peli1 promotes glycolysis (31). Peli1 enhances the

stability of the tuberous sclerosis 1 (TSC1)/TSC2 complex in tumor-

infiltrating CD8+ T cells by mediating K63-linked TSC1

ubiquitination (39). Peli1 inhibits TSC2 phosphorylation and

inactivation by TCR/CD28 via the AKT pathway. Consequently,

the stabilized complex hampers mammalian target of rapamycin

complex 1 (mTORC1) activation by inactivating Rheb. Peli1

suppresses the phosphorylation of mTORC1 target proteins S6K

and S6, accompanied by downregulating the downstream glycolytic

genes, such as GLUT1, HK2, PGK1, Eno1, Pkm, Hif1a, and Myc. In

pathogenic Th17 cells, Peli1 downregulates c-Myc by mediating the

K48-Ub and ubiquitination-dependent degradation of c-Rel, a potent

activator of genes involved in glycolysis and mitochondrial

respiratory pathways (113), thereby inhibiting glycolysis (52).

However, contradictory findings have been reported regarding

glycolysis regulation by Peli1 in macrophages.

Peli1 promotes K63-linked ubiquitination of IRF5 in response to

LPS/IFN-g stimulation, enhancing glycolysis and M1 polarization by

increasing the nuclear translocation and transcription factor activity

of IRF5 (31). Conversely, Peli1-mediated K63-linked ubiquitination

of IRAK1 and STAT1 activation inhibits IL-10-induced polarization

of M2c macrophages and IL-10 production, thereby inhibiting tumor

growth. Peli1-deficient bone marrow-derived macrophages exhibit

defective mitochondrial respiration but enhanced glycolysis during

M2c polarization (37). However, IL-10 inhibits LPS-induced glucose
FIGURE 3

Peli1 in DNA damage repair. Upon ionizing radiation (IR) stimulation, PELI1 mediates nibrin (NBS1) ubiquitination and facilitates MRE11-RAD50-NBS1
(MRN) complex assembly, which is recruited to the DNA double-strand break (DSB) site by gH2AX and activated by ataxia-telangiectasia mutated
(ATM) phosphorylation. The MRN complex enhances ATM phosphorylation, which mediates the phosphorylation of MDC1, thereby promoting the
ubiquitination of histones by RNF8/RNF18 and establishing a platform for DNA damage repair. Peli1, recruited to the DSB site by gH2AX, promotes
the nuclear export of murine double minute X (MDMX) by mediating MDMX ubiquitination, thus liberating P53 to activate the transcription of
downstream genes in response to DNA damage repair. Peli1 binds to IRAK4 to promote IRAK1 recruitment and phosphorylation, which then
translocates to the nucleus and co-localizes with gH2A, inhibiting the pro-apoptotic PIDDosome complex. Created using BioRender.com.
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uptake and macrophage glycolysis (114). Therefore, the regulation of

glycolysis by Peli1 in the tumor microenvironment and different cell

types may involve additional pathways that warrant further in-

depth investigation.
5 Diseases involved in Peli1

5.1 Tumors

Peli1 plays a pivotal role in tumors, with complex roles across

different cancer types, impacting tumor behavior, therapeutic

response, and immune modulation (Figure 4). Understanding

Peli1 functions holds promise for developing targeted cancer

therapies and improving clinical management.

5.1.1 Breast cancer
Triple-negative breast cancer (TNBC), which is aggressive and

heterogeneous, is the second most common malignancy among
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women. Peli1 is upregulated in breast cancer tumor tissues, and

higher Peli1 expression levels correlate with reduced survival rates.

Peli1 is a positive regulator of tumor metastasis that significantly

contributes to breast cancer mortality (24). Silencing Peli1 reduces

tumor migration, invasion, and tumor-sphere formation. Loss of E-

cadherin expression, a characteristic feature of epithelial-

mesenchymal transition (EMT), is associated with the

upregulation of E-cadherin transcriptional repressors (e.g.,

SNAIL, SLUG, TWIST, ZEB1, and ZEB2) (115–119). Peli1

s t a b i l i z e s SNAIL / SLUG by med i a t i n g K63 - l i n k ed

polyubiquitination while inhibiting FBXO11 binding to SNAIL/

SLUG and subsequent K48-linked Ub proteasome-dependent

degradation (24). Peli1 inhibits glycogen synthase kinase-3 beta

activity by activating AKT-mediated phosphorylation, disrupting

the SCF-mediated ubiquitination degradation of SNAIL through

SNAIL phosphorylation (105, 120). Peli1 interacts with EGFR to

promote breast cancer metastasis. Activated EGFR phosphorylates

and activates Peli1, enabling it to mediate the K63-linked EGFR

ubiquitination and protect it from degradation. Understanding this
FIGURE 4

Peli1 in Tumors. Peli1 stabilizes SNAIL/SLUG via ubiquitination and the PI3K/AKT/GSK-3bpathway, contributing to breast and lung cancers EMT. Peli1
is detrimental to JQ1 drug tolerance in breast cancer through LSD1 degradation and the BRD4/LSD1/NuRD complex dissociation. Peli1 interacts with
EGFR to promote breast cancer metastasis. Peli1 overexpression upregulates the expression of the apoptosis-inhibitory protein cIAP2, conferring
resistance to cisplatin- and paclitaxel-induced apoptosis in lung cancers. Peli1 expression is upregulated in papillary thyroid carcinoma and promotes
cancer cell proliferation and migration by activating the PI3K/AKT pathway. Elevated Peli1 expression induces lymphoma development by facilitating
BCL6 ubiquitination and promoting the constitutive activation of the post-BCL6 B-cell signaling pathway. Peli1 is involved in palmitate-induced,
TLR4-dependent lung metastasis in melanoma, whereas Peli1 inhibits melanoma progression through MDMX ubiquitination and cytoplasmic
localization. Peli1 enhances the sensitivity of esophageal squamous carcinoma to radiotherapy by inhibiting the IR-induced activation of the non-
canonical NF-kB pathway. Peli1 mediates PKCqubiquitination and inhibits glycolysis via TSC1 ubiquitination, negatively regulating antitumor activity in
CD8+ T cells. In contrast, Peli1 exhibits positive antitumor capacity in macrophages by inhibiting glycolysis through IRAK1 TSC1
ubiquitination.Created using BioRender.com.
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process provides insights for refining therapies targeting

EGFR (22).

Prognostic markers and biological therapies of Peli1 hold

promise for improved disease management due to resistance to

conventional therapies. Peli1 is detrimental to JQ1 drug tolerance

by targeting bromodomain-containing protein 4 (BRD4). BRD4 is

known for its role in the super-enhancer organization and the

transcriptional activation of major oncogenes, including c-MYC

and BCL2 (121, 122). BRD4 inhibitors, such as JQ1, have emerged

as promising therapeutic agents for cancer (123). BRD4

unexpectedly interacts with the LSD1/NuRD complex and co-

domains with this inhibitory complex at the super-enhancer,

similar to the BRD4/LSD1/NuRD complex. However, long-term

treatment with JQ1 leads to elevated Peli1 expression, resulting in

the dissociation of the BRD4/LSD1/NuRD complex, LSD1

degradation via Ub-proteasome mechanisms, and JQ1 resistance

development (21). Peli1 is associated with resistance to combination

chemotherapy in breast cancer (21). Therefore, Peli1 plays a

pathological role in breast cancer and contributes to

chemotherapy tolerance, underscoring the importance of

comprehensive investigations to enhance the clinical management

of breast cancer.

5.1.2 Lymphoma
Peli1 overexpression, implicated in lymphoma progression, is

significantly elevated in various lymphomas. Peli1 expression may

be a valuable prognostic indicator for patients with lymphomas,

especially those with diffuse large B cell lymphoma (DLBCL). High

Peli1 expression in lymphoma is associated with frequent bone

marrow involvement and shorter relapse-free survival (124). Peli1

expression may be an independent prognostic indicator of DLBCL

(30). Elevated Peli1 expression induces lymphoma development by

facilitating B-cell lymphoma 6 (BCL6) ubiquitination through K63

linkage and promoting the constitutive activation of the post-BCL6

B-cell signaling pathway. This activation increases mature B cells

and B220+ lymphocytes infiltration into the tumor (30). Peli1

expression positively correlates with the MYC, BCL6, BCL2, and

MUM1 expression in lymphomas (30, 124). A study focusing on the

Bcl-6-dependent risk stratification of DLBCL based on Peli1 nuclear

expression highlighted the potential role of Peli1 and Bcl-6 in

assessing DLBCL risk (125) Peli1 expression is highly elevated in

high-grade lymphomas but significantly reduced in low-grade

lymphomas (124). A completely different role for Peli1 in cHL

exists, where miR-21-5p acts as an abundantly expressed oncogene

that protects cHL from apoptosis by targeting Peli1 (109). This

paradoxical role of Peli1 in different lymphomas may partly explain

the differential expression of Peli1 in distinct grades of lymphomas

and provide insights into developing t of personalized medical

treatments for lymphomas.

5.1.3 Lung cancer
Elevated Peli1 expression in lung cancer plays a crucial role in

the development and progression and drug resistance (23, 25, 126).

Peli1 expression is an essential prognostic indicator of survival in

patient with lung cancer (126). First, Peli1 enhances the stability of
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SNAIL/SLUG by mediating SNAIL/SLUG polyubiquitination

through K63 linkage, consequently inhibiting E-cadherin

expression. This process promotes various malignant

characteristics of lung cancer cells, including proliferation,

survival, colony formation, invasion, and migration, by inducing

EMT (23). Second, Peli1 overexpression upregulates the expression

of the apoptosis-inhibitory proteins cIAP1 and cIAP2, conferring

resistance to cisplatin- and paclitaxel-induced apoptosis in tumor

cells. Peli1 achieves this effect by directly interacting with cIAP2 and

stabilizing it through its E3 ligase activity, involving K63-linked

polyubiquitination (25). The combination of low Peli1 expression

and high necrosis factor RIPK3 expression along with DDR factor

p53 is a significant predictor of survival in patients with stage I non-

small cell lung cancer squamous cell carcinoma subtype (126).

Therefore, Peli1 plays a pathological role in lung cancer and

represents a novel therapeutic target to treat for this disease.

5.1.4 Other tumors
The role of Peli1 varies across cancer types. Peli1 promotes

tumor progression and sensitivity to radiotherapy in papillary

thyroid and esophageal squamous carcinomas (16, 103).

Conversely, its functions are contradictory in melanoma,

suggesting a complex role in tumor biology (34, 127).

Peli1 expression is increased in papillary thyroid carcinoma and

promotes cancer cell proliferation and migration by activating the

PI3K/AKT pathway, possibly associated with the deletion of miR-

30c-5P, which targets Peli1 (103).

However, Peli1 plays contradictory roles in melanoma

progression. Peli1 mediates MDMX ubiquitination by binding to

its RING structural domain, leading to MDMX cytoplasmic

localization. This activation promotes P53-mediated tumor

progression inhibition, with higher Peli1 expression associated

with improved survival patients with melanoma (34). In contrast

Peli1 is involved in palmitate-induced, TLR4-dependent lung

metastasis in melanoma (127). The diverse roles of Peli1 in the

d i ff e r en t phase s o f me lanoma progre s s ion warran t

further investigation.

Peli1 also plays a protective role in esophageal squamous

carcinoma; Peli1 enhances the sensitivity of esophageal squamous

carcinoma to radiotherapy by inhibiting the IR-induced activation

of the non-canonical NF-kB pathway. This effect is achieved

through the Peli1-mediated NIK ubiquitination and degradation,

leading to increased tumor cell apoptosis (16). Consistent with this,

a comprehensive analysis of transcriptome and methylation data

from the Gene Expression Omnibus database revealed that high

Peli1 expression in in patients with esophageal cancer is associated

with longer overall survival (128).

Furthermore, Peli1 exhibits opposing effects on different

immune cells during antitumor responses. In CD8+ T cells, Peli1

negatively regulates antitumor activity. First, Peli1 mediates the

ubiquitination degradation of PKCq via K48 linkage (20), inhibiting
T cell receptor signaling and impairing CD8+ T cell function.

Second, Peli1 increases the stability of the TSC1/TSC2 complex

by mediating the K63-Ub of TSC1 (39). This stabilization inhibited

TSC2 phosphorylation and inactivation by TCR/CD28 signaling
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through the AKT pathway. Consequently, the stable complex

suppressed mTORC1 activation and phosphorylation S6K and S6

by inactivating Rheb. Ultimately, these mechanisms lead to a

reduced antitumor response in T cells. In contrast, Peli1 exhibits

positive antitumor capacity in macrophages by inhibiting glycolysis.

This is achieved by mediating the K63-linked IRAK1

ubiquitination, leading to STAT1 activation and the inhibition of

M2c macrophage polarization induced by IL-10 (37). As a result,

tumor growth was inhibited in vivo. Furthermore, Peli1 inactivates

the mitotic spindle checkpoints by mediating K48-Ub and Ub

degradation of BubR1, inducing extensive chromosomal

aneuploidy and tumorigenesis (14).
5.2 Cardiovascular disorders

Peli1 is mainly pathogenic in infarction, primarily through

mechanisms involving inflammation, autophagy, and apoptosis.

Targeting Peli1 could rescue infarction and improve cardiac

function (95–97, 105).

Inflammation is a crucial pathway through which Peli1 is

involved in infarction. Peli1 silencing reduces inflammatory

infiltration and ultimately improves cardiac dysfunction by

regulating the TLR/IL1R pathway (92), inhibiting RIP1 and

TRAF6 ubiquitination, and inhibiting NF-kB activity. Peli1

promotes the nuclear translocation of IRF5 by mediating the

K63-Ub of IRF5, promoting M1 polarization of macrophages

andcardiomyocyte death (32). Peli1 also regulates infarction via

autophagy and apoptosis. Reoxygenation, in vivo and in vitro,

significantly increases the E3 ligase activity of Peli1 (41).

Furthermore, Peli1 promotes the ubiquitination of the autophagic

protein P62 at residue K7 through K63 linkage. Disrupting P62

homodimer formation due to ubiquitination prevents P62

autophagic degradation, consequently reducing autophagic flux

and promoting cardiomyocyte death. Inhibiting BIK autophagic

degradation by Peli1 promotes apoptotic pathway activation by

inhibiting BCL2, which increases myocardial infarction and

contributes to cardiac dysfunction.

In an LPS-induced myocarditis model, Peli1 was activated and

promoted pro-inflammatory genes expression (129). Si-Peli1

Treatment alleviated or even reversed LPS-induced cellular injury

by modulating cardiomyocyte energy metabolism and altering the

expression of key genes (Cs, Cpt2, and Acadm) and metabolites (3-

oxoocotanoyl-CoA, hydroxypyruvic acid, lauroyl-CoA, and

nicotinamide adenine dinucleotide phosphate) (129). In the

context of diabetes-induced cardiovascular response, Peli1

elevates its interaction with HSP90, competitively inhibiting

IRE1a binding to HSP90 and promoting IRE1a phosphorylation

and ER stress. Peli1 also enhances TRAF2 recruitment to IRE1a by

promoting XBP1 splicing and maturation, activating the MAPK

pathway and mediating apoptosis of cardiac microvascular

endothelial cells (47).

Peli1 has been proposed as a potential predictive biomarker for

coronary artery disease (130). Peli1 plays a protective role in

atherosclerosis as its deficiency increases pathogenic immune cell

subsets (Th1 cells and Tfh cells)and decreases protective subsets
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(Treg and Breg cells), promoting systemic inflammation, immune

cell infiltration, and foam cell formation in vascular smooth muscle

cells, thereby exacerbating atherosclerosis (131). Peli1 is also

downregulated in giant cell arteritis (132).

In summary, Peli1 is involved in cardiovascular disease

progression by regulating inflammation autophagy, and apoptosis,

thus providing novel insights and potential therapeutic targets for

individualized treatment.
5.3 Infectious diseases

Peli1 plays distinct pathogenic and protective roles in response

to various viral infections. Peli1 exerts pathogenic effects on central

nervous system (CNS) antiviral infections (38, 88, 89). Peli1

negatively regulates TLR-mediated IFN-I induction by inhibiting

TBK1/Ikkϵ activation-related signaling events. Peli1-deficient mice

and microglia infected with vesicular stomatitis virus (VSV)

exhibited significantly enhanced IFN-a/IFN-b expression and

increased antiviral responses (88). Furthermore, Peli1 acts as a

pathogenic factor during WNV infection by promoting cell

attachment, entry, replication, and neuroinflammation via

microglial activation (89). Peli1 is also involved in HIV invasion

of the BBB, where Tat induces elevated Peli1 expression. Peli1

mediates the K63-linked ubiquitination of beclin 1, resulting in

increased autophagy and disruption of the BBB through the

disassembly of tightly linked ZO1 (38). The Japanese encephalitis

virus (JEV) suppresses Peli1 in microglia by upregulating

microRNA-155, increasing TRAF3 expression. This mechanism

facilitates immune escape from JEV by inhibiting the non-

canonical NF-kB pathway through NF-kBp100 accumulation

(59). Peli1 promotes Zika virus (ZIKV) infection and placental

inflammation and is involved in multiple stages of ZIKV infection,

including cellular attachment, entry, replication, and

translation (133).

However, Peli1 also plays a protective role against several viral

infections. Peli1 participates in the positive feedback loop of IFN-b
secretion by promoting IRF3 binding to the IFN promoter, which is

crucial for IFN production during viral double-stranded RNA

exposure (86). Peli1 also restricts herpes simplex virus type 1

(HSV-1) skin infection by suppressing HSV-1 replication and

local dissemination. Peli1 enhances T cell recruitment to the

infection by increasing Gpr156 expression (134). Peli1 positively

regulates the antiviral response of isolated epithelial cells and the

systemic response activated by TLR3. However, Peli1 plays an

opposing role in the antiviral response in lung cells (78, 135). For

example, Peli1 acts as a pro-inflammatory molecule during viral

infection, and its knockdown reduces rhinovirus (RV)-induced

CXCL8 and IL-6 production (78) without affecting RV replication

(78, 135).

The role of Peli1 in infection depens on the infection type,

which is common in studies on the role of other E3 ligases in

infectious diseases. For example, TRIM29 exerts a pathogenic role

by inhibiting I-IFN production during infections with Epstein–Barr

and RNA viruses such as influenza and eutherian viruses (136–138).

Peli1 positively regulates Helicobacter pylori and non-typeable
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Haemophilus influenzae (NTHi) infections (139, 140). Peli1

enhances TLR2-mediated NF-kB activity and chemokine-induced

responses to H. pylori LPS (140). Inhibiting Peli1 improves bacterial

clearance during NTHi infection (139). Thus, in infectious diseases,

the differential targeting of Peli1 according to differences in its

regulatory functions provides new pathways for treating infections.
5.4 Respiratory diseases

Peli1 is pathogenic in several respiratory diseases, notably

Chronic obstructive pulmonary disease (COPD), asthma, acute

lung injury, and persistent bacterial bronchitis (PBB). Peli1

primarily functions as a pro-inflammatory agent, influencing

disease progression and severity. Peli1-mediated K63-Ub of P21

prevents P21 degradation, leading to an increased senescence-

associated secretory phenotype and promotion of COPD and

inflammation (42). Peli1 regulates the pro-inflammatory response

of airway epithelial cells in patients with asthma, and Peli1

knockdown significantly reduces CXCL8 expression in the airway

epithelium of these patients (78). E levation of IL-1 signaling

factors, including Peli1, contributes to in childhood asthma.

Elevaed Peli1 expression is associated with severity and relapse of

asthma in patients (141).

Peli1 is also upregulated in acute lung injury and promotes

disease progression (54, 90). TGF-b1 upregulates Peli1 expression

in acute lung injury by suppressing microRNA-124 through DNA-

methyltransferase 1 upregulation. This promotes M1 alveolar

macrophage polarization via IRF5 nuclear translocation (54).

Peli1 increases TRAF6 expression, activates the NF-kB pathway,

and exerts pro-inflammatory effects (90). Furthermore, Peli1

expression is higher in children with persistent bacterial

bronchitis (PBB), particularly in recurrent cases (142). In

summary, Peli1 predominantly plays a pro-inflammatory role in

COPD, asthma, acute lung injury, and PBB.
5.5 Neurological diseases

Alzheimer’s disease (AD) is a progressive neurodegenerative

disorder characterized by b-amyloid (Ab) accumulation in the

brain (143, 144). Peli1 is a genetic risk factor for AD, and Peli1

expression is upregulated in the brain tissues of patients with AD and

plays a pathogenic role (19, 61, 145). In AD, Peli1 mediates C/EBPb
ubiquitination degradation, which inhibits the CD36 expression,

impairing Ab phagocytosis by microglia (19). Peli1 has been

implicated in AD pathogenesis through the TRAF3/MAPK and

the BCL2 apoptotic pathways, thereby reducing microglial and

neuronal cell viabil ity. Peli1 downregulation through

overexpression or mimicking MIR-590-5P, which is downregulated

in AD, can attenuate neuronal damage caused by Ab (61).

Stroke, one of the leading causes of death and disability, can

benefit from accurate and rapid etiological classificationto

determine treatment options and reduce the risk of recurrence.

Peli1 is a diagnostic risk marker for Cardiogenic (CE) strokes (146–
Frontiers in Immunology 13
148). Elevated Peli1 levels are associated with a high risk of stroke in

patients with atrial fibrillation, suggesting its potential use as a

marker for stroke prediction, prevention, and treatment in this

population (147).

Multiple sclerosis (MS) is a chronic inflammatory,

demyelinating, and neurodegenerative disease of the central

nervous system that affects young adults (149, 150). The role of

Peli1 in Experimental autoimmune encephalomyelitis (EAE)

pathogenesis is subject to contrasting viewpoints. Some studies

have proposed that Peli1 positively regulates EAE progression by

promoting microglial activation, whereas others suggest a protective

role of Peli1 in EAE by inhibiting T-cell activation and

pathogenicity. Peli1 promotes K48-Ub and degradation of TRAF3

by C-IAP (80), leading to MAPK activation, AP-1 activation, and

inflammatory factors transcription, thus specifically activating

microglia and promoting neuroinflammation. Conversely, Peli1

inhibits T-cell glycolysis, TH17 cell activation, and pathogenicity

by mediating c-Rel ubiquitination degradation (13). Peli1-deficient

EAE models have exhibited decreased inflammatory factors and

EAE scores but elevated levels of peripheral autoimmunity and

increased antigen-presenting proteins (151). Therefore, further

investigations are required to comprehensively elucidate the

specific mechanisms underlying the role of Peli1 in EAE,

considering different cell types and their spatial and

temporal contexts.

Peli1 is also involved in Methamphetamine (meth) abuse

development, which leads to neurological symptoms, including

memory impairment, altered cognitive function, and attention

deficits (152). Peli1 plays a pro-inflammatory role in the effects of

meth, as meth treatment results in elevated Peli1 expression owing

to decreased levels of miR-142a-3p and miR-155-5p levels (56).

Meth also upregulates Peli1 expression via the TRIF signaling

pathway (99). Peli1 induces neuroinflammation by activating the

NF-kB and MAPK pathways and RIPK1 (99, 153).

Peli1 is a potential therapeutic target for the treatment of

neurological hemorrhagic diseases. Following subarachnoid

hemorrhage (SAH), Peli1 upregulation induces MAPK activation

and inflammatory factor production, activating microglia (94).

Decreased miR-590-5p levels after intracranial hemorrhage lead

to elevated Peli1 expression, inducing neuroinflammation and

cerebral edema (62). Peli1 controls the survival of dopaminergic

neurons by regulating microglia-mediated neuroinflammation and

the production of neurotoxic factors through the NF-kB/MAPK

pathway (154).

In summary, Peli1 is involved in the progression of various

diseases within the nervous system via inflammation modulation,

especially in the microglia. However, further research is required to

elucidate the precise mechanisms and therapeutic implications of

these effects.
5.6 Obstetrical diseases

Peli1acts as a pro-inflammatory pathogenic factor under

various obstetric conditions. During ZIKV infection, Peli1
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promotes ZIKV infection and placental inflammation, exacerbating

congenital abnormalities (133). Peli1 is a novel regulator of TNF

and TLR signaling in human myometrial and amniotic cells and

upregulates the expression of pro-inflammatory factors, adhesion

factors, and contractile proteinsPeli1 upregulation in the amniotic

membranes of patients with preterm histological chorioamnionitis

suggests its potential as a therapeutic target for reducing preterm

delivery caused by inflammation and infection (155). I in utero,

vitamin D intervention downregulate Peli1, contributing to

immune protection against uterine inflammation (156). Peli1

positively correlates with miR-21 in patients with autoimmune

premature ovarian insufficiency (POI). However, the underlying

mechanisms and significance of Peli1 in POI pathogenesis require

further investigation (157).
5.7 Autoimmune diseases

Peli1 regulates multiple autoimmune diseases with protective

and pathogenic roles. Peli1 plays a pathogenic role in psoriasis (48,

158) and acts as an inflammatory modulatior in EAE, primarily

promotes inflammation but inhibiting excessive inflammation (13,

80, 85). Systemic lupus erythematosus (SLE) is a complex,

multisystem autoimmune disease characterized by genetic and

environmental factors. In SLE, Peli1 is downregulated due to

targeted inhibition by elevated miR-153-3p and miR-301a-3p

levels (57, 60). Peli1 exerts its protective effects against SLE

through multiple mechanisms. First, Peli1 downregulates the

expression of inducible T cell co-stimulatory ICOS in CD4+ T

cells by inhibiting c-Rel, inhibiting PI3K-AKT signaling.

Upregulating downstream KLF2 inhibits Tfh and Th17 cell

differentiation, ultimately attenuating autoimmunity in SLE (93).

Second, Peli1 mediates the NIK ubiquitination and degradation,

inhibits the nuclear translocation of Relb/P52, and prevents

antibody production by B cells, thereby suppressing SLE (15).

Peli1 inhibition of the non-classical NF-kB pathway in response

to Poly IC treatment also attenuated SLE autoimmunity (159).

Therefore, Peli1 is a promising protective factor against SLE and a

potential therapeutic target.

Glucocorticoids are used extensively to treat inflammatory

diseases. Glucocorticoid-induced GR downregulation is a well-

known response that occurs in most cells and is necessary to limit

the duration of glucocorticoid action (160). b-arrestin-1 binds to

and remains stable at the GR (50). Silencing b-arrestin-1 results in

the release of GR, leading to increased GR binding to the Peli1

promoter region. Subsequently, Peli1 transcription and expression

are enhanced, and Peli1 mediates K48-linked ubiquitination of GR,

contributing to GR turnover by shortening its half-life (50).
5.8 Sepsis

Sepsis, characterized by a systemic inflammatory response to

infection, remains the leading cause of death in intensive care units

(161). Pathological changes in sepsis are associated with the initial

acute phase of hyperinflammation triggered by the innate immune
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system (162). Peli1 plays a prominent pro-inflammatory role in

sepsis as an inflammatory factor. Peli1 promotes inflammation

through TRAF6/NF-kB signaling and TRAF3/MAPK signaling

(26, 90, 163). Peli1 couples the K63 Ub chain to ASC at the

inflammatory vesicle junctions and promotes ASC/NLRP3

interactions and ASC oligomerization, leading to inflammatory

vesicle activation (40). Peli1 induces TLR3- and TLR4-driven co-

stimulatory gene expression, proliferation, and B cells survival (27).

Peli1 deficiency enhances resistance to LPS endotoxic shock (40)

and attenuates the induction of pro-inflammatory factors by TLR3/

TLR4 ligands (27). In septic acute kidney injury (AKI) (64), DAPK1

Peli1 phosphorylation promotes RIP1 binding to caspase-8 and

ultimately induces tubular apoptosis. In mice, synergistic DAPK1

inactivation or ablation and MyD88 inhibitors prevent septic AKI.

In conclusion, Peli1 is implicated in sepsis and its progression in

various organs and tissues through multiple pathways. Therefore,

targeting Peli1 has a significant therapeutic potential for

managing sepsis.
6 Potential of Peli1 as a
therapeutic target

6.1 Inhibitors

The targeted regulation of Peli1 has emerged as an intriguing

avenue for therapeutic intervention, given its diverse roles in disease

pathogenesis. Several drugs have been identified as Peli1 inhibitors.

For example, resistin inhibits Peli1 activity and suppresses invasive

breast cancer metastasis. This inhibition is achieved through

hydrogen bonding with specific Peli1 residues, inhibiting Peli1

enhanced SNAIL/SLUG activity via the K63 linkage (24) and

slowing TNBC progression. BBT-401, a pharmacologically

targeted Peli1 inhibitor developed by Bridge Biotherapeutics, is

undergoing phase II clinical trials to treat ulcerative colitis. BBT-

401-1S inhibits Th17 cell effector responses in psoriasis models by

decreasing p65 phosphorylation and producing IL-17A. Peli1

inhibitors have also demonstrated a dose-dependent inhibition of

IL-17A and IL-22 production (48).
6.2 Interaction blockers

Given that Peli1 often functions through protein interactions,

the regulation of Peli1 binding to target proteins and co-targeting

strategies have been explored. Peli1 and EGFR promote metastasis

in breast cancer. Compound S62, which does not individually bind

to Peli1 or EGFR, can block both linkages and shows promise for

treating breast cancer with combined targeting of Peli1 and EGFR

(22). Furthermore, Peli1 has been implicated in modulating the

tolerance to JQ1 targeting BRD4 in breast cancer. Combining BRD4

and Peli1 targeting is necessary for effective breast cancer treatment

(21). Peli1 expression is increased in breast cancer samples from

patients receiving multiple chemotherapeutic agents, and its

expression level is positively correlated with the number of agents
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used by patients (21). This finding indicates that Peli1 is involved in

resistance to various agents, warranting further investigation (21). A

novel membrane-bound palmitate-coupled Smad6-derived peptide

called Smaducin-6 has been developed to disrupt IRAK1-, RIP1-,

and Ikkϵ-mediated TLR4 signaling complex formation by

interacting with membrane-bound Peli1 and to restore neutrophil

recruitment by reducing GRK2 expression in neutrophils through

CXCR2 re-expression is sepsis (87).
6.3 Gene therapy

Gene therapy targeting Peli1 has also shown promise in

improving perfusion and cardiac function in ischemic infarction

models (95, 105). In an LPS-induced myocarditis model, Peli1

activatio was associated with promoting pro-inflammatory genes,

and si-Peli1 treatment alleviated or reversed LPS-induced cellular

injury by altering cardiomyocyte energy metabolism (129).

MiRNAs have been explored as regulators of Peli1 and human

umbilical cord mesenchymal stem cell-derived extracellular vesicles

modified with miR-30c-5p effectively suppress Peli1 expression and

inhibit papillary thyroid carcinoma progression in vitro and in

vivo (103).
6.4 Other drug developments

Targeted protein degradation (TPD) and targeted covalent

inhibitors (TCIs) may provide insights into the targeting Peli1

(164, 165). TPD primarily comprises molecular glue and

proteolysis targeting chimera (PROTAC), which mediate the

binding of E3 Ub ligases to target proteins, leading to target

proteins degradation. PROTACs are heterobifunctional molecules

comprising two specific ligands and a chemical linker that enables

them to bind to E3 Ub ligases and the target protein (166). For

example, von Hippel-Lindau (VHL) and cereblon (CRBN) are still

the most widely used E3 ligases, and many of the developed

PROTACs are based on their efficacy (167–169). Molecular glues

are low- molecular- weight inducers or protein-protein interaction

stabilizers.Upon binding to a protein, the small molecule induces a

conformational change and causes the small molecule-protein

complex to become a “new substrate” for the E3 ligase and thus

undergoes ubiquitination. For example, thalidomide and its

derivatives are effective cancer therapeutic agents and are among

the best understood molecular glue degraders (11). These drugs

selectively reprogram the E3 ligase cereblon (CRBN) to allow the

Ub-proteasome system to degrade target proteins. In addition to

promoting Peli1 degradation as a target protein through TPD,

inhibiting Peli1 function through covalent inhibitors is also a

potent and effective strategy. Covalent inhibitors are a class of

small molecule compounds that can covalently bind to specific

target proteins, inhibiting their biological functions, similar to the
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study of BBT-401 inhibiting Peli1 (48). However, Peli1 agonists are

not being developed, which is detrimental to studies targeting the

protective role of Peli1 in diseases such as SLE. Recently, with

advances in computational tools, structure-targeted, high-

throughput virtual screening and molecular docking have become

effective methods for inverse drug discovery. TCI and agonist by

high-throughput virtual screening of Peli1 may be helpful in

targeted therapy.
6.5 Potential side effects

Targeting Peli1 and therapy via TPD-linked Peli- targeting of

downstream substrates may have side effects. Due to the diversity of

Peli1 substrates and the wide range of biological functions in which

Peli1 is involved, we also noted that Peli1 is primarily pathogenic in

some diseases such as cancer, myocardial infarction, and AD. In

contrast, Peli1 plays a protective role in other diseases such as

atherosclerosis, some infectious diseases, and SLE. Complex roles

make targeting Peli1 challenging, and Peli1 inhibition or promotion

should be discussed according to the disease context, especially

when patients simultaneously have different diseases in which Peli1

is involved.

Peli1 is critical in the development and progression of various

diseases, particularly immune-related disorders and cancers.

Further research on Peli1 as a diagnostic and therapeutic target,

aided by cutting-edge therapeutic tools, may provide novel

treatment options for various of human diseases. T he side effects

of therapeutic interventions on Peli1 in different contexts in

response to the complex regulation of Peli1 are also worth studying.
7 Discussion

As a significant member of the E3 ligase family Peli, Peli1 exerts

its regulatory function by binding to various proteins and mediating

post-translational ubiquitination modifications (7, 8). Peli1 also

exhibits multiple functions independent of its E3-Ub ligase activity,

expanding its regulatory repertoire (35, 43, 47). The reversible

phosphorylation mechanism enables the interconversion of Peli1

between inactive and active forms, with various kinases (such as

IRAK1, IRAK4, TBK1/Ikkϵ) phosphorylating Peli1 to enhance its

E3 ligase activity (36, 63). Pel i1 possesses numerous

phosphorylation sites, rendering it prone to activation through

k i n a s e p h o s p h o r y l a t i o n a n d l e s s s u s c e p t i b l e t o

dephosphorylation-mediated inactivation (22, 85). Peli1

production and degradation may represent crucial pathways for

its negative regulation. Peli1 transcription is regulated by IRF3 and

the GR (50). Several miRNAs have been identified as Peli1

regulators via direct targeting (53–55, 60). Peli1 can also promote

miR-21-mediated negative regulation of its expression through NF-

kB (51), suggesting a potential negative feedback loop. IRAK-1
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facilitates the Ub proteasome-dependent Peli1 degradation in a

kinase-dependent manner (7); however, the specific mechanism of

Peli1 degradation remains unknown.

Peli1 participates in the signaling through receptor systems such

as IL-1R and TLRs (27, 72, 80). Peli1 exerts a multifunctional

regulatory role in signaling pathways, including NF-kB, MAPK, and

AKT (90, 93, 97), which are involved in pro-inflammatory

responses and immune progression. Paradoxically, Peli1 also

inhibits T cell activation by suppressing excessive NF-kB
activation (13). Peli1 is involved in cell death, autophagy, DNA

repair, glycolysis, and immune cell activation. The reasons

underlying the paradoxical role of Peli1 in inflammatory

regulation remain unknown, and a deeper understanding of its

biology will contribute to our understanding of innate and

adaptive immunity.

Peli1 has distinct roles in the progression of various diseases

within different disease contexts. Peli1 acts as a pathogenic agent in

most tumors (23, 24, 103), where it promotes tumor cell migration

and proliferation and negatively affects antitumor immunity.

However, in some tumor backgrounds, Peli1 is a beneficial factor

with a protective function in antitumor immunity (37), and

promotes radiation therapy sensitivity in esophageal cancer (16).

Peli1 is a crucial regulatory molecule of the immune system in the

cardiovascular system, exerting pro-inflammatory and pro-

apoptotic effects (92). Given its specific expression in microglial,

Peli1 functions in progression of various CNS diseases (e.g., AD,

cardiogenic stroke, and MS) by regulating microglia (19, 80, 146).

Peli1 promotes neuroinflammation after treatment with central

nervous system drugs such as meth and morphine. Peli1 also

differentially regulates several autoimmune diseases. Although its

pathogenic role in MS and psoriasis is well- recognized, Peli1 plays a

protective role against SLE. During viral infections, Peli1 plays a

pro-inflammatory role (38, 88, 89, 133) and contributes to the

pathogenesis of viral infections such as VSV,WNV, HIV, and ZIKV

by promoting viral replication. However, Peli1 protects against HSV

infection (134) by limiting viral invasion and spread. In contrast,

Peli1 downregulation in JEV infection promotes immune

evasion (59).

Thus, the significance of targeting Peli1 and its downstream

target genes is evident. BBT-401 (48), a Peli1 target, is undergoing

phase II clinical trials to treat ulcerative colitis. Several other drugs

have shown promise in targeting Peli1, including the Smad6-

derived peptide Smaducin-6, compound S62, and resistin (22, 24,

133). Blocking Peli1 can confer protective effects in numerous

diseases; however, exploring Peli1 agonists remains an intriguing

area of investigation, as they could potentially enhance the

protective effects of Peli1 in diseases such as SLE. TPDs and TCIs

have been used as cutting-edge therapeutic strategies based on

several E3 ligases, providing new directions for developing of
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targeted therapies for Peli1. However, side effects of targeting

Peli1 are inevitable, considering the involvement of Peli1 in

multiple diseases and biological functions. Therefore, novel drug

development and individualized therapeutic strategies are needed to

target Peli1 within reasonable limits and avoid adverse events as

much as possible.

Mounting evidence supports the predictive and prognostic

value of Peli1. Therefore, a comprehensive understanding of the

biological properties and molecular functions of Peli1 will facilitate

the development of novel clinical therapeutic strategies. This review

will advance future research on the role of Peli1 in immune diseases,

cancers, and other conditions. This review provides information on

the molecular mechanisms and directions for the clinical diagnosis

and treatment of diseases, offering fundamental insights and

evidence for potential future research areas, particularly in

inflammation and cancer.
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