
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Mehdi Benamar,
Harvard Medical School, United States

REVIEWED BY

Haopeng Wang,
ShanghaiTech University, China

*CORRESPONDENCE

Yuanteng Xu

xyt973@163.com

Chang Lin

linc301@sina.com

RECEIVED 10 September 2023

ACCEPTED 13 December 2023
PUBLISHED 05 January 2024

CITATION

Lin H, Xu Y and Lin C (2024) Heterogeneity
and subtypes of CD4+ regulatory T cells:
implications for tumor therapy.
Front. Immunol. 14:1291796.
doi: 10.3389/fimmu.2023.1291796

COPYRIGHT

© 2024 Lin, Xu and Lin. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Mini Review

PUBLISHED 05 January 2024

DOI 10.3389/fimmu.2023.1291796
Heterogeneity and subtypes of
CD4+ regulatory T cells:
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Hanqing Lin1,2, Yuanteng Xu1,2* and Chang Lin1,2*
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In the conventional view, CD4+ regulatory T cell (Treg) represents a subset of

lymphocytes that involve the perception and negative regulation of the immune

response. CD4+Treg plays an important role in the maintenance of immune

homeostasis and immune tolerance. However, recent studies have revealed that

CD4+Treg do not suppress the immune response in some diseases, but promote

inflammatory injury or inhibit tissue remodeling, suggesting the functional

heterogeneity of CD4+Treg. Their involvement in tumor pathogenesis is more

complex than previously understood. This article reviews the relevant research

on the heterogeneity of CD4+Treg, subtype classification, and their relationship

with tumor therapy.
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1 Introduction

CD4+ regulatory T cell (Treg) was first identified by Sakaguchi et al., who discovered a

population of CD4+CD25+T cells in the thymus of mice that could suppress the progression

of autoimmune diseases (1). Traditionally, CD4+Treg has been believed can suppress the

activities of T cells, B cells, natural killer (NK) cells, and other immune cells. Functional

impairment of CD4+Treg is a significant contributing factor to the development of

autoimmune diseases (2). Studies in the field of tumor microenvironment (TME) have

shown that tumor cells exploit the immunosuppressive capacity of CD4+Treg in TME to

evade immune surveillance and promote tumor progression (3). Therefore, targeting

CD4+Treg in tumor therapy holds significant potential for development.

Given the crucial role of CD4+Treg in tumor progression, it is essential to gain a deeper

understanding of the distinct functional subtypes of CD4+Treg. Recent advances in

functional studies and single-cell sequencing have provided novel insights into the

functional heterogeneity of CD4+Treg (4, 5) and identified new molecular targets for

CD4+Treg in TME (6). This review aims to summarize the relevant research, including the
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functional heterogeneity and subtyping of CD4+Treg, and provide

an overview of clinical trials targeting CD4+Treg.
2 Classification of CD4+Treg

CD4+Treg can be classified into two main categories based on

their cellular origins: natural-occurring Treg (nTreg) and peripheral

Treg (pTreg). nTreg are generated in the thymus, the precursor cells of

Treg mature into CD4+CD25+Foxp3+Treg following stimulation by

IL-2/STAT5 and IL-4 signals (7). On the other hand, pTreg are

derived from nTreg or initial CD4
+T cells in the periphery under

specific cytokine or molecular stimuli (8). Additionally, there is a

subset of CD4+Treg known as induced Treg (iTreg), which can be

generated in vitro experiments. These three types of cells constitute

the classical classification of CD4+Treg. Subsequent research has

further refined this classical classification based on Foxp3

expression. For example, iTreg can be further divided into Foxp3

+iTreg and Foxp3-iTreg, with the latter including Type I Treg (Tr1)

cells (9), T helper 3 (Th3) cells (10), and IL-35-induced CD4+Treg

(iTr35) (11). Table 1 summarizes the common types of CD4+Treg

and their corresponding phenotypes.
3 Heterogeneity and subtypes of
CD4+ Treg

3.1 Subtypes of CD4+Treg

Previous studies on CD4+Treg have primarily focused on

CD4+CD25+Foxp3+Treg. However, emerging evidence suggests

functional heterogeneity within this population, and relying solely

on the CD25+Foxp3+phenotype may lead to contradictory

conclusions in studies investigating the same disease. Therefore,

the establishment of a reliable subtyping strategy is crucial.

Currently, two mainstream classification systems are widely used:

functional subtypes proposed by the Sakaguchi et al. (16) and the

Th-like Treg subtypes based on cytokine expression (17).

Sakaguchi et al. proposed a subdivision of CD4+Treg based on

CD45RA expression in 2009, further categorizing them into three

functional subsets: subset I consists of CD45RA+Foxp3lo/CD25lo
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resting Treg (rTreg); subset II comprises CD45RA-Foxp3hi/CD25hi

effector Treg (eTreg), also known as activated Treg (aTreg); and subset

III includes CD45RA-Foxp3lo/CD25lo non-Treg (16). Functionally, rTreg
possess a certain degree of immunosuppressive capacity and express

markers of naive cells such as CCR7 and CD62L. They can differentiate

into eTreg upon antigen stimulation. Subset of eTreg exhibit stronger

proliferation and immunosuppressive abilities but are more prone to

apoptosis. Non-Treg, which were previously considered as cells

secreting pro-inflammatory cytokines such as IFN-g and IL-17

without immunosuppressive capabilities, were found to exhibit

significant functional heterogeneity by Cuadrado et al. using mass

spectrometry. CD127+ non-Treg and CD127- non-Treg displayed

characteristics of conventional T cells and eTreg, respectively.

Furthermore, the CD127- subset can be further subdivided based on

CD49d and CCR4 expression, with CD127-CCR4+CD49d- cells

showing high levels of IL-2 expression, while CD127-CCR4-CD49d+

cells exhibit elevated levels of IFN-g and IL-17 (18).

In addition to the classification proposed by Sakaguchi et al.,

Halim et al. categorized CD4+Treg into four distinct subtypes,

termed Th-like Treg, based on their cytokine secretion profiles and

transcription factor expression in 2017. These subtypes include

Th1-like Treg (CCR4+CCR6-CXCR3+, primarily secreting IFN-g
and TNF-a), Th2-like Treg (CCR4+CCR6-CXCR3-, primarily

secreting IL-2, IL-4, IL-5, and IL-13), Th17-like Treg

(CCR4+CCR6+CXCR3-, primarily secreting IL-17A/IL-17F), and

Th1/17-like Treg (CCR4+CCR6+CXCR3+, secreting both IFN-g
and IL-17A without significant statistical differences compared to

other subsets) (17). Each Th-like Treg subset exhibited transcription

factor expression and cytokine secretion patterns similar to their

corresponding Th cell counterparts. Furthermore, all Th-like Treg

subtypes demonstrated immunosuppressive capabilities. However,

this classification did not investigate the stability of Foxp3

expression in different subtypes, leading to inconsistent

conclusions in various studies utilizing this classification system.

Besides to the aforementioned common classifications, the

research conducted by Bluestone et al. revealed a stronger correlation

between CD127 and Foxp3 expression levels compared to CD25.

Furthermore, the suppressive function of the CD4+CD127lo/- subset

was found to be superior to that of the CD4+CD25+ subset (19).

Currently, the phenotype of CD4+CD25+CD127lo/- is widely used for

isolation of CD4+Treg.
TABLE 1 Characteristic markers of different CD4+Treg subtypes.

Subtype
of Treg

Phenotype Effector molecules Transcription
factors

Reference

nTreg CD4+CD25+Foxp3+Helios+CTLA4+ Nrp1+ TGF-b, IL-10, CTLA4, IL-35, LAG3,
LAP, etc.

Foxp3 (12, 13)

Foxp3+iTreg CD4+CD25+Foxp3+Helios+CTLA4+ Nrp1- Similar to nTreg Foxp3 (13)

Tr1 CD4+Foxp3-CD49b+LAG3+ CD226+ TGF-b, IL-10, PD-1, CTLA4, etc. c-Maf, AhR, IRF4 (9)

Th3 CD4+CD25–CD69+Foxp3–LAP+TGF-b+ TGF-b Not specified (14)

iTr35 CD4+Foxp3−Ebi3+p35+IL-10−TGF-b− IL-35 Not specified (11)

Treg induced by
B cells

CD4+CD25+Foxp3-

LAG3+ICOS+⑦PD1+GITR+⑧CD134+
IL-10, PD-1, CTLA4, LAG3, etc. Not specified (15)
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3.2 Foxp3 stability and the function
of CD4+Treg

Current evidence suggests that stable expression of Foxp3 is

closely associated with the immunoregulatory function of

CD4+Treg. Therefore, the main factors regulating Foxp3 stability

may be crucial for the heterogeneity of CD4+Treg function, such as

local inflammatory cytokine stimulation or epigenetic regulation.

Under stimulation from the inflammatory microenvironment,

the expression of Foxp3 in some cells may be affected, leading to the

loss of negative immune regulatory function. Early in vitro studies

have shown that CD4+CD25- T cells can transiently express CD25

and Foxp3 upon IL-2 or TGF-b stimulation, but these T cells do not

possess immunosuppressive abilities (20). Recent research by Yi

et al. has found that, under the stimulation of the inflammatory

cytokine IL-6, TIGIT-positive CD4+Treg can stably express Foxp3

and maintain immunosuppressive function, while TIGIT-negative

unstable cells lose Foxp3 expression and transition into an effector T

cell phenotype (21). These results suggest that CD4+Treg with stable

Foxp3 expression may possess immune regulatory capabilities,

while cells with unstable Foxp3 expression may transition into

other types of T cells under microenvironmental influences.

In recent years, the role of epigenetic regulation in Foxp3

expression has become a new research focus, with DNA

methylation being the most common modification. The gene Foxp3

consists of 11 coding exons, 3 non-coding exons, and 10 introns.

Within this gene region, there are 3 conserved non-coding sequences

(CNS), with CNS2 containing numerous cytidine-phosphate-guanine

(CpG) sites. These sites are methylated in effector T cells but exhibit

demethylation in CD4+Treg cells (22), thus being referred to as the

Treg-specific demethylated region (TSDR). Sakaguchi et al. previously

discovered that there are differences in the methylation levels of the

TSDR at the Foxp3 locus. TSDR in rTreg and eTreg exhibited

demethylation, while TSDR in non-Treg had a higher degree of

methylation, suggesting that Foxp3 expression is more stable in

rTreg and eTreg (16). Additionally, a recent study found that the

CD28-PKC-NF-kB signaling pathway inhibits demethylation in the

CNS2 region of peripheral CD4+Treg, causing unstable Foxp3

expression in pTreg cells and subsequently affecting their

immunosuppressive function (23). Furthermore, Ohkura et al.

discovered a close relationship between single nucleotide

polymorphisms in the epigenetic regulatory region of CD4+Treg

and susceptibility to autoimmune diseases (24). Apart from CNS2,

two other CNS regions have been shown to play important roles in

stable Foxp3 expression and immune tolerance: CNS1, located in the

promoter region of the Foxp3 gene, was found to be associated with

pTreg differentiation and maintenance of fetal immune tolerance (25);

and CNS3 mediates the clonal expansion of the CD4+Treg receptor

repertoire, thereby controlling excessive immune responses of

autoreactive T cells and maintaining immune homeostasis (26).

Additionally, research by Kitagawa et al. found that the

transcription factor Satb1 can bind to a CD4+Treg-specific super-

enhancer and a newly discovered conserved non-coding region

upstream of the Foxp3 promoter prior to CD4+Treg activation,

promoting the development of CD4+Treg. This newly discovered

region has been named CNS0 (27).
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In addition to methylation, acetylation and histone modifications

have also been shown to be associated with the stable expression of

Foxp3. During the acetylation process, histone acetyltransferases

(HATs) and histone deacetylases (HDACs) influence Foxp3

acetylation levels from different directions. Two studies by Li and

Tao demonstrated that HAT TIP60 and class II HDACs (HDAC7

and HDAC9) can form complexes with Foxp3, regulating the

immunosuppressive capacity of CD4+Treg (28, 29). Other studies

further investigated the impact of acetylation on CD4+Treg function

in specific diseases. Su et al. found that rheumatoid arthritis patients

have a TIP60 functional deficiency, leading to instability of Foxp3

expression and impaired suppressive function of CD4+Treg (30). Jiang

et al. discovered that the acetyltransferase p300/CBP-associated factor

(PCAF) can acetylate Foxp3 and enhance its transcriptional activity,

thereby promoting the suppressive function of CD4+Treg (31). These

studies suggest that acetylation and deacetylation processes play a

critical role in regulating the stability and function of Foxp3 in

CD4+Treg. In the field of histone modifications, substantial progress

has been made in understanding the role of Enhancer of zeste

homolog 2 (EZH2). EZH2 is a catalytic enzyme of the polycomb

repressive complex 2 (PRC2) responsible for the methylation of

histone H3 lysine 27 (H3K27) at the Foxp3 locus, leading to the

formation of H3K27me3 histone modification. Studies by DuPage

et al. have demonstrated that Ezh2 is involved in stabilizing the

expression of Foxp3 in a mice model, selective deletion of Ezh2 in

CD4+Treg resulted in the development of autoimmune diseases and

accompanied by reduced stability of CD4+Treg (32). This study

suggests that Ezh2 may play a crucial role in maintaining Treg cell

function. Goswami et al. found that selective deletion of Ezh2 in

CD4+Treg delays tumor progression in mice, while the use of Ezh2

inhibitors in wild-type mice enhances the function of cytotoxic T

lymphocytes (CTLs) and promotes the efficacy of anti-CTLA-4

antibodies, thus inhibiting tumor progression (33). These findings

indicate that the histone modifications mediated by EZH2 may

represent another important mechanism regulating the function

of CD4+Treg.
4 Heterogeneity of CD4+Treg in
the TME

Infiltration of CD4+Tregs in TME suppresses local anti-tumor

immune responses and is associated with poor prognosis in various

types of cancer. The heterogeneity of CD4+Treg offer diverse

mechanisms that contribute to the modulation of anti-tumor

immune responses and facilitate immune evasion. Therefore,

accurate characterization of different CD4+Treg subsets in TME

is crucial for gaining insights into the formation of the

immunosuppressive TME as well as for improving patient prognosis.

The classification of Tregs subsets proposed by Sakaguchi et al.

have been widely used to study the heterogeneity of CD4+Treg in

TME. Saito et al., based on the classification, divided colorectal

cancer into two types: Type A, characterized by predominant

infiltration of eTreg and correlated with poor prognosis, and Type

B, characterized by predominant infiltration of non-Treg and

correlated with better prognosis (34). Similarly, studies on
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different types of tumors have consistently shown that eTreg are the

major population in TME and correlated with poor prognosis (35,

36). Wang et al. found a high overlap between the phenotypes and

TCR repertoire of tumor-infiltrating CD4+Treg and peripheral eTreg

in patients with breast cancer. They proposed a cytokine signal

index (CSI) based on the responsiveness of various peripheral

CD4+Treg subsets to four cytokines, the CSI of eTreg could

effectively predict patient prognosis and relapse (37).

Limited research focused on Th-like Treg in TME. Mizukami

et al. have shown that tumor-infiltrating CD4+Treg express CCR4 in

lymphoma and gastric cancer (38). Halim et al. demonstrated that

CCR4+Treg in the TME predominantly exhibit Th2-like

characteristics, they also discovered a significant elevation of

CCR8 expression on Th2-like Treg (17), consistent with the

single-cell sequencing results reported by De Simone (39). Van

Damme et al. also confirmed that tumor-infiltrating CCR8+Treg was

highly activated and immunosuppressive in both human and mouse

tumors. Selective depletion of this subset resulted in increased

responsiveness to immunotherapy (40). Downs-Canner et al.

discovered that Th17 cells can differentiate into Th17-like Treg in

ovarian cancer, thereby suppressing immune responses (41).

The emergence of single-cell RNA sequencing technology has

advanced our understanding of the functional subgroups of CD4+Treg

in tissue microenvironments, particularly in tumor-infiltrating sites.

Several studies analyzed the immune cell infiltration in head and neck

squamous cell carcinoma (HNSCC), non-small cell lung carcinoma

(NSCLC), and breast cancer, respectively. Cillo et al. categorized

CD4+Treg infiltrating HNSCC into six subsets, with subsets 2 and 4

representing early-stage CD4+Treg with upregulated IFN-related

signaling pathways, while subsets 3 and 6 represented late-stage

CD4+Treg with upregulated TNF-related signaling pathways (42).

Guo et al. observed high expression of Foxp3, IL-2RA, and IKZF2 in

tumor-infiltrating CD4+Treg, as well as increased expression of

CTLA4, TIGIT, and TNFRSF9 in tumor-infiltrating CD4+Treg in

NSCLC specimens. Further investigation revealed that the

TNFRSF9+subset within tumor-infiltrating CD4+Treg exhibited

potent immunosuppressive abilities (43). Azizi et al. identified five

subsets of tumor-infiltrating CD4+Treg in samples of breast cancer

and analyzed the expression of immune checkpoint-related genes

within each subset. The results showed that all subsets exhibited high

expression of CTLA4 and GITR, with three subsets showing

elevated expression of TIGIT (6). The widespread adoption of

single-cell sequencing technology enables a more comprehensive

analysis to the expression of CD4+Treg-related genes in tissue

microenvironment, facilitating the identification of biomarkers that

effectively represent CD4+Treg functionality. However, these findings

still require further validation through functional experiments.
5 Clinical trials targeting CD4+Treg
in cancer

Targeting CD4+Treg has the potential to become an important

approach in immunotherapy as tumor cells in TME can evade

immune surveillance by recruiting immune-suppressive cells such

as CD4+Treg. Considering the functional subgroups of CD4
+Treg, the
Frontiers in Immunology 04
primary challenge lies in selectively targeting immunosuppressive

subsets while minimizing the impact on other subpopulations, thus

reducing the potential for undesirable autoimmune reactions. Early

clinical trials primarily targeted CD25 as a marker for Treg, drugs such

as denileukin and daclizumab have been reported to reduce the

proportion of CD4+CD25+Treg and enhance the response rate to

tumor vaccine (44). However, CD25 is not a specific marker to

CD4+Treg, and the combination of CD25-targeted therapy with tumor

vaccines can suppress the generation of tumor-specific T cells (45),

limiting the application of CD25 antibodies.

CCR4 is predominantly expressed on the surface of eTreg (46),

and previous studies indicated that blocking CCR4 can inhibit the

accumulation of eTreg in TME (35). Therefore, targeting CCR4 has

shown certain efficacy. Mogamulizumab, a monoclonal antibody

targeting CCR4, has been approved by the FDA for the treatment of

cutaneous T-cell lymphoma (47). A clinical trial combined

mogamulizumab with PD-1 inhibitor (NCT02476123) found an

objective response rate of 12% in various types of locally advanced/

metastatic solid tumors. The combination significantly reduced the

proportion of eTreg in both peripheral blood and tumor-infiltrating

lymphocytes (TIL). Moreover, the combination therapy increased

the proportion of CD8+T cells in TME regardless of tumor

response, indicating the potential of CCR4 targeting therapy (48).

Inhibition of immune checkpoint receptors including CTLA-4,

TIM-3, and LAG-3 had shown promising effects in clinical trials or

pre-clinical studies. CTLA-4 is a co-inhibitory molecule expressed on

the surface of CD4+Treg and negatively regulates T cell activation (49).

Studies in patients with metastatic melanoma have shown that the

CTLA-4 antibody ipilimumab can prolong overall survival, but it is

also associated with severe adverse events in 10% to 15% of patients

(50). Recent clinical trials have found that PD-1 antibody has a lower

incidence of adverse events compared to ipilimumab(KEYNOTE-

006, NCT01866319) (51), and combination of nivolumab and

ipilimumab (CheckMate 067, NCT01844505) can further extend

overall survival in patients with melanoma (52). The data from this

trial suggest that CTLA-4 antibodies may potentially serve as

adjunctive therapy to enhance the efficacy of PD-1 antibodies.

TIM-3 is expressed on innate immune cells. Although TIM-3 is

not a specific marker on the surface of CD4+Treg, recent studies have

identified TIM-3+CD4+Treg within TME played a crucial inhibitory

role by inducing exhaustion in effector T cells and TIM-3+CD4+Treg

might be a potential therapeutic target (53). Combination therapy

targeting TIM-3 and PD-1 mAb has already been tested in several

solid tumor, and an ongoing Phase 1 clinical trial is currently

evaluating the dosage and anti-tumor efficacy of a humanized anti-

TIM-3 antibody in advanced solid tumors (NCT02817633) (54).

LAG-3 is expressed on activated T cells including CD4+Treg (55) and

LAG-3 can hinder the proliferation of effector T cells and dendritic

cells, while promoting the differentiation of eTreg (56). Currently,

there are two clinical trials investigating the efficacy of anti-LAG-3

alone or in combination with PD-L1 antibody in patients with

advanced solid tumors (NCT01968109, NCT03156114) (57). OX40

is a costimulatory molecule expressed mostly on activated effector T

cells and nTreg (58). Pre-clinical studies have demonstrated the

immunosuppressive function of OX40+Treg and anti-OX40 could

improve tumor control in mouse models (59, 60). A recent phase I
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clinical in HNSCC patients (NCT02274155) demonstrated that anti-

OX40 administration was well tolerated and increased the infiltration

of activated CD4+ and CD8+T cells (61). This data indicates the

potential clinical utility of anti-OX-40, but further clinical trials are

needed to confirm its efficacy.

Above clinical trials aim to reverse the immunosuppressive state

of TME by inhibiting immunosuppressive cells such as CD4+Treg.

Optimization of combination therapies that effectively target

CD4+Treg while enhancing anti-tumor immune responses

represents a promising avenue for the improved treatment of

cancer. However, it is crucial to take into account the pathological

subtype of cancer and adopt a targeted approach towards suppressive

CD4+Treg, rather than indiscriminately depleting all Treg or other

effector T cells. These considerations highlight the importance of

further evaluation when developing novel therapeutic strategies in

this context.
6 Conclusion

Although CD4+Treg represent a small proportion of lymphocytes,

their immunoregulatory role in the TME is crucial. Effectively

distinguishing the distinct functional heterogeneity of CD4+Treg

subsets is a pressing challenge. Currently, the subtypes proposed by

Sakaguchi et al. is the most widely used and exhibits good consistency

in research conclusions. However, the subtypes of Th-like Treg reflects

the plasticity of CD4+Treg in TME and still faces inconsistent findings

across different studies. Furthermore, numerous clinical trials

targeting CD4+Treg have been conducted, highlighting the pressing

need to accurately inhibit specific functional Treg subsets involved in

immunoregulation. In future research, rational subgroup analysis

based on different surface markers is essential for a better

understanding of the role of CD4+Treg in the TME.
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