
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Silke Paust,
Jackson Laboratory for Genomic Medicine,
United States

REVIEWED BY

Gianluca Matteoli,
KU Leuven, Belgium
Mercedes Lopez-Santalla,
Centro de Investigaciones Energéticas,
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Inflammatory bowel disease (IBD) is an umbrella term for two conditions

(Crohn’s Disease and Ulcerative Colitis) that is characterized by chronic

inflammation of the gastrointestinal tract. The use of pre-clinical animal

models has been invaluable for the understanding of potential disease

mechanisms. However, despite promising results of numerous therapeutics in

mouse colitis models, many of these therapies did not show clinical benefits in

patients with IBD. Single cell RNA-sequencing (scRNA-seq) has recently

revolutionized our understanding of complex interactions between the

immune system, stromal cells, and epithelial cells by mapping novel cell

subpopulations and their remodeling during disease. This technology has not

been widely applied to pre-clinical models of IBD. ScRNA-seq profiling of murine

models may provide an opportunity to increase the translatability into the clinic,

and to choose the most appropriate model to test hypotheses and novel

therapeutics. In this review, we have summarized some of the key findings at

the single cell transcriptomic level in IBD, how specific signatures have been

functionally validated in vivo, and highlighted the similarities and differences

between scRNA-seq findings in human IBD and experimental mouse models. In

each section of this review, we highlight the importance of utilizing this

technology to find the most suitable or translational models of IBD based on

the cellular therapeutic target.

KEYWORDS
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Introduction

Inflammatory bowel disease (IBD), consisting of ulcerative colitis

(UC) and Crohn’s disease (CD), is a chronic relapsing and remitting

inflammatory mediated disorder of the lining of the gastrointestinal

tract, resulting in clinical symptoms (1). Changes and functional

alterations of immune cells and non-hematopoietic cells (including

epithelial and stromal cells) are hallmarks of the onset and sustained

inflammation associated with IBD (2, 3). Much of what we know

about human IBD pathogenesis is attributed to the use of numerous

pre-clinical models of IBD. These models include chemically-

induced, spontaneous, immune cell-induced, and microbiota-

dependent colitis models. These models have been extensively

reviewed (4, 5) and the most common pre-clinical IBD models are

summarized in Table 1. While numerous pre-clinical models of IBD

exist, no single model fully recapitulates the complexity observed in

human IBD. Thus, there remains a need to further validate these pre-

clinical models of IBD and identify mucosal cell subpopulations with

their associated disease-relevant phenotype which may overlay with

human IBD. This understanding will potentially increase their

translatability into the clinic and help define the best model to test

novel therapeutic targets and modalities.

Multimodal single-cell technologies, such as single cell RNA-

sequencing (scRNA-seq), have allowed for in-depth analysis and

a deeper understanding of tissue architecture and function at

individual-cell high-resolution (24). ScRNA-seq has been

instrumental to our understanding of immunology and

autoimmune diseases, where complex cellular heterogeneity and

interactions between immune cells, stromal cells, and epithelial cells

are paramount for disease progression. These technologies have

enabled an improved understanding of human IBD by identifying

novel or rare cell types that were previously undiscovered and how

their abundance or function changes during intestinal inflammation

may be a driver of disease (25). While scRNA-seq technology has

been applied to numerous UC and CD cohorts to better understand

the complex biology between immune cells and non-hematopoietic

cells, this technology has only begun to be applied to pre-clinical

models of IBD for comparative studies with the human condition.

While studies have enriched specific cell populations from pre-

clinical models of IBD and characterized these cells by scRNA-seq

(26–28), there are gaps in the knowledge of the entire makeup of the

inflamed tissue. In this review, we have summarized the key

findings from a longitudinal scRNA-seq study that analyzed

immune cells, stromal cells, and epithelial cells. Furthermore, we

highlight the similarities and differences between scRNA-seq in

murine models compared to human IBD. Finally, we emphasize the

need for utilizing scRNA-seq technology to find suitable

translational models based on the therapeutic target.
A longitudinal scRNA-seq atlas in
experimental colitis

While there are other studies utilizing scRNA-seq in enriched cell

populations from pre-clinical models, highlighted below is one study

that has applied scRNA-seq technology to comprehensively describe
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the landscape of the epithelial cell, stromal cell, and immune cell

populations during the onset and resolution of intestinal

inflammation (29). Ho et al. subjected wild-type mice to 1.5%

dextran sodium sulfate (DSS) drinking water for 6 days, then

placed mice on regular drinking water for the remainder of the

study. Colon tissue was collected frommice on days 0, 3, 6, 9, 12, and

15 in biological triplicates. ScRNA-seq was performed on viable cells

and 14,624 cells were profiled. ScRNA-seq analysis identified 15

clusters including: mononuclear phagocytes (Il1b, C1qa, and C1qb),

epithelial: enteroendocrine cells (Scgn and Pcsk1n), epithelial:

absorptive and secretory cells (Muc2, Spink4, Lypd8, and Elf3),

endothelial cells (Pecam1 and Flt1), lymphatic cells (Lyve1), stromal

cells (Col1a1, Pdgfra, and Spon2), two myofibroblast clusters (Acta2

andMyh11), interstitial cells of Cajal (Ano1 andKit), enteric glial cells

(S100b), T cells (Cd3d and Cd3g), plasma cells (Igha and Mzb1),

plasmacytoid dendritic cells (Siglech and Ccr9), B cells (Cd19 and

Cd22), and granulocytes (Cd14, S100a8, and S100a9) (29).

To assess changes in the cellular composition, the numbers of cells in

every cluster were counted at each sampling time point. Epithelial cells,

stromal cells, myofibroblasts, interstitial cells of Cajal, and enteric glial

cells were reduced in number with inflammation and did not repopulate

during the resolution phase. In contrast, the numbers of granulocytes and

B cells increased with inflammation and did not return to homeostatic

numbers measured at steady state. Mononuclear phagocytes peaked in

number 6 days after DSS administration and returned to baseline at the

end of the study after the removal of DSS drinking water. Lastly, plasma

cells decreased at days 6 and 9, but recovered in total numbers by the end

of the resolution phase on drinking water at day 12. Furthermore,

differentially expressed gene (DEG) analysis demonstrated phenotypic

changes in mononuclear phagocytes and stromal cell clusters across all

time points. The authors selected 96 “IBD risk genes” to assess how the

DEGs identified in their longitudinal scRNA-seq study correlated with

human IBD, 79 of the selected 96 human IBD risk genes were expressed

at one or more time points and in one or more of the dysregulated cell

clusters, suggesting that a dynamic expression pattern is under regulation

during intestinal inflammation (29). One example is Ifng, which was

found to be expressed during the time points associated with

inflammation within the T cell cluster (29).

While scRNA-seq has been seldom applied to pre-clinical models

of IBD, scRNA-seq has been more readily applied tomultiple CD and

UC patient cohorts to identify novel cell types, cell-cell interactions,

and to generate new hypotheses of IBD pathogenesis. We will discuss

in the next section the differences that have been found in human

IBD using scRNA-seq in the epithelial cell, stromal cell and immune

cell compartments compared to the limited murine studies including

but not limited to the study described above.

scRNA-seq in human IBD by cell type
and differences observed in
murine models

Intestinal epithelial cells

The lining of the gastrointestinal tract (GI) is composed of

diverse populations of intestinal epithelial cell lineages with
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TABLE 1 Summary of the most commonly used pre-clinical models of IBD.

Advantages References

y contents into Can induce both acute and chronic inflammation,
Can model “flare” and “remission” periods of human disease

(6)

hat drive Drives robust TH1 and TH17 immune responses in the colon tissue (7, 8)

Model can be used to interrogate type-2 immune responses, specifically IL-13 and
the role of NKT cells

(9, 10)

the absence of Can study T cell subsets, polarization, and migration into the lamina propria,
Can study the role of Treg suppression of effector CD4+ T cells

(11, 12)

ell infiltration This model has allowed for a better understanding of the impact of the
microbiome on intestinal inflammation

(13, 14)

ecrete cytokines
NK cells

This model can be used to study the role of innate immune cells in
intestinal inflammation

(15)

response to the
ystem

Initial model that identified a colitogenic microbiota.
Treatment of TRUC mice with anti-TNF alleviates inflammation

(16, 17)

develops in the
sponse.

A pre-clinical model that displays inflammation in the terminal ileum and the
administration of anti-TNF alleviates inflammation – relevant for Crohn’s disease

(18)

n of TNF due to Develops patchy inflammation in the ileum and proximal colon – similar to
Crohn’s disease,

Neutralization of TNF alleviates inflammation,
100% penetrance of disease in this strain of mice

(19, 20)

kine production
nses

Models human infection with enteropathogenic Escherichia coli,
Allows the researcher to understand host-pathogen interactions in the context of

intestinal inflammation

(21)

aling, colitis is
17A

A model for studying the role of IL-10, IL-23, IL-17A, and the innate immune
system in the development of intestinal inflammation

(22, 23)

K
arm

e
le

e
t
al.

10
.3
3
8
9
/fim

m
u
.2
0
2
3
.12

9
19

9
0

Fro
n
tie

rs
in

Im
m
u
n
o
lo
g
y

fro
n
tie

rsin
.o
rg

0
3

Classification Type Mechanism

Chemical Dextran Sodium
Sulfate (DSS)

Destruction of colonocytes and dissemination of microbial and dietar
the underlying lamina propria

Chemical Trinitrobenzene
sulfonic

acid (TNBS)

TNBS serves as a hapten that couples with intestinal antigens t
immunogenic responses

Chemical Oxazolone Oxazalone serves as a haptenizing agent

Immune
cell-mediated

T cell adoptive
transfer model

Naïve CD4+ or CD8+ T cells become activated by the microbiota in
Tregs and secrete IFNg and IL-17A

Genetically
Engineered

Il10-/- Develop spontaneous colitis characterized by progressive immune c

Antibody-induced Anti-CD40 Agonistic anti-CD40 mAb activates dendritic cells and monocytes to s
including IL-12 and IL-23, driving the secretion of IFNg from

Spontaneous TRUC Spontaneous colitis develops by the production of TNFa and IL-23 in
microbiota due to T-bet deficiencies in the innate immune s

Spontaneous SAMP1YitFc Generated by interbreeding of AKR mice. Spontaneous inflammation
terminal ileum and cecum, and is driven by TH1 immune re

Spontaneous TNFDARE Ileitis develops spontaneously due to increased stability and productio
the deletion of the TNF AU-rich elements.

Infectious Citrobacter
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Infectious Helicobacter
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specialized functions. These epithelial cells are derived from a

common stem-cell precursor, which expresses LGR5 (30).

Intestinal epithelial cells contribute to intestinal homeostasis by

maintaining barrier function and secreting mediators in response to

the microbiota and underlying immune cells in the lamina propria.

The first scRNA-seq study analyzing human colonic epithelial

cells from healthy volunteers or patients with UC, sampled from

clinically inflamed and noninflamed mucosa, was published by

Parikh et al. in 2019 (31). Visualization of scRNA-seq data

identified 10 clusters of intestinal epithelial cells including

undifferentiated cells, absorptive colonocytes, goblet cells, and

unique enteroendocrine cell populations including L-cells,

enterochromaffin cells, and precursor-like cells, and 5 clusters

of stem cells. In UC, two additional clusters were identified

representing inflammation-associated goblet cel ls and

intraepithelial immune cells. Not only did this analysis provide a

comprehensive landscape of the epithelial cells that are present in

the healthy colon, but also identified their dysregulation in inflamed

UC. One of these subsets were “BEST4/OTOP2” colonocytes.

BEST4 encodes a calcium-sensitive chloride channel, while

OTOP2 encodes a proton-conducting ion channel. These findings

highlighted the power of scRNA-seq technology in identifying novel

cell populations which could contribute to intestinal homeostasis

and/or inflammation. Another prominent cell type linked to disease

pathogenesis and barrier function are goblet cells. Goblet cells are

mucus-secreting epithelial cells that are critical for the maintenance

of barrier function and prevention of bacterial translocation. In IBD

both their function and numbers become dysregulated (32).

ScRNA-seq analysis of healthy human and UC colonic tissue

revealed a distinct cluster of inflammation-associated goblet cells

that had decreased expression of WFDC2 (31), a gene encoding an

anti-protease enzyme (33). To explore the significance of the loss of

WFDC2 expression in goblet cells in intestinal homeostasis,

Wfdc2+/- mice were generated. These mice had abnormalities in

colonic epithelial intercellular tight junction proteins, mild-to-

modest epithelial cell hyperplasia, immune cell infiltration into

the tissue, and proximity of gram-negative and gram-positive

bacteria to the colonic epithelium compared to littermate controls

(31). Although these mice were not subjected to an induced model

of colitis, this study demonstrates how findings from human

scRNA-seq samples can be translated in an in vivo setting of

gastrointestinal tract dysregulation.

These novel populations become critically important in IBD as

breakdown in intestinal barrier function is a hallmark phenotype.

There has been great interest in underpinning the mechanisms and

contributions of epithelial subsets in this loss of barrier function and

to target barrier regeneration with novel therapeutics. In other

studies, the authors have performed scRNA-seq analysis on healthy

and CD or UC cohorts to assess the transcriptomic changes in

epithelial cell subsets. One common finding amongst these scRNA-

seq analyses is a depletion of BEST4+/OTOP2+ colonocytes in UC

and CD compared to healthy controls (31, 34, 35). While BEST4-

expressing colonocytes are present in the human GI tract, this cell

population is absent in the murine gut (36).

The primary function of microfold (M) cells is the transport of

antigens from the lumen of the intestine to gut-associated lymphoid
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tissues such as Peyer’s patches (37). ScRNA-seq uncovered an

expansion of M cells in UC patients compared to healthy controls

(34). Furthermore, these cells expressed elevated levels of CCL20

and CCL23, important chemokines driving immune cell

recruitment into the inflamed tissue. The expansion of M cells,

detected by immunohistochemistry, held true in a DSS colitis model

and treatment with an anti-TNF antibody abrogated the expansion

of M cells in the inflamed tissue in mice, suggesting the pro-

inflammatory milieu in IBD can impact the differentiation of

intestinal epithelial cells during disease (38).

In addition to aiding in our understanding of cell populations in

barrier breakdown at the single cell level, scRNA-seq has

contributed to identifying novel biological pathways in epithelial

cells. Gasdermin-D (GSDM) plays a pivotal role in driving cell

death through the pore-forming activity of the protein’s N-terminus

and has recently been discovered to be required for IL-1b release

(39, 40). ScRNA-seq of colonic tissue between healthy and UC

patients revealed that secretory and absorptive progenitors, as well

as colonocytes, from UC patients express elevated levels of GSDM

(31, 41). This finding highlights a new mechanism by which

GSDM-mediated IL-1b release by intestinal epithelial cells could

sustain intestinal inflammation. In yet another example of how

scRNA-seq translated into an in vivo model, Gsdmd+/- mice are

protected from DSS-induced colitis as indicated by a decreased

infiltration of neutrophils, macrophages, and T cells, and decreased

expression of inflammatory cytokines and chemokines (41). This

study reiterates the power of scRNA-seq in identifying pathways in

previously underappreciated cell populations that are critical

for inflammation.

In the longitudinal DSS study described above by Ho et al. (29),

upon administration of DSS, enteroendocrine and both absorptive

and secretory epithelia cell clusters were reduced. Thus, applying

scRNA-seq to additional pre-clinical IBD models would be

advantageous to find a suitable model to translate scRNA-seq

findings in epithelial cells in human IBD.
Stromal cells

Stromal cells are part of the mesenchymal compartment of the

intestine, and represent a distinctive heterogeneous population

comprised of non-hematopoietic, non-epithelial cell types (42).

Mesenchymal cells regulate homeostasis by promoting

extracellular matrix (ECM) turnover through the secretion of

ECM factors, such as collagen and glycoproteins, self-renewal of

the intestinal epithelial barrier through WNT/b-catenin signaling

and colon regeneration through production of prostaglandins (43).

However, in the context of inflammation these pathways are

subverted into inflammatory processes. During intestinal

inflammation, dysregulation of Wnt signaling leads to impaired

wound healing characterized by the activation of fibroblasts and

myofibroblasts, the accumulation of collagen-rich ECM,

culminating in fibrosis. Additionally, TGF-b1 signaling in

fibroblasts leads to their transition to an activated phenotype,

marked by an increase in ECM production, leading to fibrosis.

ScRNA-seq has played a significant role in elucidating the
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heterogeneous function of stromal cells and highlighted novel

‘cross-talks’ with other cells in the intestinal microenvironment.

In the first report using unbiased single-cell profiling of over 16,500

human colonic mesenchymal cells from healthy and treatment-

naïve UC patients, Kinchen and colleagues have shown how the

colonic mesenchyme compartment remodels in the context of IBD

(44). Specifically, the authors identified key stromal cell populations

involved in immune homeostasis in intestinal inflammation. They

identified a distinct cluster found near the epithelial crypts marked

by the expression of SOX6, F3 (CD142) andWTN genes, which was

important in mediating epithelial cell self-renewal in physiological

conditions. Interestingly, scRNA-seq of stromal cells from the DSS

colitis model revealed similarities between human and mouse

stromal cell clusters, with SOX6 being highly conserved between

the two (44).

ScRNA-seq of UC colonic mesenchyme revealed changes in

gene expression and cell composition within the stromal

compartment (44). Single-cell analysis identified 12 distinct

clusters, with a significant expansion of a cluster marked by genes

involved in response to TNF and leukocyte migration. Highly

ranked markers included lymphocyte trafficking chemokines, such

as CCL19 and CCL21; T cell co-stimulatory TNF-superfamily ligand

(TNFSF14/LIGHT) and MHC II invariant chain (CD74); CD24; IL-

33 and Lysyl oxidases. In UC, the enrichment of this cluster was

associated with a decrease in the SOX6 expressing cluster in

inflamed tissues, further highlighting the heterogeneous nature of

the stromal-driven responses. Thus, this study revealed a divergent

response in the context of disease, marked by an increase in pro-

inflammatory fibroblasts and a reduction in the stromal subsets

associated with epithelial self-renewal and resolution of disease. The

role of stromal cells in IBD was further validated in the DSS model

of colitis (44). ScRNA-seq analysis revealed high expression of Lox

and LoxI1 in the mesenchymal populations. Lastly, the authors

investigated whether blockade of this pathway could ameliorate

DSS. The Lox family of lysyl oxidases generate oxidative stress

responses, disturbing the redox balance within the tissues, which in

turn mediate recruitment of inflammatory mediators, thus

sustaining IBD pathogenicity. Indeed, administration of Lox/

LoxI1 inhibitor, b-aminopropionitrile, improved the clinical score

of mice receiving DSS drinking water (44).

Kong et al. profiled 720,633 cells from the terminal ileum and

colon of CD and non-IBD donors by scRNA-seq (45). The authors

identified CHMP1A, TBX3, and RNF168 as disease-associated genes

which are affiliated with myofibroblast activation (45). To validate

the roles of these three genes in fibrosis development, the authors

generated and pooled siRNA oligos to knockdown CHMP1A,

TBX3, and RNF168 in normal human intestinal fibroblasts.

Knockdown of CHMP1A, TBX3, and RNF168 significantly

impaired TGF-b-driven collagen gene expression (45).

To gain a better understanding of the complexity of the

fibroblast cellular networks and how they underly stricture

formation in CD, Mukherjee and colleagues have generated the

first scRNA-seq atlas of strictured bowel from CD patients (46).

Specifically, scRNA-seq was performed on CD resections

containing non-involved, inflamed non-strictured and strictured

segments, as well as non-IBD bowel segments. ScRNA-seq analysis
Frontiers in Immunology 05
revealed significant differences in the cellular composition between

non-inflamed, inflamed and strictured segments. Comparison

between non-strictured and strictured segments revealed

significant changes in lymphocytes, smooth muscle cells,

endothelial cells, fibroblasts and myeloid cells within the epithelial

and lamina propria fractions. Additionally, the strictures were

highly heterogenous with regards to cell composition, with 19

distinct cell types being identified, further clustered into

fibroblasts, smooth muscle and endothelial populations (46).

Further analysis of the fibroblast compartment revealed six

fibroblast populations enriched in CD strictures as opposed to

non-strictured segments (46). These fibroblasts were characterized

by an inflammatory phenotype, marked by the expression of pro-

fibrotic markers involved in TGF-b signaling, macrophage

differentiation and ECM production. However, the predominant

cluster in these strictures were the MMP+/WNT5A+
fibroblasts,

which were previously found to be enriched in the mucosa of

patients with UC resistant to anti-TNF therapy (46). Among the

populations within the stromal niche, CXCL14+ fibroblasts were the

main contributors to transcriptional changes in strictures. These

fibroblasts were associated with increased ECM production and

CXCL14 displayed pro-fibrotic functions (46).

More importantly, the authors identified Cadherin11 (CDH11)

as the only cell surface receptor co-expressed in both MMP+/

WNT5A+ and CXCL14+ fibroblasts. Interestingly, CDH11

expression was shown to increase in CD strictures. The

therapeutic potential of targeting CDH11 was shown in a DSS-

induced fibrosis model of colitis in Cdh11 knockout mice (46). In

this model, mice are subjected to two cycles of DSS drinking water

followed by a recovery period with normal drinking water. Despite

no differences in inflammation being observed in Cdh11 knockout

mice compared to wild-type controls, Cdh11-knockout mice were

protected from fibrosis development. Similarly, administration of

an anti-Cdh11 mAb ameliorated DSS-driven fibrosis. In a

longitudinal scRNA-seq analysis in the DSS model, Ho et al.

observed that stromal cell clusters had strong influences on other

clusters, highlighting their potential role in intestinal inflammation

(29). Looking closely at these interactions, the authors identified

relevant genes during the recovery phase, with the highest

expression observed in Serpina3n, a serine protease inhibitor. To

validate these observations, the authors examined the progression

of DSS colitis in a Serpina3n knockout mouse. Although the disease

progression was similar to wild-type mice, the knockout mice

recovered much faster. Furthermore, the authors examined the

mechanisms by which Serpina3n ameliorated DSS-induced

intestinal inflammation. Using scRNA-seq on colon treated with

Serpina3n protein, they observed that genes associated with ECM

organization and cytokine mediated signaling pathways were

enriched in stromal cells. Additionally, there was a decrease in

inflammatory interactions and in the number of neutrophils,

warranting the therapeutic potential of Serpina3n to accelerate

recovery from intestinal inflammation. Overall, scRNA-seq has

been crucial in characterizing the heterogeneity of the stromal

population, as well as their interactions with the immune

compartment in IBD. Alternatively, applying this technology to

preclinical models of IBD could help uncover important
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mechanisms underlying resistance to current therapies. To address

this, West and colleagues used transcriptomic approaches to

uncover relevant genes associated with anti-TNF resistance.

Oncostatin M (OSM) is expressed by stromal cells and was

identified as a potential biomarker associated with anti-TNF

failure (47). This observation was validated in a mouse model of

IBD driven by oral Helicobacter hepaticus infection and anti-IL-10R

blocking antibody, which mirrors the T cell-dependent pathology

driving resistance to anti-TNF therapy. Using this model, treatment

with an oncostatin receptor-Fc significantly attenuated colitis (47).

In a more recent study, bulk and single-cell transcriptomics have

been applied to inflamed tissue from three IBD patients’ cohorts

undergoing surgical resection (48). The authors observed similar

gene signatures from therapy non-responders, marked by genes

indicating high neutrophil infiltration and activation of fibroblasts

at sites of deep ulceration. Further analysis revealed important

neutrophil-attractant signatures in fibroblasts, marked by an

increase in IL-1R signaling, suggesting that this pathway is

important in the inflammatory fibroblast/neutrophil recruitment

in patients that are nonresponsive to current therapy (48).
Immune cells

Monocytes/macrophages and dendritic cells
In active IBD, macrophages secrete pro-inflammatory cytokines

and react to commensal bacteria, with CD exhibiting aggregates of

macrophages and other inflammatory cells (granulomas) associated

with higher resection risk (49). IBD susceptibility involves various

genetic loci linked to monocyte and macrophage function,

including NOD2, ATG16L1, and IRGM (50–52). In 2019, two

scRNA-seq studies explored intestinal macrophages in CD and

UC. One scRNA-seq analysis of 11 ileal CD patients revealed

resident and inflammatory macrophage subtypes. The resident

subtype expressed C1Qs, CSF1R, MAFB, and MRC1, while

inflammatory macrophages showed elevated levels of chemokines

(CXCL2, CXCL3, CXCL8) and cytokines (IL23, IL6, IL1B, IL1A,

TNF, OSM) Notably, pro-inflammatory interactions between non-

epithelial stromal cells and macrophage-derived oncostatin-M

(OSM) were found within the inflamed intestine, linked to anti-

TNF-resistant CD (53). The second scRNA-seq study conducted on

18 UC patients revealed the presence of an inflammatory monocyte

cluster with prominent levels of OSM expression that were

associated with disease progression and resistance to anti-TNF

treatment. A macrophage cluster was also identified that closely

interacts with B cells and T cells. This macrophage cluster exhibited

an enrichment of genes linked to IBD susceptibility, such as GPR65,

ADCY7, PTGER4, PTPRC, and SH2B3 (34). A very recent scRNA-

seq study provided a therapeutic map for CD and UC after anti-

TNF therapy in a longitudinal manner (54). Importantly, the

presence of a granuloma signature, characterized by C1Qhigh

IL1Blow resident macrophage cells, was specifically associated with

non-responders in CD. Moreover, genes associated with an

inflammatory monocyte profile (S100A9, S100A12, FTH1, IL1RN)

showed higher levels in non-responders but were reduced in

responders. The latest study utilizing scRNA-seq and spatial
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analysis (CosMx Spatial Molecular Imaging) found that resident

macrophages were present in both healthy and active IBD patients

(55). Notably, inflammatory macrophages displayed patient-

specific adaptation, characterized by an alternative activation

pattern featuring the expression of EGFR ligands, NRG1, HBEGF,

CLEC10A, and ASGR1, differing from the conventional M1

signature. The study also suggested a potential role of interactions

between M2 or inflammation-dependent associated macrophages

(representing the predominant inflammation-dependent

macrophage state) and inflammatory fibroblasts in contributing

to disease pathophysiology.

Through scRNA-seq studies in mice (56–61), we have gained

insights into the diverse inflammatory roles of gut macrophages. In

the DSS-induced colitis study, the abundance of Il1b+ C1qa+ C1qb+

macrophages increased in diseased animals, peaking post DSS

administration, then returning to baseline during water

administration (29). The mouse single-cell findings align with

how intestinal cues influence transcription factors shaping

macrophage subsets. The recent single-cell investigation using the

Helicobacter hepaticus-induced colitis model, highlights interferon

regulatory factor 5 (IRF5)’s role in mucosal macrophage

differentiation. Irf5 knockout hindered CD11c+ mucosal

macrophage formation, unveiling IRF5’s contribution to pro-

inflammatory CD11c+F4/80+ macrophages during inflammation,

driving colitis development (60). IRF5’s link to inflammatory

macrophages and genetic risk factors for UC and CD underlines

these mouse findings’ translational relevance to human IBD (62).

Dendritic cells (DCs) are antigen presenting cells that bridge

both innate and adaptive immune responses. In the intestine, DCs

continuously sample antigens by extending processes through the

epithelial cells and glycocalyx layers into the lumen, or by remaining

in the lamina propria or Peyer’s patches to process antigens that

may have translocated (63). While multiple scRNA-seq studies in

humans have begun to showcase the importance of different DC

subsets in driving IBD pathogenesis, scRNA-seq studies in mouse

models of IBD lag, specifically in the inclusion of diverse DC

subsets, such as plasmacytoid DCs (pDCs), conventional DCs

(cDCs), and monocyte-derived DCs (moDCs) (34, 45, 53, 54, 64).

Corbin et al. used Helicobacter hepaticus-induced colitis coupled

with an anti-IL-10R mAb in Irf5-/- mice and found the frequencies

of DC populations during ongoing inflammation remained

unchanged compared to steady-state (60). ScRNA-seq analysis on

mononuclear phagocytes taken from the inflamed colonic lamina

propria of CX3CR1+ wild-type and Irf5-/- mice. Within the four

clusters of DCs, all lacked Cd64 expression, but included Flt3,

Cd11c, and the DC-specific MHCII genes H2-DMb2 and H2-Oa.

DC2-like cells were identified by Sirpa, Kmo, Cd209a, and Cd7

expression. The strong expression profile of Pu.1 but low Flt3

expression within these cells from these clusters suggested some

may be moDCs. The other two clusters were likely representative of

cDC1s (termed “Xcr1 DC” and expressing Xcr1high Irf8high Sirpalow)

and a smaller group of Ccr7+ migratory DCs. Ho et al. also

identified by scRNA-seq that pDCs decrease in number shortly

after DSS exposure, however, the numbers stabilize over the

resolution phase (29). Overall, this experiment showed that the

heterogeneity of DCs could be identified and classified in the
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inflamed colonic tissue from these mice using scRNA-seq. The

scarcity of murine single-cell studies necessitates further scRNA-seq

in IBDmodels for a better understanding of these cells’ pivotal roles.

CD4+ T cells
CD4+ T cell function in the intestine can be broadly categorized

as effector (pro-inflammatory) or regulatory (anti-inflammatory).

Regulatory T cells (Tregs) are CD4+ T cells that are critical for

tolerance and dampening excessive immune responses against

dietary and microbial antigens, an integral mechanism for

maintaining intestinal homeostasis (65). In IBD, this balance of

anti-inflammatory Treg function is lost and exuberant pro-

inflammatory T cell responses against the commensal microbes

drives and sustains chronic inflammation. In the paragraphs below,

we will mainly highlight Treg and TH17 biology (63).

Regulatory T cells
ScRNA-seq studies have been instrumental in advancing our

understanding of the complex cellular heterogeneity and gene

expression patterns of intestinal Treg cells in UC and CD.

ScRNA-seq uncovered previously unidentified FOXP3+ cell

subtypes involved in IBD. In a related study, Corridoni et al. (66)

utilized multi-modal scRNA-seq to examine colonic CD8+ T cells in

healthy individuals and those with UC. Interestingly, they noted an

elevated presence of double-positive CD4+ CD8+ FOXP3+ T cells in

UC patients. Smillie et al. (34) noted heightened levels of CD8+IL-

17+ T cells and Tregs in inflamed UC tissues. They observed a TNF

expression shift towards Tregs during inflammation. The study

proposed that TNF+ Treg cells could significantly influence IBD

progression, potentially causing resistance to TNF antibodies and

playing a crucial role in CD8+ T cell adaptability. In healthy tissue,

Tregs represented 1% of TNF expression, but this increased to over

14% during inflammation. Interestingly, in another study by Devlin

et al. 67) found increased FOXP3+/BATF+ Treg cells in inflamed

UC patients. They used scRNA-seq on CD45+ hematopoietic cells

from UC patients with and without ileal pouch-anal anastomosis.

These Tregs were enriched in inflamed UC and pouchitis samples,

suggesting a role for BATF in their recruitment during

inflammation. ScRNA-seq conducted by Boland et al. (68)

revealed transcriptionally distinct Tregs expressing ZEB2 in UC.

Among Treg gene profiles, 288 genes differed between healthy

individuals and UC patients, including SATB1, KLF2, MYC, and

ITGB1, associated with Treg function. Notably, ZEB2, linked to

CD8+ T cell function, exhibited high expression in UC-related Treg

cells. The reduction of ZEB2 enhanced suppressive function in

murine Treg cells.

Huang et al. (69) analyzed initial diagnosis colon biopsies from

healthy individuals and CD/UC patients, finding enriched Treg cells

(slightly more in CD) and CD8+GZMK+ effector memory T cells in

both conditions. Additionally, Jaeger et al. (70) used scRNA-seq and

multi-parameter flow cytometry or mass cytometry to examine CD

patients’ inflamed terminal ileum tissue. Inflammatory tissue IEL

showed reduced Tregs, CD8+T, gdT and TFH but elevated TH17

cells. Lamina propria (LP) analysis revealed decreased Tregs and TFH

cells, while CD8+T cells and TH17 cells increased. Tregs in LP were

enriched in GPX1 and GLRX, associated with oxidative stress
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protection via FOXP3. GPX1 expression in LP Tregs hinted at

activated anti-oxidative pathways, pertinent to CD due to GPX1

gene’s CD risk connections. Martin et al. (53) examined ileal samples

from 13 CD patients at the single-cell level. In their pursuit of

unraveling the cellular profile linked to resistance against anti-TNF

drug therapy, they observed an abundance of Tregs with elevated IL-10

levels, along with low IL-17A expression within inflamed ileal lesions.

Additionally, Treg populations have been detected in CD and UC

patients by Mitsialis et al. (71). They observed pro-inflammatory

memory-like IL17A+ Treg subsets expanded uniquely in active UC.

Among IBD-enriched memory Tregs, one group was FOXP3+, while

another was FOXP3low with strong pro-inflammatory cytokine

expression (IFNG+TNF+IL17A+/–), indicating altered Treg function

in IBD. Additionally, they observed an unusual expansion of novel

IL1B+ Tregs in peripheral active CD compared to inactive CD and

active UC. Furthermore, in a recent development by Nie et al., a

computational tool called “scIBD” provided an integrated assessment

of scRNA-seq data associated with IBD. This platform enabled the

recognition of different cell types and IBD-associated genes. The meta-

analysis corroborated the greater prevalence of Tregs in both UC and

CD compared to healthy tissues, consistent with prior findings (72).

The study by Miragaia et al. (73) conducted single-cell analysis to

comparatively investigate human and murine colon Treg

populations. In mice, three distinct Treg subpopulations were

identified: non-lymphoid tissue (NLT), suppressive, and lymphoid

tissue-like (LT). NLT Tregs displayed a GATA3+-subpopulation

phenotype, expressing Gata3, Nrp1, Areg, Il1rl1, and Ikzf2, while

suppressive Tregs resembled the peripherally derived RORgt+-
subpopulation. LT-like Tregs exhibited LT-associated gene

expression (Sell, Ccr7, Tcf7, Bcl2) and fewer NLT-associated genes

(Klrg1, Cd44, Icos, Rora, Tnfrsf9, Itgae), signifying functional

diversity. Notably, 17 human-mouse colon Treg markers

overlapped, including Tnfrsf4, Lgals1, Srgn, Cxcr6, Maf, and Ikzf3,

indicating conserved roles. Paralogous genes demonstrated inter-

organism expression pattern substitutions (e.g., Pim1-Pim2), hinting

at the evolution of cellular communication pathways. Despite

interspecies disparities, the study underscores the conservation of

the TNFRSF-NF-kB-pathway between mice and humans (73).

Surprisingly, the scRNA-seq study mentioned earlier, which

focused on the murine DSS model (29), did not identify Tregs in

any of the collected time course samples. However, a very recent

preprint (74) took a different approach. Using MERFISH, a method

for spatially resolved single-cell transcriptome profiling, they studied

spatial and cellular changes during gut inflammation initiation and

recovery in a DSS model. In day 9 samples, corresponding to peak

inflammation after DSS administration, mucosal remodeling was

observed, along with the appearance of diverse cell populations,

including Tregs. Thus, the limited investigation of murine Tregs at

the single-cell level underscores the need for further scRNA-seq

studies on murine IBD models to gain a deeper understanding of

the roles played by this essential cell population.

TH17 cells
Naïve CD4+ T cell polarization towards an effector phenotype

requires signals from antigen-presentation, co-stimulation, and

cytokines in the local tissue environment. In vitro polarization of
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human CD4+ T cells towards a TH17 phenotype requires TGF-b,
IL-1b, IL-6, IL-23 and the expression of RAR-related orphan

receptor g (RORgT) (75). Polarized TH17 cells secrete IL-17A, IL-

17F, and IL-22 – cytokines which are associated with the

development of inflammation. While not required for TH17

differentiation, IL-23 signaling, through the IL-23 receptor

complex, promotes RORgT stability and the acquisition of a

pathogenic phenotype in these cells. IL-23 is upregulated

in numerous autoimmune diseases, including IBD (76).

Furthermore, genome-wide association studies have identified

IL23R as a genetic susceptibility locus for IBD. A key role for IL-

23 in IBD pathogenesis has been highlighted by the clinical efficacy

of anti-IL-23 biologics (77–79).

Jaeger et al. used scRNA-seq analysis to compare T cells from

intra epithelial lymphocytes (IELs) and the lamina propria (LP)

found in the terminal ileum of adults with severe CD to measure

heterogeneity in T cell lineages and subsets (70). There was a

marked increase in pro-inflammatory, activated CD39+CCR6+

and CD39+CD4+ TH17 cells but decreased CD8+T, gdT, TFH and

Treg cells in the IEL compartment of CD patients, demonstrating

that loss of balance between TH17 and Treg cells plays an important

role in disease progression. Within IELs, they identified unique T

cell clusters, including one with NKp30+gdT cells expressing RORgt
and producing IL-26 upon NKp30 engagement. Some of these T cell

subsets expressed TH17 markers including RORC, IL23R, IL22,

CXCR4, and IL26. While these RORgt+ gd T cells have been shown

and described in mouse models (80, 81), Jaeger et al. identified this

subset of gd T cells in the IEL of humans. gd T cells can constitute as

much as 40% of the IELS in the intestine. These cells can have

cytotoxic, immunoregulatory, and tissue repair functions within the

intestinal mucosa (82). However, the role of human gd T cells in CD

remains to be fully elucidated, with multiple studies showing either

a decrease or increase in number in the blood or inflamed tissue

(82). Similar analysis in the LP found a biased TH17/Treg ratio in

CD. The CD39+ TH17 cells that were found within the IEL may

prove to be a double-edged sword, as their expression of GZMB and

CCL4 could make them pathogenic and able to recruit other

inflammatory cell types to increase epithelial damage (70).

Conversely, their production of IL-17 and IL-26 may enhance

epithelial barrier integrity and protection (70). Overall, this study

showed an altered spatial distribution of T cell subsets between the

two cellular compartments, with TH17s in the LP bearing more

markers of quiescence (i.e., CXCR4 and CD39) than in the IEL

compartment that may correlate with transmural inflammation

during IBD pathogenesis (70).

An atlas of over 350,000 cells from the colonic mucosa of

patients with and without UC was used to reveal 51 cell subsets,

including epithelial, stromal, and immune cells (34). When

reviewing T cells, several CD4+ T cell subsets showed increased

expression of IL17A, showcasing an expansion of TH17 cells with

pro-inflammatory phenotypes. However, the CD8+ T cell subsets

showed the largest induction on IL17A. Using an in-situ analysis,

the authors found CD8 co-expressed on both CD4- and CD4+ cells.
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These CD4+CD8+IL17+ T cells have been largely uncharacterized,

however, these cells correlated with activated cytotoxic programs

and genetic signatures conducive to TH17 pathogenicity and tissue

damage (e.g., RBPJ and IL23R) that have been reported in mice (83).

Kong et al. also showed IL23R to be an IBD risk gene in cells taken

from the colon and terminal ileum of patients with CD, but they

showed the greatest mean expression to be in innate lymphoid cells

(ILCs) in both tissue types (45).

A recent study in mice showed that colonic immunopathology

driven by Red 40, and IL-23 may not actually depend on these

classical TH17 responses; as IL-17A and IL-17F blockade did not

prevent colitis development in mice that conditionally expressed

IL23 in CX3CR1-positive myeloid cells (84). Additionally, they

sought to define this mechanism further. They used the T cell

transfer colitis model, an invaluable model to dissect pathogenic

and protective mechanisms of CD4+ T cells (11) and scRNA-seq to

identify a new population of IFNg-secreting CD4+ cytotoxic T

lymphocytes that were induced by IL-23 and the food dye Red 40

to promote colitis pathogenesis (27). Without IFNg, IL-23 and Red

40 did not induce progressive colitis development and prevented

colonic epithelial cell death, showcasing perhaps a specialized

relationship between IL-23, IL-17, IFNg, and overall TH17

signaling in the development of IBD in mice (27).

In a longitudinal DSS mouse model, Ho et al. looked at how cell

phenotypes changed during inflammation (29). Using a pseudotime

analysis, significant changes were observed in T cell subsets (which

expressed Cd3d and Cd3g). The IBD risk gene Ifng was expressed

over the entire DSS-induced disease time course in the T cell cluster

but only at day 6 in stromal cells, indicating subtle dynamic

phenotypic changes in different cell types. Capturing these subtle

changes over time in a human model is difficult, exemplifying how

useful mouse models of IBD can be, especially when paired with

scRNA-seq analysis.
CD8+ T cells

CD8+ T cells are a cytotoxic T cell subset that drive cell-death

through numerous pathways including perforin and granzyme

release and by expressing FAS ligand (85). CD8+ T cells are

typically in lower abundance in the intestine at steady state

compared to CD4+ T cells (86). Despite numerous evidences that

IBD pathology is associated with exuberant CD4+ T cell responses,

recent scRNA-seq data revealed that CD8+ T cells also play a role in

IBD pathogenesis (25, 66, 68).

T cells sorted from the IELs of healthy donors and CD patients

revealed different CD8+ clusters (70). One of these clusters

expressed genes associated with an effector phenotype (KLRG1,

GZMB, GZMK, and IFNG). Whereas, the other CD8+ cluster highly

expressed the tissue residency marker ITGAE. When these cells

were analyzed further using a new clustering strategy, this

highlighted the expression of IL7R, IL2 and TCF7, genes

associated with a memory phenotype. The authors hypothesized
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that the resident memory CD8+ T cell cluster might gain cytotoxic

and antimicrobial functions via S100A family members during

inflammation. In the same study, scRNA-seq of CD8+ T cells in

the LP identified three clusters: effector CD8+ T cells (KLRG1,

EOMES, GZMB), a second group expressing CD160 and ITGA1,

and a third group expressing NK cell receptors such as KLRC1,

KLRD1, and ENTPD1 (70). In summary, similar and unique CD8+

T cell clusters were identified in the IEL and LP compartments of

CD patients.

A second scRNA-seq analysis of colonic T cells revealed that

CD8+ and gd T cells both expressed ENTPD1 (64). This gene codes

an ectonucleotidase that converts ATP and ADP to AMP. In colonic

CD8+ T cells from pediatric cases of colitis, decreased ENTPD1

expression was observed in association with a defective cyclic AMP

(cAMP) pathway. Mechanistically, the reduction of cAMP is

believed to result in platelet aggregation and hyperinflammation.

The authors then used DSS-induced acute colitis mouse model to

test the effect of dipyrimodole, a phosphodiesterase (PDE) inhibitor.

PDE is an enzyme the degrades and inactivates cAMP and cGMP,

therefore, inhibiting PDE will increase cAMP levels in vivo.

Administering mice dipyrimodole increased the colon length,

prevented body weight loss, improved barrier function, and crypt

structure in the DSS treated mice. As a result, they demonstrated

increased expression of Entpd1 and elevated cAMP levels also

influenced platelet aggregation and TNFa production, linking the

findings observed in a pre-clinical model of colitis back to human

IBD (64).

In yet another study, scRNA-seq of CD8+ T cells from

dissociated colonic tissues of UC patients, identified tissue

resident (ITGAE and DUSP4), naïve (SELL, CCR7, and TCF7)

double positive CD8+CD4+ (GZMA, RORA, and CCR6) and

increased numbers of IL26 expressing T cells (66). Although IL26

is not expressed in mice, human IL-26 can signal through the IL-

10RB and IL-20RA heterodimeric receptor in mice (87). Deeper

analysis of the IL26-expressing CD8+ T cells displayed both an ILC3

signature (RORC, CKIT and AHR), a TH17 signature, and several

exhaustion markers (PDCD1, HAVCR2, and CTLA4). Interestingly,

these IL26 expressing CD8+ T cells co-expressed IL23R and IL17A,

which has also been shown in a recent longitudinal human single

cell therapeutic atlas of IBD (54). To further assess the role of IL26

in UC, the authors subjected humanized IL26 transgenic mice to

DSS-induced colitis and tested the efficacy of an anti-IL-26

monoclonal antibody. Using these tools , the authors

demonstrated that IL-26 has a protective role in the acute model

of colitis in mice; however, whether IL-26 has the same protective

effect under chronic inflammation conditions remains to be

elucidated (66).

While typically associated with protecting the host from

infection, a pathogenic role for resident memory CD8+ T cells

(Trm) in autoimmune diseases have become appreciated (53, 68,

88). Boland and colleagues identified four CD8+ Trm clusters,

expressing high levels of CD69, ITGAE, CD101, CCR6, ITGA1

and lower levels of KLF2 and S1PR1, with unique clonal
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expansion of a cluster of CD8+ Trm cells in UC patients

compared to healthy controls (68). This cluster also expressed

transcripts encoding cytotoxic granules, metabolic regulators, and

the transcription factors ZEB2 and EOMES. The authors then used

two pre-clinical models of colitis to demonstrate a pathogenic role

for CD8+ T cells. First, Il10 knockout mice fed piroxicam had a

marked accumulation of CD8+ T cells in the colon. The

administration of an anti-CD8 mAb in these mice reduced weight

loss and colon pathology. Secondly, the adoptive transfer of CD8+ T

cells transduced with Eomes retroviral constructs into Rag1

deficient mice significantly increased weight loss and more

colonic inflammation after DSS administration (68).
B cells/plasma cells

Plasma cells are terminally differentiated B cells that secrete

immunoglobulin (Ig), including IgM, IgE, IgA, and IgG. While IgA

levels are highly abundant in the intestinal tissue and contribute to

intestinal homeostasis (89), anti-microbial IgG in the gut is also

observed at steady-state (90, 91). The large presence of anti-

microbial IgG observed in IBD has renewed interest due to an

FCGR2A variant associated with disease pathogenesis (92, 93).

Thus, the role of IgG in the inflamed mucosa of IBD patients is

an area of active investigation.

Huang et al. identified increases in CD138+ plasma cells in

pediatric CD subjects by scRNA-seq (64). More specifically, seven B

cell clusters including tissue resident B cells (CD44, CD69), CD19+

B cells, CD27high B cells, CD27low B cells, and two CD138+ plasma

cell clusters expressing IGHG1 and IGHA1 respectively were

identified. Interestingly, the tissue resident marker (CD103) was

increased in plasmablasts. In addition, they observed the transition

from IgA1 to IgG1 in the IBD subjects, in line with the study

showing the impact of CXCR4+IgG+ plasma cells to the IBD

pathogenesis (94). In another study scRNA-seq study by Boland

et al. characterized different subsets of B cells and plasma cells (68).

They observed an increase in the IgG1+ plasmablasts in UC whereas

IgA2+ plasma cells were elevated in the healthy controls. All

together, these scRNA-seq studies highlight the presence of B

cells in the inflamed mucosa and bias towards IgG class-switching

in plasma cells in human IBD. Uzzan and colleagues identified

twenty clusters of B cells isolated from the LP when comparing

healthy and UC patients (95). These clusters included naïve B cells

(IGHD, FCER2, and CD72), memory B cells (CD27 and

TNFRSF13B), atypical memory B cells (FCRL5, FCRL4, and

DUSP4), germinal center-like B cells (AICDA, BCL6, and FAS)

and plasma cell populations based on the expression of

immunoglobulin genes. Additionally, they detected an IFNG

signature specific to a naive B cell cluster expressing IGHD,

FCER2, and CD72 suggesting a shift in the systemic humoral

response towards a pro-inflammatory IgG B cell phenotype in UC.

Kong et al. collected tissue from CD patients and non-IBD

donors from inflamed and non-inflamed regions of the terminal
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ileum and the colon and characterized the cellular networks by

scRNA-seq (45). B cells were sub-clustered into plasma cells (SDC1,

MZB1, SSR4, XBP1), B cells (BANK, MS4A1/CD30, ASDAM28,

VPREB3) and germinal center B cells (LRMP, GPT2, PAG1). Plasma

cells were a higher percentage of the sample in inflamed CD in the

terminal ileum (45). Martin et al. described the GIMATS module,

consisting of the presence of IgG-expressing plasma cells,

inflammatory mononuclear phagocytes, activated T cells, and

stromal cells, is expressed in a subset of ileal CD and is linked to

anti-TNF therapy resistance (53).

On the other hand, in the mouse scRNA-seq study Ho et al.

described decrease in the IgA producing plasma cell population at

most severe time points of intestinal inflammation, whereas IgA

plasma cell numbers recovered during the resolution phase (29).

While differences in B cell biology have been identified between

healthy and human IBD, the role of B cells has begun to be explored

in pre-clinical models of IBD. In a separate study by Frede et al, they

performed another longitudinal DSS-colitis study where scRNA-seq

was performed on enriched B cells from the colonic LP on days 0

and 14 after DSS exposure in mice (26). While no differences in B

cell cluster numbers were observed, the authors identified an

expansion in an IFN-induced B cell cluster marked by Serpina3g,

Serpina3f, Stat1, Tgtp2, and Zpb1 during the mucosal healing stage

of disease at day 14. Subsequent experiments where B cells were

depleted by administering CD19cre-iDTRHET mice diphtheria toxin
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during DSS administration enhanced tissue regeneration,

suggesting a pathogenic role of B cells in mucosal healing (26).
Conclusions and future perspectives

The advances and application of single cell transcriptomics to

human IBD samples have revolutionized our understanding of the

complex and dynamic interactions between epithelial cell, stromal

cell, and immune cell populations. Additionally, this technology has

also been instrumental in identifying novel cell types and rare

populations of cells, which were likely not detected previously.

While numerous human IBD scRNA-seq studies were highlighted

in this review, it is evident that the application of this powerful

technology has not been applied enough to pre-clinical models of

IBD to translate findings found in human disease. To our

knowledge, the only pre-clinical model that applied scRNA-seq to

generate a comprehensive landscape of epithelial cells, stromal cells,

and immune cells was the longitudinal DSS study by Ho et al. (29).

However, this study did not identify all cell types that have been

identified by scRNA-seq in human studies (Figure 1). For example,

a recent study combining scRNA-seq with spatial analysis (65)

uncovered notable diversity within neutrophils in IBD colonic

mucosa. Neutrophils were categorized into three distinct states

(N1, N2, and N3) based on their unique gene expression profiles.
FIGURE 1

Summary of epithelial cell, stromal cell, and immune cell populations identified by scRNA-seq in the DSS-induced colitis model and human IBD. Highlighted
key cell populations identified in this review that describe similar and different cell populations between the DSS-colitis pre-clinical model and human IBD.
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Furthermore, novel clusters of innate lymphoid cells have been

identified and contribute to intestinal inflammation (96, 97). Thus,

by expanding the use of scRNA-seq to other pre-clinical models of

IBD, we will be better equipped to select the most appropriate

model to translate and functionally validate findings from human

IBD studies.

Furthermore, by expanding the use of scRNA-seq to all pre-

clinical models to generate comprehensive disease atlases with

epithelial cells, stromal cells, and immune cells will warrant the

opportunity to generate novel hypotheses for therapeutic strategies

(Figure 2). Overlaying gene signatures at the single cell level from

human IBD and numerous pre-clinical models would significantly

increase the likelihood of selecting the most appropriate pre-clinical

model to test novel first- and best-in-class therapeutics and

modalities to treat and ultimately cure IBD.
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FIGURE 2

Summary figure of how translating single cell findings in human to pre-clinical models improves our understanding of disease. Human IBD gene
signatures at the single cell level could be overlayed with single cell gene signatures from multiple pre-clinical models of IBD allowing for data-
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